CINEMATICA DIRETTA

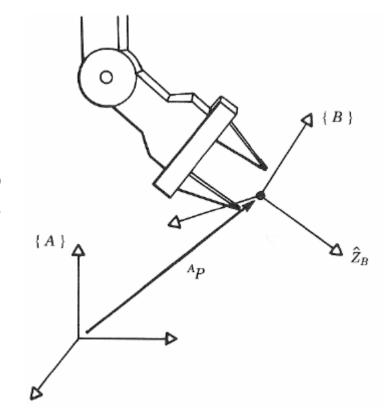
Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

Introduzione

Manipolatore: catena cinematica (aperta) di corpi rigidi (bracci) e giunti (rotoidali e prismatici)

Per poter manipolare un oggetto nello spazio bisogna conoscere posizione e orientamento dell'organo terminale

La *cinematica diretta* calcola la posa dell'organo terminale in funzione dei parametri di giunto

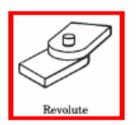


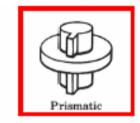
Giunti e Bracci

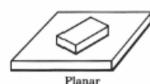
Giunto: il collegamento tra una coppia di corpi rigidi che permette un moto relativo caratterizzato da due due superfici che slittano l'una sull'altra

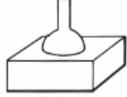
Giunto rotoidale Giunto prismatico

Braccio: è un corpo rigido definisce le relazioni geometriche che intercorrono tra due giunti adiacenti del manipolatore









Il Problema

Problema

<u>Dati</u> i parametri geometrici del manipolatore e le variabili di giunto

<u>Calcolare</u> posa e orientazione del manipolatore

Soluzione

Applicare un insieme di sistemi di riferimento al manipolatore e agli oggetti dell'ambiente seguendo la convenzione di Denanvit-Hartenberg

Trasformazione Omogenea Organo Terminale

Consideriamo un manipolatore da n+1 bracci connessi da n giunti.

Posizione ed orientazione finale dell'organo terminale sono funzione solo dei valori assunti dalle variabili di giunto

$$T^{0}(q) = \begin{bmatrix} n^{0}(q) & s^{0}(q) & a^{0}(q) & p^{0}(q) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Trasformazione Omogenea Organo Terminale

$$T^{0}(q) = \begin{bmatrix} n^{0}(q) & s^{0}(q) & a^{0}(q) & p^{0}(q) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Dove:

- q è il vettore (nx1) delle variabili di giunto
- n è il versore normale dell'utensile terminale
- a è il versore di approccio
- s è il versore di scivolamento

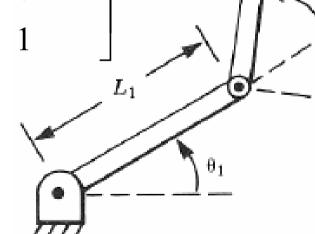
$$T^{0}(q) = \begin{bmatrix} 0 & s_{12} & c_{12} & L_{1}c_{1} + L_{2}c_{12} \\ 0 & -c_{12} & s_{12} & L_{1}s_{1} + L_{2}s_{12} \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Manipolatore planare a 2 braccia

N.B.

$$s_{i...j} = \sin(\theta_i + ... + \theta_j)$$

$$c_{i...j} = \cos(\theta_i + ... + \theta_j)$$



Convenzione di Denavit-Hartenberg

Definisce una procedura operativa per il calcolo della cinematica diretta sfruttando la natura di catena cinematica aperta del manipolatore

Ogni giunto connette solo due bracci consecutivi

- Consideriamo prima singolarmente il problema della descrizione geometrica dei legami tra due bracci consecutivi
- •Successivamente risolviamo ricorsivamente il problema della descrizione dell'intero manipolatore

Convenzione di Denavit-Hartenberg

Definizione della posizione e orientamento relativi di due bracci consecutivi

Individuazione di terne solidali con tali bracci

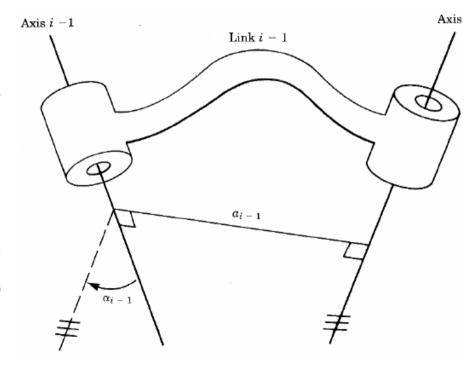
Calcolo della matrice di trasformazione che lega le due terne

