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THE DISCRETE FOURIER
TRANSFORM

‘Normally a discussion of the discrete Fourier transform is based on an
initial definition of the finite length 'discrete transform; from this assumed
axiom those Eo@mﬂ:mw of the transform implied by this definition are derived.
- This approach is unrewarding in that at its conclusion there is always the
- unanswered question, “How does the discrete Fourier transform relate to
the continuous Fourier transform?” To answer this question we find it
~-preferable to derive the discrete Fourier transform as a special case of con-
:tinuous Fourier transform theory.

In this chapter, we develop a special case of the continuous Fourier trans-
form which is amenable to machine computation. The approach will be to
develop the discrete Fourier transform from a graphical derivation based on

“continuous Fourier transform theory. These graphical arguments are then
‘substantiated by a theoretical development. Both approaches emphasize the
‘modifications of continuous Fourier transform theory which are necessary
‘to define a computer-oriented transform pair.

6-1 A GRAPHICAL DEVELOPMENT

Consider the example function A(r) and its Fourier transform H(f)
.m:cmﬂmﬁm in Fig. 6-1(a). It is desired to modify this Fourier transform pair
in such a manner that the pair is amenable to digital computer computation,
This modified pair, termed the discrete Fourier transform is to approximate
as closely as possibly the oossucocm Fourier transform.

“To determine the Fourier transform of E& by means of digital analysis
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\Rorsﬁcmm it is necessary to sample /(¢) as described in Chapter 5. Sampling
is accomplished by multiplying () by the sampling function illustrated in
+ Fig. 6-1(b). The sample intefval is 7. Sampled function () and its Fourier
transform are illustrated in Fig, 6-1(c): This Fourier transform pair repre-

sents the first modification to the original pair which is necessary in defininga £e.., e

discrete transform pair. Note that to this point the modified transform pair £,
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differs from the original transform pair only by the aliasing om.ooﬂ ‘which result

from sampling. As discussed in Sec. 5-3, if the waveform h(¢) is sampled at
a frequency of at least twice the largest frequency component of h(r), there
is no loss of information as a result of sampling. If the function A(r) is not
band-limited; i.e., H(f) 5= 0 for some | #| > f,, then sampling will introduce |
aliasing as illustrated in Fig. 6-1(c). To reduce this error we have only one
recourse, and that is to sample faster; that is, choose T smaller. ;
The Fourier transform pair in Fig. 6-1(c) is not suitable for machine corm- g
putation because an infinity of samples of A(z) is considered; it I8 sary to (et
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truncate > the sampled function A(Y) so that only a finite number o points, say 7

N, are considered. The rectangular or truncation function and its. m,ccnma
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impulse functions representing A(¢) and the truncation function yields the finite
length time function illustrated in Fig. 6-1(¢). Truncation introduces the

mooonmﬁoaumomﬁnmim-mrrmoEmE&;ﬁ@camher:mwQ.EwmmﬁﬁEmmm,oo:mﬂo
convolve the aliased frequency transform of Fig. 6-1(c) with the Fourier
transform of the truncation function [Fig. 6-1(d)). As shown in Fig. 6-1(e),
the frequency transform now has a ripple to it; this effect has been accen-
tuated in the iflustration for onerWz‘,ﬂm reduce this effect, recall the inverse
relation that exists between the width of a time function and its Fourier trans-
form (Sec. 3-3). Hence, if the truncation (rectangular) function is increased in
length, then the sin f/f function will approach an impulse; the more closely
the sin f/f function approximates an impulse, the less ripple or error will be Doz
introduced by the convolution which results from truncation. Therefore, it

plmtchutel et Mt

is desirable to choose the length of the truncation function as long as possible.
We will investigate in detail in Sec. 6-4 the effect of truncation.

The modified transform pair of Fig. 6-1(e) is still not an acceptable dis-
crete Fourier transform pair because the frequency transform is a continuous
function. For machine computation, only sample values of the frequency
" function can be ooﬁvina it is necessary to modify the frequency transform

by the frequency sampling function illustrated in Fig. 6-1( ). The frequency
sampling interval is 1/T,.

