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A: Imaging (Org. Erb & Weinmann) room 2b
B: Meshless (Org. De Rossi & Francomano) room 2b
C: Multiresolution (Org. Cotronei & Romani) room 2c
D: Multivariate (Org. Baran & Bia las-Cież) room 1a
E: Integration (Org. Milovanović & Occorsio) room 1b
F: Sparse (Org. Cuyt & Lee) room 2d

Thursday 08 Friday 09 Saturday 10 Sunday 11 Monday 12 Tuesday 13 Wedn. 14
8.30–9.30 registration registration
9.30–10.30 9.30–11.30
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Plenary
Weideman 12

Plenary
Conti 13

Plenary
Wright 18

Plenary
Larsson 15

Departure
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F Budinich 86

B Sartoretto 37
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D Kroó 59
E Milovanović 75
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A Ehler 20
D Nagy 62
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B Mougaida 39
E Nedaiasl 76
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F Oleynik 90

B Perracchione 32
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E Laurita 74
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D Migliorati 61
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Arrival on Sept. 7; two shuttles from the airports of Venice and Verona on Sept. 7
around 16.00; no organized shuttle on Sept. 8. The welcome reception is on Sept. 8
at 18.00, the social dinner is on Sept. 12; the schedule of the other social activities
is tentative. Return shuttles to be booked onsite by individuals or groups.
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Annie Cuyt @60: A Life in Approximation

J.A.C. Weideman

We revisit a few milestones in the remarkable career of Annie Cuyt.
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Beyond B-splines: generalized B-splines, exponential B-splines and pseudo-splines
with emphasis on their refinement properties

Costanza Conti
University of Florence, Italy

Abstract

It is well known that B-splines are a powerful basis for polynomial splines with, beside
other nice properties, minimal support with respect to a given degree and smoothness.
Any spline function of given degree can be expressed as a linear combination of B-splines
of that degree. Starting from a set of control points the latter is in fact the way curve
and surface splines are constructed in computer-aided design and computer graphics. B-
splines, in particular cardinal B-splines -i.e. B-splines with uniform knots,- find application
also in other contexts than design like approximation theory, curve/surface fitting, numer-
ical differentiation and integration, signal and image processing. Due to their refinability
property cardinal B-splines are also suitable for multiresolution, multilevel and subdivision
approaches which play an important role in numerical analysis. In spite of their celebrity,
polynomial B-splines present several drawbacks. They have low approximation order and
are not able to exactly reproduce geometries like conic sections which are important in
design, biomedical imaging or isogeometric analysis. Also, they do not approximate well
causal exponentials that play a fundamental role, for example, in classical system theory.
This is why, in the last two decades several generalization of B-splines have been proposed,
the most popular being Non Uniform Rational B-splineS (NURBS) that have received an
increasing attention in the geometric modeling community, in particular. While NURBS
are actually able to exactly reproduce a huge variety of geometries, transcendental curves
like helix or cycloid are still excluded and modeling of manifolds with arbitrary topology
is conceptually very complicated and extremely expensive. Moreover, NURBS require
additional parameters or weights which do not have an evident geometric meaning and
whose selection is often unclear. Last but not least, their rational nature is unpleasant
with respect to differentiation and integration. To overcome the drawbacks of NURBS,
generalized B-splines became, recently, an attractive alternative to the rational model.
While classical B-splines are piecewise functions with sections in the space of algebraic
polynomials, generalized B-splines are piecewise functions with sections in more general
spaces. With a suitable selection of such spaces generalized B-splines allow exact repre-
sentation of polynomial curves, conic sections, helices and other profiles. They possess
all fundamental properties of polynomial B-splines and behave completely similar to B-
splines with respect to differentiation and integration. Cardinal exponential B-splines are
a crucial instance of such a class of basis suitable for multiresolution, multilevel and sub-
division approaches. An other interesting generalization of polynomial B-splines recently
emerged is given by pseudo-splines and, more in general by exponential pseudo-splines.
Exponential pseudo-splines are a rich family of basis functions meeting various demands
for balancing approximation power, regularity, support size, interpolation, reproduction
capability and refinability. Their refinability properties combined with high approxima-
tion order make them useful, for example, to construct tight wavelet frames to be used in
multiresultion analysis approaches in signal and image processing.

The talk will start with a review of polynomial B-splines with special emphasis on
their refinement properties and on the corresponding subdivision algorithms for cardinal
B-splines. We will then define and discuss exponential B-splines and exponential pseudo-
splines in the uniform case yet by the help of a subdivision perspective.
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Error Estimates and Convergence Rates for

Filtered Back Projection

Armin Iske∗

Computerized tomography allows us to reconstruct a bivariate function from
Radon samples. The reconstruction is based on the filtered back projection
(FBP) formula, which gives an analytical inversion of the Radon transform.
However, the FBP formula is numerically unstable and suitable low-pass filters
with a compactly supported window function and finite bandwidth are employed
to make the reconstruction by FBP less sensitive to noise.

The objective of this talk is to analyse the intrinsic FBP reconstruction error
which is incurred by the use of a low-pass filter. To this end, we prove L2-error
estimates on Sobolev spaces of fractional order. The obtained error bounds are
affine-linear with respect to the distance between the filter’s window function
and the constant function 1 in the L∞-norm. With assuming more regularity of
the window function, we refine the error estimates to prove convergence for the
FBP reconstruction in the L2-norm as the filter’s bandwidth goes to infinity.
Further, we determine asymptotic convergence rates in terms of the bandwidth
of the low-pass filter and the smoothness of the target function.

The talk is based on joint work with Matthias Beckmann (Hamburg).

∗University of Hamburg, Department of Mathematics, D-20146 Hamburg, Germany
(armin.iske@uni-hamburg.de).
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Computationally efficient radial basis function

partition of unity methods

Elisabeth Larsson∗ Victor Shcherbakov∗ Alfa Heryudono‡

June 8, 2016

Radial basis function (RBF) methods provide a number of properties that
make them attractive for solving partial differential equations, such as mesh-
lessness, high order or spectral convergence rates for smooth problems, and ease
of implementation. However, the global RBF methods that work very well in
one and two space dimensions become increasingly computationally expensive
for higher dimensions due to the dense linear systems that must be solved.
To reduce computational cost, but still retain the advantages of global RBF
approximation, localized RBF methods have been introduced. There are two
main directions: Stencil-based approximations and partition of unity methods.
In this talk, the focus is on RBF partition of unity methods (RBF-PUM). In
RBF-PUM, the computational domain is covered by overlapping patches. Then
a local RBF approximation is constructed in each patch, and finally the lo-
cal approximations are blended into a global approximation using compactly
supported partition of unity weight functions. This leads to sparse linear sys-
tems and a significantly lower computational cost than for the global method.
We have explored different formulations of RBF-PUM both theoretically and
computationally, and we provide insights into the convergence properties of the
method, we explain how to formulate the method such that it remains robust
for large scale problems, and we also show how to reduce the computational
cost even further by particular choices of node distributions.

∗Dept. of Information Technology, Scientific Computing, Uppsala University, Box 337, SE-
751 05 Uppsala, Sweden. (Elisabeth.Larsson@it.uu.se, Victor.Shcherbakov@it.uu.se).
‡Dept. of Mathematics, University of Massachusetts Dartmouth, 285 Old Westport Road,

Dartmouth, Massachusetts, 02747, USA (aheryudono@umassd.edu)



16 Plenary speakers

Randomness and Potential Theory

Abstract

Motivated by the search for “good” nodes in a compact set K in the complex plane
for use in polynomial interpolation, i.e., arrays {znj}n=1,2,...; j=0,...,n ⊂ K so that the
norms Λn of the projection operators Ln : C(K) → Pn ⊂ C(K) from f ∈ C(K) to
the Lagrange interpolating polynomial Ln(f) ∈ Pn (polynomials of degree ≤ n) with

nodes at zn0, ..., znn satisfy Λ
1/n
n → 1, we discuss two types of probabilistic questions

whose answers are given by similar potential theoretic information. Introducing a
measure µ on K, the reproducing kernel Kn for Pn in L2(µ) plays a key role in the
first type of question: what are generic properties of random arrays?