D-H Definizione Parametri

Si identificano gli assi di rotazione dei giunti *i-1* ed *i*

Calcolo della distanza a_{i-1} tra i due assi di rotazione (normale comune)

Calcolo dell'angolo α_{i-1} di rotazione (sull'asse a_{i-1}) necessario per portare l'asse del primo giunto sul piano definito dal secondo asse e il segmento a_{i-1}

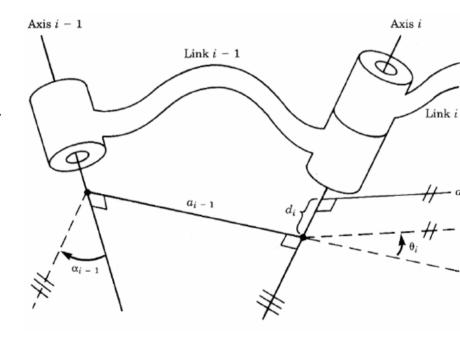


D-H Definizione Parametri

Calcolo della distanza d_i lungo l'asse i tra le due normali comuni α_{i-1} e α_i

(se il giunto è prismatico d_i è variabile)

Si calcola l'angolo di rotazione θ_i (sull'asse i) necessario per allineare a_{i-1} con a_i



(se il giunto è rotoidale θ_i è variabile)

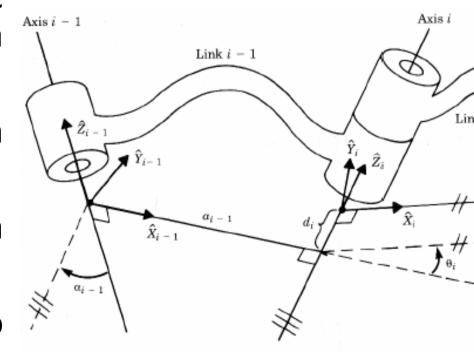
D-H Posizione delle Terne

L'origine del sistema {i} è posto sull'intersezione tra a_i e l'asse di giunto i

L'asse Z_i coincide con l'asse di giunto i

L'asse X_i coincide con la normale comune a_i

L'asse Y_i è scelto in modo da completare la terna



D-H Elenco dei Parametri

Se i sistemi di riferimento sono posti in base alla convenzione, si ha:

 a_{i-1} – La distanza tra Z_{i-1} e Z_i misurata lungo l'asse X_{i-1}

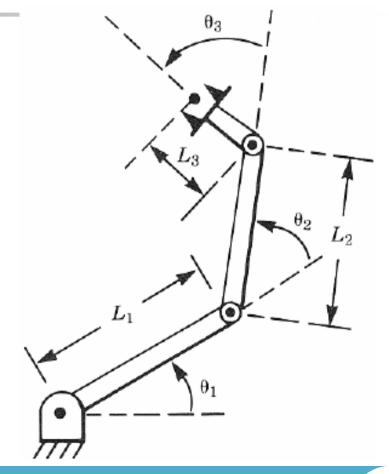
 α_{i-1} – L'angolo tra Z_{i-1} e Z_i misurato rispetto l'asse X_{i-1}

 d_i – La distanza tra X_{i-1} e X_i misurato lungo l'asse Z_i

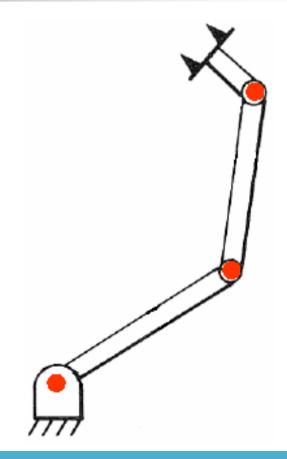
 θ_i – L'angolo tra X_{i-1} e X_i misurato rispetto l'asse Z_i

Nota: $a_{i-1} \ge 0$, mentre α_{i-1} d_i e θ_i sono quantità con segno

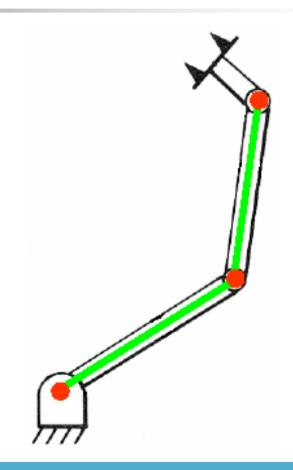
Manipolatore planare a tre bracci e tre giunti rotoidali