The discrete Fourier transform pair of Fig. 6-1(g) is acceptable for the

- purposes of digital machine computation since both the time and frequency
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- domains are represented by discrete values. As illustrated in Hupm 6-1(g), the

p—— N ' e——N——— f ‘original time function is mwnnoﬁﬁmﬂan by N samples; the original Fourjer
Figure 6-1. Graphical development of the discrete Fourier ~transform H(f) is also approximated by N samples. These .bw! wm,zmmm_.mm fine b=
transform. the B.mmnoﬁotm.@::mn transform pair and approximate the original Fourier
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transform pair. Note that sampling in the time domain resulted in a periodic
function of frequency; sampling in the frequency domain resulted in a peri-
odic function of time. Hence, the discrete Fourier transform requires that

both, the original time and frequency functions be modified such that they
become periodic functions. N time samples and N frequency values represent
one period of the time and frequency domain waveforms, respectively. Since
the N values of time and frequency are related by the continuous Fourier

transform, then a discrete relationship can be derived.

6-2 THEORETICAL DEVELOPMENT

The preceding graphical development illustrates the point that if a con-
tinuous Fourier transform pair is suitably modified, then the modified pair
is acceptable for computation on a digital computer. Thus, to develop this
discrete Fourier transform pair, it is only necessary to derive the mathe-_

matical relationships which result from each of the required modifications:

time domain sampling, truncation, and frequency domain sampling.

Consider the Fourier transform pair illustrated in Fig. 6-2(a). To discretize
this transform pair it is first necessary to sample the waveform A(r); the sam-

pled waveform can be written as A(z) A,(r) where A,(r) is the time domain

sampling function illustrated in Fig. 6-2(b). The sampling interval is 7.
From Eg. (5-20) the sampled function can be written as

hOALD) = h(®) 3 8t — kT)

koo

= S h(kT)d(t — kT)

K=o

(6-1)

The result of this multiplication is illustrated in Fig. 6-2(c). Note the aliasing

effect which results from the choice of 7. T
Next, the sampled function is truncated by multiplication with the

rectangular function x(z) illustrated in Fig. 6-2(d):

T T

otherwise

D ox(f) =1

=0 (6-2)

where T, is the duration of the truncation function. An obvious question at
this point is, “Why is the rectangular function x(¢) not centered at zero or
T,/27" Centering of x(#) at zero is avoided to alleviate notation problems.
The reason for not centering the rectangular function at T/2 will become
obvious later in the development.
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Figure 6-2. Graphical derivation of the discrete Fourier
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Truncation yields

Wb (Ox@) = | 3o h(kT) 8(t E]%S

k= —oo

| - M WKT) 8(t — kT) (6-3)
where it has been assumed that there are N equidistant impulse functions
lying within the truncation interval; thatis, N = T,/T. The sampled truncated
waveform and its Fourier transform are illustrated in Fig. 6-2(¢). As in the
previous example, truncation in the time domain results in rippling in the
frequency domain.

The final step in modifying the original Fourier transform pair to a dis-
crete Fourier transform pair is to sample the Fourier transform of Eq. (6-3).

" In the time domain this product is equivalent to _convolving the sampled

truncated waveform (6-3) and. the i

cuncay me function A,(7), illustrated in Fig.
© 6-2(f). Function A, (z) is given by Fourier transform pair (2-40) as
AW =T, 3 8(t—rTy) (6-4)

= -

The desired relationship is [A(D)A(£)x(} * A, (z); hence

[A(DALOXD] * A,(0) = HMM h(kT) 6(t — S& *To 8t — 5@

r=-—oo

N ﬁ,M WET)5(t + Ty — kT)
- T, % HET) 8t — KT)

. ﬁwhiﬁg T, —kT) 4 - (69)

Note that {(6-5) is periodic with period T; in compact notation form the
equation can be written as e

F=—0a

Miy=T, 3. M kT 6(t — kT — 5@ (6-6)

We choose the notation &(f) to imply that (2 is an approximation to the
function A(r).