The reproducing kernel Kn reoccurs in the theory of random polynomials in
C. We will first discuss the classical setting of Kac-Hammersley: writing pn(z) =∑n

j=0 ajz
j = an

∏n
j=1(z − ζj) ∈ Pn where the coefficients a0, ..., an are i.i.d. complex

Gaussian random variables (appropriately normalized), one considers the normalized
zero measure µn := 1

n

∑n
j=1 δζj . More precisely, one is interested in the asymptotic

behavior of {µn}n=1,... for sequences {pn}n=1,... of random polynomials.
Both random arrays and zeros of random polynomials have generalizations in a

variety of other settings. Our talk will emphasize the basic situation, working on
compact sets K ⊂ C. A partial list of existing references for generalizations will be
provided and briefly discussed.

        Norm Levenberg
Department of Mathematics
       Indiana University
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Sparse approximation by modified Prony method

Gerlind Plonka1, Vlada Pototskaia1

1Institute for Numerical and Applied Mathematics, University of Goettingen, Lotzestraße 16-18, 37083 Göttingen, Ger-
many

Abstract
The classical Prony method works with exactly sampled data of the exponential sum

h(x) :=
M∑

j=1
c j e f j x , x ≥ 0, (1)

in the case of known order M . Following an idea of G.R. de Prony from 1795, we can recover all
parameters c j , f j of the exponential sum (1), if sampled data h(k), k = 0, . . . ,2M −1 are given,

where z j := e f j are distinct values in D := {z ∈ C : 0 < |z| ≤ 1}. If the number of terms M is un-
known, we can use numerical methods, like the ESPRIT method, to evaluate M by considering
the numerical rank of a suitable Hankel matrix that is build by the equidistant function values
h(k), see [2].

Recently, we extended the Prony-method to a reconstruction technique for sparse expan-
sions of eigenfunctions of suitable linear operators, see [1]. This more general approach pro-
vides us with a tool to unify all Prony-like methods on the one hand and establishes a much
broader field of applications of the method on the other hand. In particular, it can be shown that
all well-known Prony-like reconstruction methods for exponentials and polynomials known so
far, can be seen as special cases of this approach. The new insight into Prony-like methods en-
ables us to derive also new reconstruction algorithms for orthogonal polynomial expansions
and for expansions in finite-dimensional settings.

However, in many applications for sparse approximation, the function to be recovered is
only approximatively of the form (1), and we may want to approximate h by an exponential sum
with an a priory fixed number M of exponentials. The open questions are now:
Does the Prony method provide a good approximation of h if the number of terms M is under-
estimated? Can the error caused by the Prony approximation be exactly quantified in a suitable
norm? Do we have to modify the Prony method in order to achieve better estimates? Can such a
modified Prony method for sparse approximation be generalized to sparse expansions of eigen-
functions of linear operators?

References

[1] T. Peter and G. Plonka, A generalized Prony method for reconstruction of sparse sums
of eigenfunctions of linear operators. Inverse Problems 29 (2013), 025001.
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Low rank approximation of functions in polar and spherical geometries
Grady B. Wright

Department of Mathematics, Boise State University, USA

A collection of algorithms for computing with functions defined on the unit disk
or the surface of the unit two-sphere is presented. Central to these algorithms
is a new scheme for approximating functions to essentially machine precision
that combines a structure-preserving iterative variant of Gaussian elimination
together with the double Fourier sphere method. The scheme produces low rank
approximations of functions on the disk and sphere, ameliorates oversampling
issues near the origin of the disk and poles of the sphere, converges geometrically
for sufficiently analytic functions, and allows for stable differentiation. The low
rank representation makes operations such as function evaluation, differentia-
tion, and integration particularly efficient. A demonstration of the algorithms
using the new Diskfun and Spherefun features of Chebfun will also be given.
This is joint work with Prof. Alex Townsend and Heather Wilber (both at
Cornell University).
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Sampling in Grassmannian spaces

Martin Ehler

Faculty of Mathematics, University of Vienna
E-mail: martin.ehler@univie.ac.at

The Grassmannian space, as an example of a Riemannian manifold and a homogeneous
space, shares many properties of the sphere but is slightly more involved. We shall study
the approximation of functions on the Grassmannian from finitely many samples.
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Learning co-sparse representations for applications in

image processing

Martin Kiechle

Technische Universität München
E-mail: martin.kiechle@tum.de

Recently, the co-sparse analysis model has gained much attention as an important
alternative to synthesis sparse modeling in particular for image processing applications.
In this talk, we consider learning co-sparse representations from data by optimizing a
non-linear sparsifying objective. The presented framework allows for finding a solution to
the problem efficiently by employing a geometric gradient method on a product of spheres
structure. It is shown how such representations can be used effectively to regularize various
inverse problems in image processing. Furthermore, extensions of the model to joint and
structured co-sparse representations are considered that enable additional applications
such as bi-modality image super-resolution and registration.
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Counterexamples to the frame set conjecture for

Hermite functions

Jakob Lemvig

DTU Mathematics, Technical University of Denmark
E-mail: jakle@dtu.dk

Frame set problems in Gabor analysis ask the question for which sampling and modula-
tion rates the corresponding time-frequency shifts of a generating window allow for stable
reproducing formulas of L2-functions. In this talk we study the frame set for Hermite
functions of order 4n + 2 and 4n + 3, n = 0, 1, . . . . We show that the so-called frame set
conjecture for these generators is false. Our arguments are based on properties of the Zak
transform.
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Structured sparse recovery from Fourier measurements using
α-molecules

Jackie Ma∗
Technische Universität Berlin
Department of Mathematics

Straße des 17. Juni 136, 10623 Berlin

Abstract

In this talk we discuss the non-linear approximation of piecewise smooth signals by localized
systems such as wavelets and shearlets, or more generally, α-molecules. More precisely, we
discuss recovery guarantees of sparse signals that are obtained by `1-minimization. We thereby,
consider the `1-minimization problem in its analysis formulation using a multiscale transform
that is associated to a localized system such as α-molecules. Furthermore, the multilevel struc-
ture is incorporated into the reconstruction problem by using a multilevel sampling scheme.
One particular focus is the so-called balancing property that can be used to guarantee stable
reconstructions, in particular for the case if α-shearlets are used as an approximating system
and the subsampled Fourier operator as a sampling operator.

∗ma@math.tu-berlin.de
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APPROXIMATION TO THE FUNCTIONS
EXPRESSED BY CONFORMAL MAPPINGS

Burçİn Oktay Yönet

Balıkesir University, TURKEY

It‘s well known that conformal mappings play an important role in many
applied disciplines especially applied mathematics, aerodynamics, thermo-
dynamics, imaging sciences. The basic strategy in solving problems in this
fields is to solve the problem on a simplier domain and to move the result
to the main domain with the help of conformal mapping. Because of their
importance and the difficulties of finding their expressions, the problem of
approximation to conformal mappings by some functions whose properties
are known is a special subject in approximation theory.

In this talk, we present our study on approximation problems to conformal
mappings and the functions expressed with the help of conformal mappings
by special polynomials on some complex domains, and give new results on
approximation error according to the geometric properties of the domains.
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ON APPROXIMATION PROPERTIES OF GENERALIZED
(KANTOROVICH-TYPE) SAMPLING OPERATORS

OLGA ORLOVA, GERT TAMBERG

The theory of generalized sampling operators was developed at RWTH Aachen by P.
L. Butzer and his students in the late 1970s and has been extended thoroughly since
then. A generalized sampling operator generated by a kernel function ϕ ∈ L1(R) (which
is constructed via the FCT of some window function) is defined for f ∈ C(R) by

(1) SϕWf(t) :=
∞∑

k=−∞
f(

k

W
)ϕ(Wt− k) (t ∈ R; W > 0).