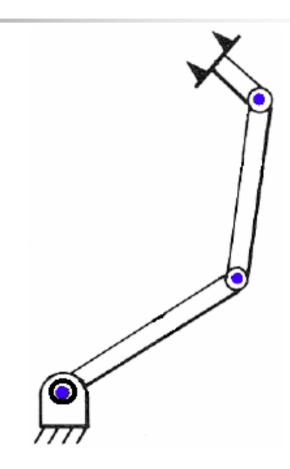
Identificazione degli assi di rotazione dei giunti rotoidali



Identificazione delle normali comuni agli assi di rotazione dei giunti

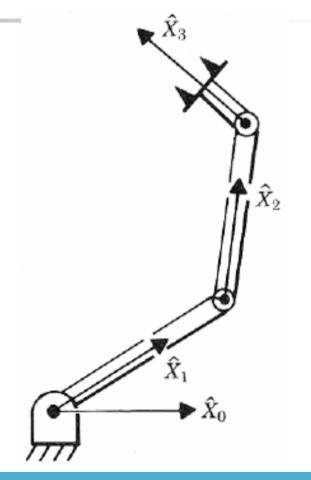


Definizione del verso degli assi Z_i dei sistemi di riferimento

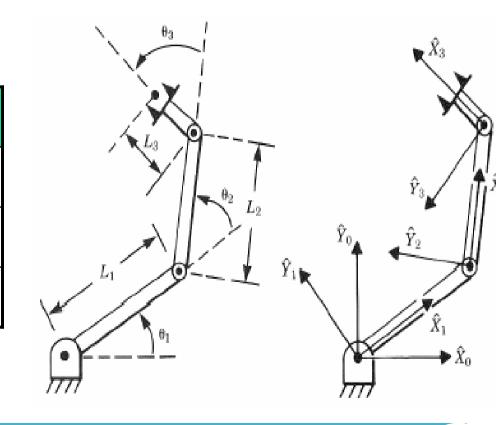


Assegnamo gli assi X_i allineandoli con le normali comuni e con il verso puntante l'asse del giunto successivo.

X₃ è allineato con il centro dell'organo terminale del manipolatore



i	α_{i-1}	a _{i-1}	d _i	θ_{i}
1	0	0	0	θ_1
2	0	L ₁	0	θ_2
3	0	L ₂	0	θ_3

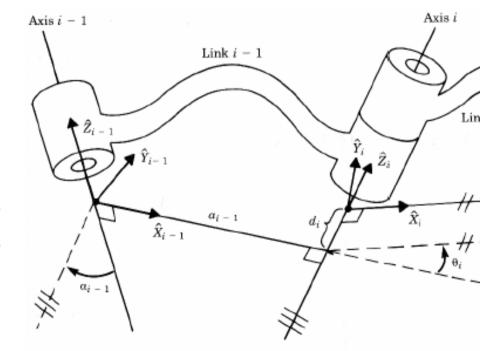


Il Problema (riassunto)

Problema

Determinare la trasformazione R che lega tra loro le terne dei sistemi di riferimento $\{i\}$ e $\{i+1\}$

La trasformazione è funzione di quattro parametri: a_{i-1} α_{i-1} d_i θ_i di cui solo uno è variabile:

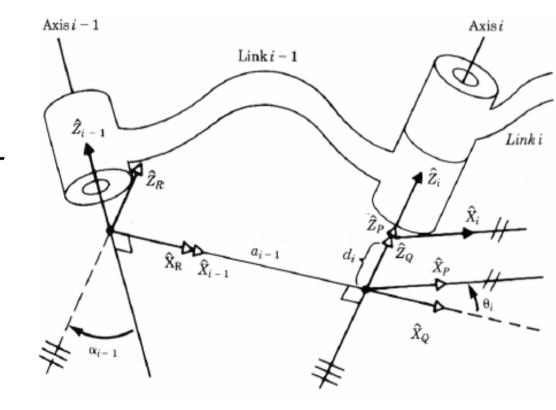


 θ_i variabile per i giunti rotoidali, d_i per quelli prismatici

Composizione di Trasformazion

Soluzione

Calcoliamo la trasformazione *T* come composizione di 4 trasformazioni elementari