Choice of the rectangular function x(z) as described by Eq. (6-2) can now
be explained. Note that the convolution re ult of Eq. (6-6) is a periodic func-

tion with period T, éE.or‘ooﬁ.mwmﬂwOw .23528.Hmﬁranooﬁmpmima?:omo:
had been chosen such that a sampie value coincided with each end point of
the rectangular function, the convolution of the rectangular function with
impulses spaced at intervals of T, would result in time domain aliasing, That
is, the Nth point of one period would coincide with (and add to) the first

point of the next period. To insure that time domain aliasing does not occur,

Sec. 6-2
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(The truncation function may also be chosen as illustrated in Fig. 6-1(d)
but note that the end points of the truncation function lie at the BE%QEM
of two.adjacent sample values to avoid time domain aliasing.)

To a@&ob the Fourier transform of Eq. (6-6), recall from the discussion
on Fourier series, Sec. 5-1, that the Fourier transform of a periodic function

it is necessary to choose the truncation interval as illustrated in Fig. 6-2(d)

h(r) is a sequence of equidistant impulses

- "
a(f)= £ ads—nf) fimt 7
where 6
1 To—T/2 _
o, = — - j2at/To _ .
» =T .*,aﬁs e dt n=0,4+1,42 .. (6-8)

Substitution of (6-6) in (6-8) yields

1 To—~T/2 o N1
o, = !N:..m R‘ H..a M .&Mo Nmﬁwﬂﬂ..v QAH — kT — m.u..ov g F2antiTo fy

~1/2 r=e

Integration is only over one pericd, hence

« u‘.ﬂalﬂ\n 2MI“~ .«H _\ﬁ
= —_ —iZrut/Ty
A o (kT 8(r — kT) e izneiTo gy
Nl Te-T/2 L
=3 xii-s e~ 3miTo §(r — kT dt
N=1
o NM@ \wﬁ“ﬂﬂlv Nl.wm.awau:\u)a Amlwv
Since T, = NT, Eq. (6-9) can be rewritten as
N—-1
o = 3 h(kT) e 250N pe 0, 21, £2, ... (6-10)
-and the Fourier transform of Eq. (6-6) is
rir{ R = Al 1
m?iv = 3 3 HKT) e (6-11)

From a cursory evaluation of (6-11), it is not obvious that the Fourier

transform M.A:\.ZS is periodic as illustrated in Fig. 6-2(g). However, there
are only N distinct complex values computable from Eq. (6-11). To establish
this fact let # == r where r is an arbitrary integer; Eq. (6-11) becomes

mﬂbv = zMIUH h(kT) e~ 2mkrin
NT) = i (6-12)

Now let n = r 4+ N note that

@ Ik ININ . p=j2nkr/N p-i2uk

s g f2mkr/N (6-13)
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since ek = cos (2mk) — jsin (2rk) = 1 for k integer valued. Thus for
n=r—+N

LA
,LQ

— RkT) g~ fankriN
0

k

&

= A= m,I
A(7) Av
Therefore, there are only N distinct values for which Eq. (6-11) can be evalu-
ated; H(n/NT) is periodic with a period of N samples. Fourier transform
(6-11) can be expressed equivalently as
mﬂl.slv . 2M|“~ h(kT) g f2mAkiN
NT Pra
Eq. (6-15) is the desired discrete Fourier transform; the expression relates

n=0,1,...,N—1 (615

N samples_of time and N samples.of frequency by means of the continuous
Fourier transform. The discrete Fourier transform is then a special case of
the continuous Fourier transform. If it is assumed that the N samples of the
original function A(¢) are one period of a periodic waveform, the Fourier
transform of this periodic function is given by the N samples as ooBvE.&
by Eq. (6-15). Notation H(n/NT) is used to indicate that the discrete Fourler
transform is an approximation to the continuous Fourier transform. Nor-

mally, Eq. (6-15) is written as

N

n = - jannkiN
6(yr) = & s

since the Fourier transform of the sampled periodic function g(kT) is iden-
tically G(n/NT).

ne=0,1,...,N—1 (616)

6-3 DISCRETE INVERSE FOURIER ,HN.?meOWHS
The discrete inverse Fourier transform is given by
= L5 Txiv kN f=0,1,..., N -1 (617
gkT) =+ X Glyr)e B FA (

To prove that (6-17) and the transform relation (6-16) form a discrete Fourier
transform pair, substitute (6-17) into Eq. (6-16).