In [1] the authors introduced the Kantorovich version of operator (1) by replacing the
exact value f(k/W ) with the Steklov mean of f on the interval [k/W, (k + 1)/W ]. We
generalize the notion of Kantorovich-type sampling operator given in [1] by replacing the
Steklov mean with its more general analogue, the Fejér-type singular integral and get for
f ∈ Lp(R) (1 6 p 6∞) the operator (t ∈ R; W > 0; n ∈ N)

(2) Sχ,ϕW,nf(t) :=
∞∑

k=−∞



∞∫

−∞

f(u)nWχ(nW (
k

W
− u)) du


ϕ(Wt− k).

The operators are well-defined when the following conditions are satisfied: ϕ, χ ∈ L1(R),
∞∫
−∞

χ(u)du = 1,
∑

k∈Z ϕ(u− k) = 1, and
∑∞

k=−∞ |ϕ(u− k)| <∞ (u ∈ R).

By means of the operator (2) we are able to reconstruct functions (signals) which are not
necessarily continuous. Moreover, our generalization allows us to take the measurement
error into account. Our main goal is to estimate the rate of approximation by the above
operators via high-order modulus of smoothness. We obtain these estimates for kernels
with some certain properties.

We also consider the application of multivariate generalized sampling operators in
digital image processing (more specifically, in resolution enhancement challenge). We
demonstrate the superiority of some kernels ϕ over the commonly used bicubic kernel.

References

[1] C. Bardaro, P. L. Butzer, R. L. Stens, and G. Vinti, “Kantorovich-type generalized sampling series
in the setting of Orlicz spaces,” Sampling Theory in Signal and Image Processing, vol. 6, pp. 29–52,
2007.
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A multivariate generalization of Pronys method

Thomas Peter

Institute of Mathematics, University of Osnabrück
E-mail: petert@uni-osnabrueck.de

Prony’s method is a prototypical eigenvalue analysis based method for the reconstruc-
tion of a finitely supported complex measure on the unit circle from its moments up to
a certain degree. In other words, it solves the super-resolution problem of deconvolving
a signal into its generating spike train and a bandlimited convolution kernel from finitely
many input data. Here, we want to present a generalization of this method to the mul-
tivariate case and provide simple conditions under which the problem admits a unique
solution.
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COMPRESSED MOTION SENSING
FOR TOMOGRAPHIC PARTICLE IMAGE VELOCIMETRY

STEFANIA PETRA

ABSTRACT. In previous work [PS14, PSS13] we analyzed representative ill-posed scenarios of Tomographic Parti-
cle Image Velocimetry (Tomo PIV) [ESWvO07] with a focus on conditions for unique volume reconstruction. Based
on sparse random seedings of a region of interest with small particles, the corresponding systems of linear projection
equations were probabilistically analyzed in order to determine: (i) the ability of unique reconstruction in terms of the
imaging geometry and the critical sparsity parameter, and (ii) sharpness of the transition to non-unique reconstruc-
tion with ghost particles when choosing the sparsity parameter improperly. We showed that the sparsity parameter
directly relates to the seeding density used for Tomo PIV that is chosen empirically to date. Our results provide a
basic mathematical characterization of the Tomo PIV volume reconstruction problem that is an essential prerequisite
for any algorithm used to actually compute the reconstruction. Moreover, we have connected the sparse volume
function reconstruction problem from few tomographic projections to major developments in compressed sensing
(CS) and found out that the predicted critical seeding lies below the theoretical optimal threshold in CS.

In more recent work [DPS16] we complement the standard tomographic sensor, based on few projections, by
additional measurements of moving objects at two subsequent points in time. Denoting by A the Tomo PIV sensor
that corresponds to few projections synchronously recorded with few cameras only, the standard approach is to
reconstruct an image pair (u, ut) from Au ≈ b, Aut ≈ bt and then - in a subsequent step - to estimate the unknown
flow transport mapping Tt(u) = ut by cross-correlating (u, ut).

Our approach is to use the available information at time step t, to consider the projections bt as additional
measurements together with b and to jointly estimate the images and the transformation parameters from the available
multi-view measurements. Thus, we solve

min
Tt,u≥0

‖Au− b‖2 + ‖ATt(u)− bt‖2

and regard ATt(·) as an additional sensor. From the CS viewpoint this raises the key question if and how much the
recovery performance of the complemented sensor

AT :=

(
A

ATt(·)

)
, AT u =

(
b

bt

)

improves, under the assumption that Tt is known. We call compressed sensing in connection with the correspondence
information ut = Tt(u) compressed motion sensing. We evaluate both theoretically and numerically the recovery
performance of A vs. AT and show that our approach enables highly compressed sensing in dynamic imaging
scenarios of practical relevance.

REFERENCES
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(S. Petra) MATHEMATICAL IMAGING GROUP, HEIDELBERG UNIVERSITY, GERMANY

E-mail address: petra@math.uni-heidelberg.de



28 A) Approximation theory in imaging science

An algorithmic framework for Mumford-Shah

regularization of inverse problems in imaging

Martin Storath

Universität Heidelberg
E-mail: martin.storath@iwr.uni-heidelberg.de

The Mumford-Shah model is a very powerful variational approach for edge preserving
regularization of image reconstruction processes. However, it is algorithmically challeng-
ing because one has to deal with a non-smooth and non-convex functional. We propose
a new efficient algorithmic framework for Mumford-Shah regularization of inverse prob-
lems in imaging. It is based on a splitting into specific subproblems that can be solved
exactly. We derive fast solvers for the subproblems which are key for an efficient overall
algorithm. Our method neither requires a priori knowledge on the gray or color levels
nor on the shape of the discontinuity set. We demonstrate the wide applicability of the
method for different modalities. In particular, we consider the reconstruction from Radon
data, inpainting, and deconvolution. Our method can be easily adapted to many further
imaging setups. The relevant condition is that the proximal mapping of the data fidelity
can be evaluated within reasonable time. In other words, it can be used whenever classical
Tikhonov regularization is possible. This is joint work with Kilian Hohm and Andreas
Weinmann.
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On approximation properties of generalized sampling operators

Gert Tamberg
Tallinn University of Technology, Estonia

gtamberg@staff.ttu.ee

A natural application of sampling operators is imaging. We can represent
an discrete 2D image f as a continuous function using sampling series

(Sf)(x, y) :=
∑

j,k

f(j, k)s1(x− j)s2(y − k). (1)

Many image resizing (resampling) algorithms use such type of representation.
The generalized sampling operator is given by (t ∈ R; w > 0)

(Swf)(t) :=
∞∑

k=−∞
f
( k
w

)
s(wt− k). (2)

In this talk we study an even band-limited kernel s, defined as Fourier cosine
transform of an even window function λ ∈ C[−1,1], λ(0) = 1, λ(u) = 0 (|u| >
1).

We say that f ∈ BV (R), the space of functions of bounded variation on
R, if f ∈ BV [a, b] for every finite [a, b] ⊂ R and the total variation

VR[f ] := lim
n→∞

V[−n,n][f ]

is finite. If f ∈ AC(R), the space of absolutely continuous functions, then
we have AC(R) ⊂ BV (R) and VR[f ] = ‖f ′‖1.

We will estimate the order of approximation of the sampling operator
(2) for functions f belonging in the space of absolutely continuous functions
AC(R) ⊂ BV (R) in terms of modulus of smoothness.
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Exploiting hidden sparsity for image reconstruction

from nonlinear measurements

Andreas Tillmann

Technische Universität Darmstadt
E-mail: tillmann@mathematik.tu-darmstadt.de

In recent years, the concept of sparsity has been successfully exploited in various signal
and image reconstruction tasks. In particular, in the context of compressed sensing, it was
shown that sparse or compressible signals (i.e., those with few relevant components) can be
efficiently and reliably recovered from few linear measurements. Furthermore, since a basis
or dictionary with respect to which a signal is sparsely representable is generally not known
a priori, several machine learning methods were developed to automatically train suitable
dictionaries and associated representation coefficients directly from the measurement data.