Quattro Trasformazioni)

Si definiscono tre sistemi di riferimento intermedi $\{P\}$ $\{Q\}$ $\{R\}$

Prima trasformazione omogenea (ruota e trasla) $\{R\}$ differisce da $\{i-1\}$ solo per la rotazione α_{i-1} $\bullet \{Q\}$ differisce da $\{R\}$ solo per la traslazione a_{i-1}

Seconda trasformazione omogenea (ruota e trasla)

- $\{P\}$ differisce da $\{Q\}$ solo per la rotazione θ_i
- {i} differisce da {P} solo per la traslazione d_i

Due Matrici Omogenee

Prima trasformazione omogenea

$$R_{Q}^{i-1} = T_{R}^{i-1}(\alpha_{i-1})T_{Q}^{R}(\alpha_{i-1}) = \begin{bmatrix} 1 & 0 & 0 & \alpha_{i-1} \\ 0 & c\alpha_{i-1} & -s\alpha_{i-1} & 0 \\ 0 & s\alpha_{i-1} & c\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Seconda trasformazione omogenea

$$R_{i}^{Q} = T_{P}^{Q}(\theta_{i})T_{i}^{P}(d_{i}) = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La Trasformazione R Finale

Avendo sempre lavorato in terna corrente, la trasformazione finale risultante, si ottiene moltiplicando da sx a dx le singole componenti:

$$R_i^{i-1}(q_i) = R_O^{i-1}R_i^Q$$

Dove q_i è la variabile di giunto e vale:

$$q_i = \theta_i$$
 se il giunto è rotoidale

$$q_i = d_i$$
 se il giunto è prismatico

La Trasformazione R Finale

In formule, la matrice di trasformazione finale diventa:

$$R_{i}^{i-1}(q_{i}) = \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & a_{i-1} \\ c\alpha_{i-1}s\theta_{i} & c\alpha_{i-1}c\theta_{i} & -s\alpha_{i-1} & -d_{i}s\alpha_{i-1} \\ s\alpha_{i-1}s\theta_{i} & s\alpha_{i-1}c\theta_{i} & c\alpha_{i-1} & d_{i}c\alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Esempio (continua) $\begin{bmatrix} c \theta & -s \theta \end{bmatrix}$

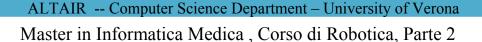
i	α _{<i>i</i>-1}	<i>a_{i-1}</i>	d _i	θ_{i}
1	0	0	0	θ_1
2	0	L ₁	0	θ_2
3	0	L ₂	0	θ_3

$ co_1 $	$s o_1$	U	U
$s\theta_1$	$c heta_1$	0	0
0	0	1	0
0	0	0	1_
	$\begin{bmatrix} s \theta_1 \\ s \theta_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} c \theta_1 & s \theta_1 \\ s \theta_1 & c \theta_1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} c \theta_1 & s \theta_1 & 0 \\ s \theta_1 & c \theta_1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

$$R_{2}^{1}(q_{2}) = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & L_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{3}^{2}(q_{3}) = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c \theta_3 & -s \theta_3 & 0 & L_2 \\ s \theta_3 & c \theta_3 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

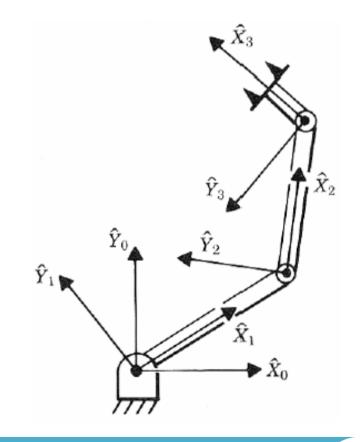


Esempio (fine)

La matrice finale esprime la trasformazione dalla terna $x_0y_0z_0$ alla terna $x_3y_3z_3$

$$R_3^0 = R_1^0(q_1)R_2^1(q_2)R_3^2(q_3)$$

Le prime tre colonne rappresentano i versori della terna $x_3y_3z_3$, mentre la quarta è la posizione dell'origine o_3 rispetto alla terna base



La Famiglia Puma

PUMA 200

PUMA 500

PUMA 700

Puma 560