QA%&«V = ZM_H ’HZ!M! ZMW thﬁwﬁ%v mhﬁ?é@mlﬁaawmz
k=0 r=q
— WZMF Qﬁamwdv zMsU_ g 2RriN ma.ﬁ.uaa?ég
fa) b

— m?ﬁ (6-18)
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Identity (6-18) follows from the orthogonality relationship
N=1 Az ifr=n

M W,_.Muqnn..‘z mi‘muaamﬂx_z -
k=0

. (6-19)
0 otherwise

The discrete Inversion formula (6-17) exhibits periodicity in the same
manner as the discrete transform; the period is defined by N samples of
g(kT). This property results from the periodic nature of &/>*#¥, Hence,
g(kT) is actually defined on the complete set of integers k = 0, 41, £2,...
and is constrained by the identity

gkT) =gl’!N+K)T]  r=0,=x1, £2,... (6-20)
In summary, the discrete Fourier transform pair is given by
kD) = 5 5 G(57) e O 6(35) = T e®T) e
N S ANT NT ¥=h
(6-21)

It is important to remember that the pair (6-21) requires both the time and
frequency domain functions to be periodic;

: - Qﬁ$v = Qﬁ@x%'%@ r=0,+1,42,... (6-22)
g(kT) = gl(rN + K)T] =0,:+1,42,... (6-23)

6-4 RELATIONSHIP BETWEEN THE DISCRETE AND
CONTINUCUS FOURIER TRANSFORM

The discrete Fourier transform is of interest primarily because it approxi-
mates the continuous Fourier transform. Validity of this approximation is
. strictly a function of the waveform being analyzed. In this section we use
- graphical analysis to indicate for general classes of functions the degree of
equivalence between the discrete and continuous transform. As will be
stressed, differences in the two transforms arise because of the discrete trans-
form requirement for sampling and truncation.

. Band-Limited Periodic Waveforms: Truncation Internal
- Equal to Period

~ Consider the function A(z) and its Fourier transform iliustrated in Fig.
6-3(a). We wish to sample A(z), truncate the sampled function to &V samples,
and apply the discrete Fourier transform Eq. (6-16). Rather than applying
-.this equation directly, we will develop its application graphically. Waveform
h(r) is sampled by multiplication with the sampling function illustrated in
Fig. 6-3(b). Sampled waveform #(k7T) and its Fourier transform are illus-

trated in Fig. 6-3(c). Note that for this example there is no aliasing. Also
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Figure 6-3. Discrete Fourier transform of a band-limited
periodic waveform: truncation interval equal to period.
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-observe that as a result of time domain sampling, the frequency domain :mm "

been scaled by the factor 1/7°; the Fourier transform impulse now has an
area of \QNH rather than the original area of A4/2. The sampled waveform is
truncated by multiplication with the rectangular function illustrated in Fig.
6-3(d); Fig. 6-3(e) illustrates the sampled and truncated waveform. As shown, Trasc
we chose the rectangular function so that the N sample values remaining : mwﬁ._ .

truncation equate to one period of the original Em<mwo_,,5 33 .