In this talk, we discuss novel variants of such sparsity-based learning tasks. The focus
will be on a new method that is able to learn a dictionary and sparse representations from
noise-corrupted nonlinear measurements without signal phase information; experiments
in the context of image reconstruction demonstrate significant quality improvements of
our method compared to state-of-the-art phase retrieval algorithms that cannot exploit
”hidden” sparsity.
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Approximation of scattered data using positive and accurate
partition of unity interpolants

Roberto Cavoretto, Alessandra De Rossi, Emma Perracchione
∗Department of Mathematics “G. Peano”, University of Torino

Dealing with applications, the problem of approximating large and irregular
data sets is rather common. In this case, problems as lack of information or
ill-conditioning arise. Because of such problems, recent research mainly concen-
trates on local techniques, such as the Partition of Unity (PU) method.

PU interpolation takes advantage of decomposing the domain into several
subdomains or patches which cover the original one. In literature, except for
well-known cases [1], such subdomains consist of hyperspheres of a fixed size.
But, in case of irregular data, this might lead to inaccurate approximations.

Thus, considering Radial Basis Functions (RBFs) as local approximants,
one can select suitable sizes of the different PU subdomains and safe values
for the shape parameter of the local basis functions. For instance, this can be
carried out by computing subsequent error estimates [2]. Anyway, always in
applications, given a set of samples, we often have additional properties, such
as the positivity of the measurements, which we wish to be preserved during
the interpolation process.

To this aim, in [3] a global positive RBF approximant is constructed by
adding up to the interpolation conditions several positive constraints. However,
since a global interpolant is used, adding up other constraints to preserve the
positivity implies that the shape of the curve/surface is consequently globally
modified and this might lead to a considerable decrease of the quality of the
approximating function in comparison with the unconstrained interpolation.

In order to avoid such drawback, focusing on 2D data sets, the PU method
is performed by imposing positive constraints on the local RBF interpolants.
Such approach enables us to consider constrained interpolation problems only
in those PU subdomains that do not preserve the required property. This leads
to an accurate method compared with existing techniques.

References:
[1] A. Safdari-Vaighani, A. Heryudono, E. Larsson, A radial basis function par-
tition of unity collocation method for convection-diffusion equations arising in
financial applications, J. Sci. Comput. 64 (2015), pp. 341–367.
[2] G.E. Fasshauer, M.J. McCourt, Kernel-based Approximation Methods using
Matlab, World Scientific, Singapore, 2015.
[3] J. Wu, X. Zhang, L. Peng, Positive approximation and interpolation using
compactly supported radial basis functions, Math. Probl. Eng. 2010 (2010),
pp. 1–10.
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On the enhancement of the approximation order of the triangular
Shepard method

F. Dell�Accio*, Di Tommaso*, K. Hormann**

* Department of Mathematics and Computer Science, Università della Calabria

**Faculty of Informatics, Università della Svizzera Italiana

The Shepard method is one of the oldest techniques used to interpolate large sets
of scattered data [4]. The classical Shepard operator reconstructs an unknown func-
tion as a normalized blend of the function values at the scattered points, using the
inverse distances to the scattered points as weight functions. Based on the general
idea of de�ning interpolants by convex combinations, Little [2] suggested to extend
the bivariate Shepard operator in two ways. On the one hand, he considers a triangu-
lation of the scattered points and substitutes function values with linear polynomials
which locally interpolate the given data at the vertices of each triangle. On the other
hand, he modi�es the classical point-based weight functions and de�nes, instead, a
normalized blend of the locally interpolating polynomials with triangle-based weight
functions which depend on the product of inverse distances to the three vertices of
the corresponding triangle. The resulting triangular Shepard operator interpolates all
data required for its de�nition, reproduces polynomials up to degree 1, whereas the
classical Shepard operator reproduces only constants, and has quadratic approxima-
tion order [3]. In this talk we discuss on some improvements of the triangular Shepard
operator. In particular, we substitute the linear polynomials with quadratic and cu-
bic polynomials which approximate Bernoulli polynomials on the triangle in a least
square sense and locally interpolate at the vertices. The resulting operators reproduce
polynomials of degree greater than one and have approximation order greater than 2.
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A stable algorithm for divergence and curl-free radial basis functions in the flat limit
Kathryn Drake

Department of Mathematics, Boise State University, USA

The direct method used for calculating smooth radial basis function (RBF)
interpolants in the flat limit becomes numerically unstable. The RBF-QR algo-
rithm bypasses this ill-conditioning using a clever change of basis technique. We
extend this method for computing interpolants involving matrix-valued kernels,
specifically divergence-free and curl-free RBFs on the sphere, in the flat limit.
Results illustrating the effectiveness of this algorithm are presented as well as
applications to computing the Helmholtz-Hodge decomposition of a vector field
on the sphere from samples at scattered points. This is joint work with Prof.
Grady Wright (Boise State University).
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Analysis of the Allee threshold via Moving Least Square
approximation.

Elisa Francomano1,a), Frank M. Hilker2,b), Marta Paliaga1,c) and Ezio Venturino3,d)

1University of Palermo, Scuola Politecnica, DICGIM
2Institute of Environmental Systems Research, Department of Mathematics and Computer Science, Osnabrück

University, Germany
3University of Torino, Department of Mathematics “Giuseppe Peano”

a)elisa.francomano@unipa.it
b)frank.hilker@uni-osnabrueck.de

c)marta.paliaga@unipa.it
d)ezio.venturino@unito.it

Abstract.

Cooperation is a common behavior between the members of predators species, because it can improve theirs skill in hunt,
especially in endangered eco-systems. This behavior it is well known to induce the Strong Allee effect, that can induce the
extinction when the initial populations’ is under a critical density called ”Allee threshold ”. Here we investigate the impact of
the pack hunting in a predator-prey system in which the predator suffers of an infectious disease with frequency and vertical
transmission. The result is a three dimensional system with the predators population divided into susceptible and infected
individuals. Studying the system dynamics a scenario was identified in which the model presents a bistability. However for a
strong hunting cooperation the Allee threshold becomes almost zero, ensuring the survival of the predators.
Thus we present a study to analyze this critical density by considering the basins of attraction of the stable equilibrium points. This
paper addresses the question of finding the point lying on the surface which partitions the phase plane. Therefore a Moving Least
Square (MLS) method based on compactly supported radial functions has been adopted to reconstruct the separatrix manifold.

Keywords dynamical systems; predator-prey model; basins of attraction; meshless approximation.
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Non-symmetric kernel-based approximation

Bernard Haasdonk1 and Gabriele Santin1

1IANS - University of Stuttgart

Abstract

We analyze kernel-based recovery problems defined by general, and possibly distinct, trial and test
spaces.

This setting allows to analyze in a common framework two notable situations, namely point-based
interpolation with kernel centers different from the data sites, and non-sym-metric collocation. While
the second is frequently observed to give better approximations than symmetric collocation, the first
one allows to construct interpolants which are not bounded to be centered on the given data. For some
kernel, both of them can be also extended to deal with variable shape parameters.

After discussing error and stability properties of this recovery procedure in an abstract setting, and
comparing it with the symmetric methods, we will specialize our analysis to the interpolation case. In
particular, we discuss a greedy algorithm to adaptively construct data-dependent test and trial spaces.
This algorithm is proven to be an extension of the method introduced in [5], and in particular it is
treated by means of bi-orthonormal bases which generalize the Newton basis [4].

Different greedy-selection criteria will be presented, and we will discuss their properties. Some of
them will be shown to be extensions of the criteria proposed in [1, 3, 6]. Experimentally, we demon-
strate their potential on artificial examples as well as on real world applications.
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CLOUD COARSENING FOR THE MLPG/DMLPG

SOLUTION OF DIFFUSION PROBLEMS

Annamaria Mazzia, Giorgio Pini∗

Università di Padova
DICEA

Via Trieste 63, 35121 Padova, Italy

Flavio Sartoretto†

Università Ca Foscari Venezia
DAIS

Via Torino 155, 30172 Mestre VE, Italy

Point clouds are easier to refine/coarse than meshes, this is the main point
which makes meshless methods more apt to adaptive strategies than Finite Element
Methods. After devising efficient test and trial spaces for Meshless Petrov–Galekin
(MLPG) methods [2], and suitable refining strategies [1], in this presentation we in-
troduce a coarsening strategy which is a fundamental key to adaptivity. We analyze
by numerical experiments the feasibility of our coarsening strategy. We compare
the accuracy of MLPG vs Direct MLPG (DMLPG) when applying our coarsening
procedure, in order to identify the most stable and accurate technique.
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Direct Approximation on Spheres Using Generalized

Moving Least Squares

Davoud Mirzaei

Department of Mathematics, University of Isfahan, 81746–73441 Isfahan, Iran.

email: d.mirzaei@sci.ui.ac.ir

May 31, 2016

Abstract

The moving least squares (MLS) approximation has been developed for pure func-

tion approximation on spheres by some authors. See for example [2]. The application of

MLS for solving partial differential equations (PDEs) on spheres and other manifolds is

much involved, because one should evaluate the PDE operators on non-close form and

complicated MLS shape functions. This might be the reason why MLS has been rarely

used for PDEs on manifolds. In this talk, we avoid this approach and suggest a direct

approximation using a generalized moving least squares (GMLS). The idea of GMLS was

first introduced in [1] in Rd. The new technique eliminates the action of operators on

shape functions and replaces them by much cheaper evaluations on spherical harmonics.

In fact, GMLS recovers test functionals directly from values at nodes, without any de-

tour via shape functions. The method is meshless, because the unknown quantities are

parameterized entirely in terms of scattered nodes on the spheres. The error analysis of

the method is given and, as an application, the Laplace–Beltrami equation is solved. In

the work’s conclusion limitations and suggestions for new researches are presented.

Keywords: Moving least squares, Spherical harmonics, Local polynomial reproduction,

Norming sets, Laplace-Beltrami equation.

Mathematics Subject Classification (2010): 41Axx, 65Nxx, 65Dxx.
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Rational Quadrature for Meshless methods

Ahlem Mougaida∗ and Hédi Bel Hadj Salah †

Abstract

The numerical integration of the Element-Free Galerkin (EFG)
forms for Meshless methods is studied and some improvements are
provided. Indeed, integrating without taking into account the char-
acteristics of the shape functions reproduced by Meshless methods
(rational functions, compact support . . . ), causes a large integration
error that influences the PDE’s approximate solution. In this work,
the rational quadrature rule [1] and ”the bounding box technique” [2]
are combined to improve the numerical integration. The performance
of the procedure is demonstrated on test problems in 1D .

Keywords: Meshless, Numerical Integration, Element Free Galerkin, Uni-
form nodes distribution, Rational Quadrature.
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IMPLEMENTATION OF MULTIPLE BOUNDARY
CONDITIONS IN RBF COLLOCATION METHOD

ALI SAFDARI-VAIGHANI1∗, ELISABETH LARSSON2, ALFA HERYUDONO3

1 Department of Mathematics, Allameh Tabataba’i University, Tehran, Iran
asafdari@atu.ac.ir

2 Department of Information Technology, Uppsala University, Uppsala, Sweden
elisabeth.larsson@it.uu.se

3 Department of Mathematics, University of Massachusetts Dartmouth,
Dartmouth, Massachusetts, USA

aheryudono@umassd.edu

Numerical solutions of the PDEs are routinely computed by re-
searchers in many different areas. Collocation methods based on RBFs
have become important when trying to obtain the numerical solution
of various ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs). Even for the one-dimensional case, how to
implement multiple boundary conditions for a time-dependent global
collocation problem is not obvious. In this case, we need to enforce
two boundary conditions at each end point resulting in a total of four
boundary conditions at the two boundary points. Fictitious or ghost
point methods have been commonly used as a way to enforce multiple
boundary conditions in finite difference methods. The implementation
for global collocation methods such as pseudospectral methods is due
to Fornberg [1].

The aim of this talk is to show that the Rosenau equation, as an
initial-boundary value problem with multiple boundary conditions, can
be implemented using RBF approximation methods [2]. For this aim,
the fictitious point method and the resampling method are studied in
combination with an RBF collocation method. The numerical experi-
ments show that both methods perform well.

Keywords: collocation method, radial basis function, multiple bound-
ary conditions
Classification: MSC 65M70, MSC 35G31

∗ Speaker.
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Hermite interpolation by incenter subdivision scheme

Chongyang Deng Huining Meng

Abstract

Given a sequence of points and associated tangent vectors, we can get a smooth curve interpo-
lating the initial points by incenter subdivision scheme, in which the new point corresponding to
an edge is the incenter of a triangle formed by the edge and the two tangent lines of the two end
points. Since the tangents are updated in each subdivision step, in general the limit curves do not
interpolate the initial tangent vectors. In this paper, we show that incenter subdivision scheme can
also be used to interpolate Hermite data by selected special rules for the first subdivision step.
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A multilevel optimization technique with applications to yacht design.
S. López-Ureña1, M. Menec2, R. Donat1,

1 Dept. of Mathematics, Faculty of Mathematics, C/Dr. Moliner 50, 46100-Burjassot, Valencia, Spain.
2 IS3D Eng., Avenida Mare Nostrum 5, 46120 Alboraya, Spain.

sergio.lopez-urena@uv.es, marc.menec@is3de.com, donat@uv.es

The performance of a sailing yacht may be improved by optimizing the shape of some of its appendages,
like the rudder and the keel. As a first step, we consider the optimization of an appendage section in
terms of the drag it generates, while maintaining certain structural features. If the optimization process
is based on considering a modification of the original shape by means of a large number of parameters,
the procedure to find an ’optimal’ shape may be very costly.

We describe a multilevel strategy on the parameter space, based on a multiresolution transform, that
involves solving an optimization problem at each resolution level, starting from an initial guess that
corresponds to the optimal solution at the previous level. The use of the multilevel technique on several
academic examples shows the improvement in performance. This improvement allows us to compute
an ’optimal’ shape, with respect to the drag it generates, for the sections of the bulb and the keel of a
sailing yacht.

Keywords: Optimization, yacht design, sections, multiresolution methods.
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Clifford-Valued B-Splines

Peter Massopust

Technische Universität München, Germany

Recently, ideas and methods from the theory of Clifford algebra and anal-
ysis have been applied to image and signal analysis. One prominent exam-
ple is the analysis of four-component seismic data (consisting of a hydrophone
(scalar part) and three orthogonally oriented geophones (vector part) by Ol-
hede et al. using quaternionic wavelets.

For the purposes of multichannel signal and image analysis, one naturally
needs one direction for each channel. This suggests to consider extensions
of complex-valued transforms to higher dimensions, i.e., to quaternion- and
Clifford-valued bases and their associated transforms.

In this presentation, we introduce the mathematical background in Clif-
ford algebra and analysis, and define quaternionic B-splines. Several alge-
braic and analytic properties of quaternionic B-splines are presented. We
prove the refinability of these novel B-splines and show that they define a
dyadic multiresolution analysis of L2(R,H).
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Hermite subdivision on manifolds

Caroline Moosmüller∗

Hermite subdivision schemes are refinement algorithms that operate on dis-
crete point-vector data and produce a curve and its derivatives in the limit.
Most results on Hermite schemes concern data in vector spaces and rules
which are linear. We are interested in Hermite schemes that operate on
manifold-valued data and are defined by the intrinsic geometry of the un-
derlying manifold (in particular, by geodesics and parallel transport).