‘:._m Fourier qm:mmczs of the finite length mm:.%m@a waveform :uum 6- wmov_

6-3(c) and the sin Hbq ?o@aﬂ@ ?:n:os Ow ﬂ_m m. uﬁ& ﬂ_mE.m 6- u@ E:m,

trates the convolution results; an Gﬁmmaaa view of this convolution is shown
in Fig. 6-4(b). A sin fif function (dashed line) is centered on each impulse of
Fig. 6-4(a) and the resuftant waveforms are additively combined (solid line)

to form the convolution result. |
With respect to the original transform H(f), the convolved ?Bgos@ o

function [Fig. 6-4(b)] is m_mm&nm_bb% distorted. However, when this function is
sampled by the frequency sampling function illustrated in Fig. 6-3(f) the
distortion is eliminated. This follows because the equidistant impulses of

the frequency sampling function are separated by 1/, ; at these wﬂomcouo_mm

 Hith A1 |

[y

sin(mT_f}
oA (6T o
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Figure 6-4. Expanded :Eﬂﬁ:on of the convolution of
Fig. 6-3(e).
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+1/T, no:.nmuosaw to the frequency domain impulses of the original fre-
~quency function H(f). Because of time domain truncation, these impulses
now have an area of 4T,/27T rather than the original area of 4/2. (Fig. 6-4(b}

[N, Lo

does not take into account that the Fourier transform of the truncation

ﬁ@m@osi“ﬁ::ﬂamaaE?mmﬁ&_mmﬁ:m:wmooBon ?n@ﬁm:ow?w?
tion: however, had we considered a complex function, similar results would
have been obtained.}

Maultiplication of the frequency function of Fig. 6-3(¢} and the frequency
sampling function A,(f) implies the convolution of the time functions shown
in Figs. 6-3(e) and (/). Because the sampled truncated waveform [Fig. 6-3(e)]
is exactly one period of the original waveform /(f) and since the time domain
impulse functions of Fig. 6-3(f) are separated by Ty, then their convolution
yields a periodic function as ilfustrated in Fig. 6-3(g). This is simply the time
domain equivalent to the previously discussed frequency sampling which
vielded only a single impulse or frequency noEvos@i. The time function of
Fig. 6-3(g) has a maximum amplitude of A7,, compared to the original

maximum value of A as a result of ?o@cozow aoEmE sampling.
: Examination of Tm 6-3(g) indicates that we have taken our original time
?Euson sampled it, and then multiplied each sample by HD The Fourier

the solid line of Fig. 6-4(b) is zero except at the frequency +1/7,. Frequency

transform of this function is related to the ozm:&_ frequency function by
the factor AT,/2T. Factor T, is common and can be eliminated. If we desire
to compute the Fourier transform by means of the discrete Fourier trans-
form, it is necessary to multiply the discrete time ?:nﬂoz by the factor T’
which yields the desired A4/2 area for the ?Ecmz@ function; Eq. (6-16) thus

becomes
& ~jZankiN R
EAZHL Mr hkT)e (6-24)

We expect this result since the relationship (6-24) is simply the rectangular
rule for integration of the continuous Fourier transform.

This example represents the only class of waveforms for which the discrete
and continuous Fourier transforms are exactly the same within a scaling
constant. Equivalence of the two transforms requires: (1) the time function
h(r) must be periodic, (2) A(x) must be band-limited, (3) the sampling rate
must be at least two times the largest frequency component of A(z), and (4)
the truncation function x(r) must be non-zero over exactly one period {or
integer multiple period) of A(z).

Band-Limited Periodic Waveforms: Truncation Interval
Not Equal to Period

If a periodic, band-limited function is sampled and truncated to consist
of other than an integer multiple of the period, the resulting discrete and
continuous Fourier transform will differ considerably. To examine this

e—— e
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effect, consider the illustrations of Fig. 6-5. This example differs from the
preceding only in the frequency of the sinusoidal waveform /(7). As before,
function A(t) is sampled [Fig. 6-5(c)] and truncated [Fig. 6-5(e)]. Zoﬂ.m that
the sampled, truncated function is not an integer multiple of the period of
N(t); therefore, when the time functions of Figs. 6-5(¢) and () are oo%.o?mm“
the periodic waveform of Fig. 6-35(g) results. Although this function is
periodic, it is not a replica of the original periodic function w.@. We would
not expect the Fourier transform of the time waveforms of Figs. 6-5(a) and