We analyse such nonlinear subdivision rules with respect to convergence
and C1 smoothness. Similar to previous work on subdivision in manifolds,
we use the method of proximity to conclude convergence and smoothness
properties of a manifold-valued scheme from a “close-by” linear one.

∗Institut für Geometrie - TU Graz, Austria (moosmueller@tugraz.at)
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Multigrid methods and Subdivision schemes

Valentina Turati
vturati@studenti.uninsubria.it

via valleggio 11, 22100, Como (CO)

Multigrid is an iterative method for solving linear systems of equations whose
coefficient matrices are symmetric and positive definite. Each iteration consists
of two steps: the so-called smoother and the coarse grid correction. The con-
vergence rate of multigrid depends on the properties of the smoother and the
so-called grid transfer operator appearing at the coarse grid correction step. In
this talk, we show the link between the properties of multigrid methods and of
subdivision schemes. We construct new grid transfer operators from subdivision
symbols. We show that the polynomial generation property and stability of the
corresponding basic limit functions are crucial for the fast convergence of the
corresponding multigrid method. Our numerical results, both on primal binary
and ternary pseudo-splines, illustrate the behaviour of the new grid transfer op-
erators when applied to linear systems arising from elliptic PDE’s with different
discretizations (finite differences, iso-geometric analysis, etc.).

This work is in collaboration with Maria Charina (University of Vienna),
Marco Donatelli (University of Insubria - Como) and Lucia Romani (University
of Milano-Bicocca).
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Irregular Tight Wavelet Frames:
Matrix Approach

Alberto Viscardi

Department of Mathematics and Applications
University of Milano-Bicocca
Via Cozzi, 55 - 20125 Milano
alberto.viscardi@unimib.it

To construct compactly supported tight wavelet frames in the shift-invariant
setting there are powerful tools such as the Unitary Extension Principle, or the
Oblique Extension Principles for higher vanishing moments. It is well-known that
those principles lead to matrix extension problems. The entries of the correspond-
ing matrices are trigonometric polynomials. In the univariate setting, explicit
expressions for such extensions are known for a wide class of trigonometric poly-
nomials arising from refinement equations. Our first goal is to reduce such matrix
extension problems to the factorization of positive semi-definite matrices with real
entries. In the non shift-invariant setting, Chui, He and Stöckler showed how to
construct tight frame elements via the factorization of global positive semi-definite
matrices derived from B-splines over irregular knot sequences ([1], [2]). Our second
goal is to construct such global matrices for general univariate irregular MRA and
to simplify their factorizations. Our simplification leads to the factorization of few
positive semi-definite matrices of much smaller size.

[1 ] C. K. Chui, W. He, J. Stöckler, “Nonstationary tight wavelet frames, I:
Bounded intervals”, Appl. Comput. Harmon. Anal. 17 (2004), 141–197;

[2 ] C. K. Chui, W. He, J. Stöckler, “Nonstationary tight wavelet frames, II:
Unbounded intervals”, Appl. Comput. Harmon. Anal. 18 (2005), 25–66.
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On the linear independence of truncated hierarchical generating systems

Urška Zore1,2, Bert Jüttler2, Jǐŕı Kosinka3

1MTU Aero Engines AG, Munich, Germany
2Institute of Applied Geometry, Johannes Kepler University, Linz, Austria

3Johann Bernoulli Institute, University of Groningen, The Netherlands

Motivated by the necessity to perform adaptive refinement in geometric
design and numerical simulation, the construction of hierarchical splines
from generating systems spanning nested spaces has been recently studied
in several publications [1,2,3,4]. Linear independence can be guaranteed
with the help of the local linear independence of the spline basis at each
level.

We extends this framework in several ways. Firstly, we consider spline
functions that are defined on domain manifolds, while the existing construc-
tions are limited to domains that are open subsets of Rd. Secondly, we
generalize the approach to generating systems containing functions which
are not necessarily non-negative. Thirdly, we present a more general ap-
proach to guarantee linear independence and present a refinement algorithm
that maintains this property. The three extensions of the framework are
then used in several relevant applications: doubly hierarchical B-splines, hi-
erarchical Zwart-Powell elements, and three different types of hierarchical
subdivision splines.

References:
[1] J. Peters, X. Wu: On the local linear independence of generalized subdi-
vision functions, SIAM J. Numer. Anal., 44 (6) (2006), 2389–2407.
[2] C. Giannelli, B. Jüttler, H. Speleers: THB-splines: The truncated basis
for hierarchical splines, Comput. Aided Geom. Design, 29 (2012), 485–498.
[3] U. Zore, B. Jüttler: Adaptively refined multilevel spline spaces from
generating systems, Comput. Aided Geom. Design, 31 (2014), 545–566.
[4] X. Wei, Y. Zhang, T.J.R. Hughes, M.A. Scott: Truncated hierarchical
Catmull-Clark subdivision with local refinement, Comput. Methods Appl.
Mech. Engrg., 291 (2015), 1–20.
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Orthogonal polynomials for equilibrium measures and
Chebyshev polynomials

Gökalp Alpan
(Bilkent University, Ankara, Turkey)

The 4th Dolomites Workshop on Constructive Approximation and
Applications, Alba di Canazei, Italy, September 2016

In this talk, we consider orthogonal polynomials associated with equilibrium
measures on R. We focus on the link between logarithmic capacity and the
Hilbert norm of these polynomials. We discuss the implications and possible
outcomes of this connection related with Chebyshev polynomials.
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Radial functions related to Pleśniak’s conditions

Mirosław Baran∗, Leokadia Białas-Cież∗∗

∗University of Agriculture in Kraków, Department of Applied Mathematics
Balicka 253c, 30-198 Kraków, Poland

∗∗Jagiellonian University of Cracow, Institute of Mathematics
Łojasiewicza 6, 30-348 Kraków, Poland

Abstract. It was discovered by W. Pleśniak in 1990 that A. Markov’s inequality for
polynomials in CN

||DjP ||E ¬M(degP )m||P ||E, j = 1, . . . , N, E ⊂ CN

is equivalent to the existence of a positive constant M2 such that |P (z)| ¬M1||P ||E for all
P ∈ Pn(CN) and dist (z, E) ¬ 1/nm.

If we consider a modified inequality

|P (z)| ¬M1k
m||P ||E for dist (z, E) ¬ (k/n)m,

we get a condition equivalent to V. Markov’s estimate

||DαP ||E ¬M
|α|
2 (degP )m|α|(1/|α|!)m−1||P ||E,

that is equivalent to the Hölder continuity of the Siciak’s extremal function ΦE. We shall
present functions associated to the above Pleśniak’s conditions in terms of radial functions
ϕn(E, r) where

ϕn(E, r) = sup
||z||¬r

{||P (x+ z)||E : P ∈ Pn(C)N , ||P ||E ¬ 1}.

We shall give two constructions of radial functions and some capacities related to them.
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Degrees of Polynomial Appoximation in

holomorphic Carleman classes

Moulay Taïb BELGHITI Boutayeb EL AMMARI Laurent P. GENDRE

Ibn Tofaïl University, Morocco and Paul Sabatier University, France

Abstract

In this talk, we extend results of M.S. Baouendi and C. Goulaouic (Ann. Inst. Fourrier,
1971 ; Trans. Amer. Math. Soc, 1974), obtained for compacts of RN with analytic boundary.
If K is a compact of CN w R2N , (N ≥ 1), HM (K) is the space of ∂-Whitney jets on K
which are of class {M}, where M(t) = ttetµ(t), t >> 0 and µ belongs to a Hardy �eld.
We prove that a jet F := (Fα)α∈N2N ∈ HM (K) if and only if there exist a constant C > 0,
such that

lim
n→∞

dn(F
α,K) exp(CωK,M (n)) = 0, for all α ∈ N2N , (1)

where dn(·,K) is the distance, for the uniform norm on K to the complex vectorial space
of polynomials of degree at most n, and where ωK,M is a weight depending on the class
{M} and K.

If K is Whitney-regular

HM (K) w
{
f ∈ E∞(K) ∩ O(K̇) : ∃C > 0, ∃ρ > 0, ‖Dαf‖K 6 Cρ|α|M(|α|), (∀α ∈ NN )

}
.

In this situation, f ∈ HM (K) if and only if lim
n→∞

dn(f,K)eCω(n) = 0, where C > 0

and ω is a weight depending on {M}. Finally, we annonce similar results in the situation
where K is a compact of some Stein manifold. A crucial role is played by a new geometric
criteria : the �ojasiewicz-Siciak condition for the Green function of K.
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Selected polynomial inequalities

Leokadia Białas-Cież

Jagiellonian University, Institute of Mathematics
Łojasiewicza 6, 30-348 Kraków, Poland

Polynomial estimates remain an area of intense interest. The investigations
are inspired mainly by three classical inequalities:

• Schur inequality:
‖p‖[−1,1] ¬ (n+ 1) max

x∈[−1,1]
|(x− a) p(x)|, a ∈ [−1, 1],

• Bernstein inequality:
|p′(x)| ¬ n√

1− x2
‖p‖[−1,1], x ∈ (−1, 1),

• Markov brother’s inequality:
‖p(k)‖[−1,1] ¬ ‖T (k)n ‖[−1,1]‖p‖[−1,1], k ∈ N

for every polynomial p of degree at most n, where Tn is the n-th Cheby-
shev polynomial of the first kind.

In the talk, we focus on selected recent results concerning some generalizations
of these inequalities.
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FEKETE POINTS AS NORMING SETS

LEN BOS

Abstract. Suppose that K ⊂ Rd is a compact set. The Fekete
points for K of degree n are those points in K which maximize the
Vandermonde determinant associated to the polynomials of degree
at most n, restricted to K. A sequence of finite set Ωn ⊂ K is said
to be a norming set for K if there exists a constant C such that

‖p‖K ≤ C‖p‖Ωn
,

for all polynomials p of degree at most n. It is said to be of optimal
order if #(Ωn) = O(nd).

We discuss the conjecture that for any constant A > 1, the
Fekete points of degree An form an optimal order norming set for
K and, in particular, give some cases when it holds.

University of Verona, Verona, Italy
E-mail address: leonardpeter.bos@univr.it
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Equivalence of the global and local Markov inequalities in complex space 
 

 

 

Raimondo Eggink 
 

Warsaw 
 

Poland 

 

 

 

Building on seminal work by L.P. Bos and P.D. Milman (GAFA, 1995) we will 
review the current status of open problems related to the (lack of) equivalence of the 
global and local Markov inequalities in complex space. 
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Some Asymptotics of Polynomials in Terms
of Potential Theory

Alexander Goncharov

(Bilkent University, Ankara, Turkey)

The 4th Dolomites Workshop on Constructive Approximation
and Applications, Alba di Canazei, Italy, September 2016

We discuss Chebyshev polynomials and orthogonal polynomials with re-
spect to continuous singular measures. Our concern is the asymptotic be-
havior of the so-called Widom factors.
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Parametric Polynomial Circle Approximation
Gašper Jaklič and Jernej Kozak

University of Ljubljana and University of Primorska, Slovenia

Uniform approximation of a circle arc (or a whole circle) by a parametric poly-
nomial curve is considered. The approximant is obtained in a closed form. It
depends on a parameter that should satisfy a particular equation, and it takes
only a couple of tangent method steps to compute it. For low degree curves
the parameter is provided exactly. The distance between a circle arc and its
approximant asymptotically decreases faster than exponentially as a function
of polynomial degree. The approximant can be applied for a fast evaluation of
trigonometric functions and for a good bivariate parametric polynomial approx-
imation of the sphere.
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Generalizations of Markov inequality and the best
exponents

Agnieszka Kowalska

Institute of Mathematics, Pedagogical University of Cracov
E-mail: kowalska@up.krakow.pl

Generalizations of the classical Markov inequality have been the sub-
ject of research for 125 years. The development of the theory of the
multivariate Markov inequality and the search for the best exponent in
this inequality, called the Markov exponent, were very extensive in the
second half of the twentieth century. Currently, this inequality is still
being generalized in many different ways. Such research was carried on
for curves and submanifolds in RN (Bos, Brudnyi, Levenberg, Milman,
Taylor, Totik, Baran, Pleśniak, Kosek, Coman, Poletski, Gendre); for
Julia sets (Kosek); in Banach spaces (Sarantopoulos, Harris, Muñoz,
Baran); in Lp norms (Tamarkin, Hille, Szegö, Goetgheluck, Baran,
Sroka) in o-minimal structures (Pleśniak, Pierzcha la). Searching for
the sharp exponent is more difficult if we consider the Markov-type
inequality in norms different than the supremum norm. In this case,
many more questions remain unanswered.
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On multivariate fast decreasing polynomials

András Kroó
Alfréd Rényi Institute of Mathematics

Hungarian Academy of Sciences
and

Budapest University of Technology and Economics
Department of Analysis

Univariate fast decreasing polynomials pn of degree n on the interval [−1, 1] attain value 1 at
some point x0 ∈ [−1, 1], and decrease as we move away from this point according to the relation

|pn(x)| ≤ Ce−cnϕ(|x−x0|), x ∈ [−1, 1], n ∈ N

with C, c > 0 independent of n, and ϕ being some positive function tending to zero as h → 0. The
characterization of the optimal function ϕ(h) providing the fastest possible decrease was found by
Ivanov and Totik. The rate of this function depends on x0 being an inner or boundary point of the
interval.

In this talk we will discuss multivariate fast decreasing polynomials. Even in the univariate
case there is an essential difference between the decrease around inner or boundary points. This
phenomena becomes more intricate in the multivariate case. It will be shown that the rate of
decrease of the multivariate fast decreasing polynomials is closely related to the smoothness of
the boundary at the corresponding points. We shall consider both ordinary and homogeneous fast
decreasing multivariate polynomials when the underlying domain is locally star like or convex.
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Algebra and pluripotential theory on curves and varieties

Sione Ma’u

University of Auckland

Auckland, New Zealand

Notions of transfinite diameter and Chebyshev constant are important in
pluripotential theory. They can be studied in some depth using only poly-
nomial algebra, without reference to plurisubharmonic functions. They natu-
rally extend to algebraic varieties in Cn, with the algebra getting a bit more
involved. As in classical pluripotential theory, these notions ought to be rela-
ted to functions in the Lelong class and the pluricomplex Green function. For
an algebraic curve (that has ‘generic’ good behaviour at infinity) we found
an explicit formula linking directional Chebyshev constants to the growth
of Sadullaev’s Green function along different directions. As an application,
Chebyshev constants can be used to deduce some interesting behaviour of
the Green function on a sequence of quadratic curves. I will give a possible
”potential theoretic” interpretation of this behaviour.
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Analysis of the stability and accuracy of discrete
least-squares approximation on multivariate

polynomial spaces

Giovanni Migliorati∗

May 30, 2016

We review the results achieved in the analysis of stability and accuracy for
discrete least-squares approximations on multivariate polynomial spaces, with
noiseless [2, 3, 1, 4] or noisy evaluations [1, 5] at random points, or with noiseless
evaluations at low-discrepancy point sets [6]. Afterwards we present some recent
results from [7], where we have proven that a judicious choice of the weights and
of the sampling measure provides a stable and accurate weighted least-squares
approximation, under the minimal condition that the number of evaluations
is linearly proportional to the dimension of the approximation space, up to a
logarithmic factor.
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Some recent results on Bernstein type inequalities

for rational functions on the complex plane

Béla Nagy

MTA-SZTE Analysis and Stochastics Research Group
HAS-Univ. of Szeged

Hungary

Bernstein’s inequality states that if Pn is a polynomial with degree n, then
for any t ∈ (−1, 1)

|P ′n(t)| ≤ n
1√

1− t2
‖Pn‖[−1,1]

where ‖.‖[−1,1] is the sup norm over the set [−1, 1]. Note that on the right

there is a factor which is independent of the polynomial (sometimes so-called
“geometric factor”). Originally, Bernstein proved this inequality to establish an
inverse theorem in approximation theory. In the last decades there were several
generalizations and further applications of this inequality.