(g) to be equivalent. It is of value to examine these same relationships in the

frequency domain. .
Fourier transform of the sampled truncated waveform of Fig. m-m@
is obtained by convolving the frequency domain impulse H..zznmonm ow mum.
6-5(c) and the sin fJf function illustrated in Fig. m-.mﬁnc. This ooE.\oE\:o: is
graphically illustrated in an expanded view in Fig. 6-6. Sampling of the

in (7T _f)
b A (61T, m_:iow

2l

2T

LI TN A

(NZET A VY R

Figure 6-6. Expanded illustration of the convolution of
Fig. 6-5(g).
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—

[v] o

resulting convolution at frequency intervals of 1/T, yields the impulses as
ilfustrated in Fig. 6-6 and, equivalently, Fig. 6-5(g). These sample <mE.nm
represent the Fourier transform of the vo.ao&o time Em<o.m9,5 of Fig.
6-5(g). Note that there is an impulse at zero frequency. This component

represents the average value of the truncated waveform; since the truncated

waveform is not an even number of cycles, the average value is not expected.

' to be zero. The remaining frequency domain impulses occur because the

zeros of the sin JIf function are not coincident with each sample value as
was the case in the previous example. : . .

This discrepancy between the continuous and discrete Fourier transforms
is probably the one most often encountered and least understood by users
of the discrete Fourier transform. The effect of truncation at other than a
muitiple of the period is to create a periodic function with sharp &.@8:-
tinuities as illustrated in Fig. 6-5(g). Intuitively, we expect the introduction of
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these sharp changes in the time domain to result in additional frequency
components in the frequency domain. Viewed in the frequency domain, time
domain truncation is equivalent to the convolution of a sin fJf function with
the single impulse representing the original frequency function H(f). Con-
sequently, the frequency function is no longer a single impulse but rather a
continuous function of frequency with a local maximum centered at the origi-
nal impuise and a series of other peaks which are termed sidelobes. These
sidelobes are responsible for the additional frequency components which
occur after frequency domain sampling. This effect is termed leakage and is

i st e i

inherent in the discrete Fourier transforin because of the required time do-

- main truncation. Techniques for reducing leakage will be explored in Sec. 9-5,

Finite Duration Waveforms

The preceding two examples have explored the relationship between the
discrete and continuous Fourier transforms for band-limited periodic func-
tions. Another class of functions of interest is that which is of finite dura-
tion such as the function h(z) illustrated in Fig. 6.7, If h(t) is time-limited, its

Fourier transform cannot be band-limited; sampling must result i aliasing.
It is necessary to choose the sample interval 7" such that aliasing is reduced
to an acceptable range. As illustrated in Fig. 6-7(c), the sample interval T
was chosen too large and as a result there is significant aliasing.

If the finite-length waveform is sampled and if N is chosen equal to th

- number of samples of the time-limited waveform, then it is not necessary to

::nomﬁa5Emmm&mn_oEE.:.hw_mmwho;s is omitted and the Fourier transform
of the time sampled function [Fig. 6-7(c)] is multiplied by A, (£}, the frequency
domain sampling function. The time domain equivalent to this product is
the convolution of the time functions shown in Figs. 6-7(c) and (d). The result-
ing waveform is periodic where a period is defined by the N samples of the
original function, and thus is a replica of the original function. The Fourier
transform of this periodic function is the sampled function illustrated in Fig.
6-7(e). '

For this class of functions, if Y is chosen equal to the number of samples

of the finite-length function, then the only error is that introduced by aliasing.
Errors introduced by aliasing are reduced by choosing the sample interval

- Tsufficiently small. For this case the discrete Fourier transform sample values

will agree (within a constant) reasonably well with samples of the continuous

" Fourier transform. Unfortunately, there exist few applications of discrete
* Fourier transform for this class of functions.

General Periodic Waveforms

Figure 6-7 can also be used to illustrate the relationship between the

“discrete and continuous Fourier transform for periodic functions which are
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Figure 6-8. Discrete Fourier transform of a general waveform.
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infinite series of equidistant impulses separated by 1/T, whose arecas are
given exactly by the continuous frequency function. Since the frequency
sampling function A,(f), as illustrated in Fig. 6-7(d), is an infinite series of
equidistant impulses separated by 1/T, then the result is identical to those of
Fig. 6-7(c). As before, the only error source is that of aliasing if the trunca-
tion function is chosen exactly equal to an integer multiple of the period. If
the time domain truncation is not equal to a period, then results as described

previously are to be expected.

General Waveforms

The most important class of functions are those which are neither time-
limited nor band-limited. An example of this class of functions is illustrated

in Fig. 6-8(a). Sampling results in the aliased frequency function illustrated
in Fig. 6-8(c). Time domain truncation introduces rippling in the frequency
domain of Fig. 6-8(¢). Frequency sampling results.in the Fourier transform
pair illustrated in Fig. 6-8(g). The time domain function of this pair is a
periodic function where the period is defined by the N points of the original
function after sampling and truncation. The frequency domain function of
the pairis also a periodic function where a period is defined by N points whose
values differ from the original frequency function by the errors introduced in
aliasing and time domain truncation. The aliasing error can be reduced to an
acceptable level by decreasing the sample interval T. Procedures for reducing
time domain truncation errors will be addressed in Sec. 9-5.

Summary

We have shown that if care is exercised, then there exist many applications
where the discrete Fourier transform can be employed to derive results
essentially equivalent to the continuous Fourier transform. The most impor-
tant concept to keep in mind is that the discrete Fourier transform implies
periodicity in both the time and frequency domain. If one will always remem-
ber that the N sample values of the time domain function represent _one

sample of a periodic function, then application of the discrete Fourier

fransform should result in few surprises.

PROBLEMS

6-1. Repeat the graphical development of Fig. 6-1 for the following functions:
a. ) == |¢] e
b, A =1 —|#] [£] =1
=0 Je] > 1
c. k(f) == cos (t)
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6-2. Retrace mﬁ. development of the discrete Fourier transform [Egs. (6-1) through
(6-16)]. Write out in detail all steps of the derivation.

6-3. Repeat the m._,m@Eom“ derivation of Fig. 6-3 for A(r) = sin (27 f,1). Show the
cffect of setting the truncation interval unequal to the period. What is the
result of setting the truncation interval equal to two periods?

6-4, Consider Fig. 6-7. Assume that A(r) Ay(?) is represented by N non-zero sam-
ples. What is the effect of truncating A(#) Aq(¢) so that only 3N/4 non-zero
samples are considered ? What is the effect of truncating A{r) A.(f) 50 that the
N non-zero samples and N/4 zero samples are considered ?

6-5. Repeat the graphical derivation of Fig. 6-7 for A(Y) = W e~ale=nTal What
are the error sources? e

6-6. To mm.ﬁmcmmr the concept of rippling, perform the following graphical con-
volutions:
a. An impulse with m_|”..:
b. A narrow pulse with m_|M:
¢. A wide pulse with Mﬂt

d. A single triangle waveform with Eﬂ.:

6-7. AM.ZS out several terms of Eq. {(6-19) to establish the orthogonality relation-
ship.

6-8. The truncation interval is often termed the “record length.” In terms of the
H.nnomd length, write an equation defining the “‘resolution™ or frequency
spacing of the frequency domain samples of the discrete Fourier transform.

6-9. Comment on the following: The discrete Fourier transform is analogous to
a bank of band-pass filters.

REFERENCES

1. Ooormﬁ J W, P AL W, Lewis, and P, D. WiLcH, “The Finite Fourier Trans-
form,” IEEE Transactions on Audio and Electroacoustics (June 1969), Vol
AU-17, No. 2, pp. 77-85. v .

2. Beraranp, G. D., “A Guided Tour of the Fast Fourier Transform,” IEEE

Specrrum (July 1969}, Vol. 6, No. 7, pp. 41-52.

3. Swick, D. A., “Discrete Finite Fourier Transforins—a Tutorial Approach.”

Washington, D. C., Naval Research Labs, NRL Dept. 6557, June 1967.