It is interesting that for arbitrary subsets of the real line R, Bernstein type
inequality was established relatively recently by Baran (1994) and Totik (2001)
independently. This result uses potential theory (in particular, the density of
the equilibrium measure) and it is sharp.

On the complex plane, asymptotically sharp Bernstein type inequality for
polynomials was established by Nagy and Totik (2005). In this setting the
normal derivative of Green’s function naturally enters (geometric factor) and
the obtained inequality is asymptotically sharp.

Recently, this Bernstein type inequality was generalized to arcs, first circular
arcs (Nagy, Totik 2013), then arbitrary analytic arcs (Kalmykov, Nagy 2015).
The latter result was established using Gonchar-Grigorjan type estimates, open-
up in Widom’s sense, fast decreasing polynomials and direct approximation
methods (interpolation). The open-up naturally led from polynomials to ra-
tional functions. Some partial results were established by Kalmykov and Nagy
(rational functions on analytic Jordan arcs and curves) where open-up is also
used to reduce the case of Jordan arcs to the case of Jordan curves.

In this talk we mainly focus on recent results (joint with S. Kalmykov and
V. Totik) establishing Bernstein type inequality for rational functions on C2

smooth Jordan arcs and curves when poles are in a fixed compact set (disjoint
from the arc or curve).
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PLURIPOTENTIAL NUMERICS

FEDERICO PIAZZON

Abstract. We introduce numerical methods for the approximation of the

extremal plurisubharmonic function V ∗
E of a compact L-regular set E ⊂ Cn

and its transfinite diameter δ(E).
The methods rely on the computation of a polynomial mesh for ∂E and

numerical orthonormalization of a suitable basis of polynomials. We prove
the convergence of the approximation of δ(E) and the uniform convergence
of our approximation to V ∗

E on all Cn providing an a priori estimate on the

error. Our algorithms are based on the properties of polynomial meshes and
Bernstein Markov measures.

Numerical tests are presented for some simple cases with E ⊂ R2 to illus-

trate the performances of the proposed methods.

This is a joint work with Marco Vianello.
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MULTIVARIATE MARKOV-TYPE INEQUALITIES

RAFAŁ PIERZCHAŁA

Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza
6, 30–348 Kraków, Poland

Abstract

One of the most important polynomial inequalities is the following Markov’s inequal-
ity.

Theorem (Markov, 1889) If P is a polynomial of one variable, then

‖P ′‖[−1, 1] ≤ (degP )2‖P‖[−1, 1] .

Moreover, this inequality is optimal, because for the Chebyshev polynomials Tn (n ∈ N0),
we have T ′n(1) = n2 and ‖Tn‖[−1, 1] = 1.

Markov’s inequality and its generalizations found many applications in approxima-
tion theory, constructive function theory and analysis (for instance, to Whitney-type
extension problems), but also in other branches of science (for example, in physics or
chemistry). From the point of view of applications, it is important that the constant
(degP )2 in Markov’s inequality grows not too fast (that is, polynomially) with respect
to the degree of the polynomial P .

It is natural to ask about similar inequalities if we replace the interval [−1, 1] by
another compact set in RN or CN . In the talk, we will address this issue.
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ON A UVAROV TYPE MODIFICATION OF ORTHOGONAL

POLYNOMIALS ON THE UNIT BALL

MIGUEL A. PIÑAR

Abstract

In the present work, we study orthogonal polynomials with respect to a Uvarov
type modification of the classical inner product on the unit ball. Namely, we con-
sider the inner product

〈f, g〉λµ =
1

ωµ

∫

Bd

f(x)g(x)Wµ(x)dx+
λ

σd

∫

Sd−1

f(ξ)g(ξ)dσ(ξ),

where ωµ is a normalizing constant, dσ denotes the surface measure and σd−1

denotes the surface area. Here λ > 0 represents a mass uniformly distributed over
the sphere.

Using spherical polar coordinates, we shall construct a sequence of mutually
orthogonal polynomials with respect to 〈·, ·〉λµ, which depends on a family orthog-
onal polynomials in one variable. These polynomials are orthogonal with respect
to a Uvarov modification of a varying Jacobi measure and therefore they can be
expressed in terms of Jacobi polynomials. Explicit representations tor the polyno-
mials, the norms and the kernels will be obtained.

A very interesting problem in the theory of multivariate orthogonal polynomials
is that of finding asymptotic estimates for the Christoffel functions. These estimates
are useful in the study of the convergence of the Fourier series. Asymptotics for
Christoffel functions associated to the classical orthogonal polynomials on the ball
were obtained by Y. Xu in 1996 (see [2]). Recently, more general results on the
asymptotic behaviour of the Christoffel functions for some kind of regular measures
were established by Kroó and Lubinsky [1].

Since our system of orthogonal polynomials does not fit into the above mentioned
context, the asymptotic of the Christoffel functions deserves special attention. Not
surprisingly, our results show that in any compact subset of the interior of the unit
ball Christoffel functions for the Uvarov type modification behave exactly as in the
classical case. On the sphere the situation is quite different and we can perceive
the influence of the mass λ.
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Bivariate polynomials and structured matrices

Karla Rost

Faculty of Mathematics

Technische Universitaet Chemnitz

Reichenhainer Str. 39

D–09126 Chemnitz

GERMANY

It is shown that inverses of structured matrices, namely Toeplitz, Hankel,
and Toeplitz-plus-Hankel matrices, can be suitable introduced as polynomials
of two variables, called Bezoutians. How to obtain the coefficients of the
involved polynomials and matrix representations of the inverses is discussed.
Moreover, recent results of joint papers with Torsten Ehrhardt concerning
the reverse problem - the inversion of Bezoutians - are presented.
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On connection coefficients for some

perturbed of arbitrary order of the

Chebyshev polynomials of second kind

Zélia da Rocha
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May 2016

Keywords: Chebyshev polynomials of second kind; perturbed orthogonal polyno-
mials; connection coefficients; zeros, interception points.

ABSTRACT

Orthogonal polynomials satisfy a recurrence relation of order two, where appear

two coefficients. If we modify one of these coefficients at order r, we obtain a per-

turbed orthogonal sequence. In this work, we consider, in this way, some perturbed

of Chebyshev polynomials of second kind and we deal with the problem of finding the

connection coefficients [1, 2] that allow to write the perturbed sequence in terms of the

original one, and in terms of the canonical basis. From the connection relations ob-

tained, we deduce some results about zeros and interception points of these perturbed

polynomials. All the work is valid for any order r of perturbation. Other properties of

these polynomials were obtained in [3, 4], for r ≤ 3. The integral representation of the

perturbed forms remain an open problem for r ≥ 2.
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Approximation of hypersingular integral

transforms on the real axis

Maria Carmela De Bonis, Donatella Occorsio∗

In this talk we propose some numerical procedures for approximating hyper-
singular integrals of the type

Hp(fwα,β , t) =

∫
=

+∞

−∞

f(x)

(x− t)p+1
wα,β(x)dx, t ∈ R, (1)

where wα,β(x) = |x|αe−|x|β is a generalized Freud weight with α ≥ 0, β > 1 and
0 ≤ p ∈ N.

This topic is of interest, for instance, in the numerical solution of hyper-
singular integral equations, which are often models for physics and engineering
problems (see [5, 2, 4]). To our knowledge, most of the papers available in
the literature deal with the approximation of Hadamard integrals on bounded
intervals (see for instance [4] and the references therein) and the case on the
real semiaxis has been considered recently in [1, 3]. We propose here different
procedures, which are differently convenient, according that the computation
of the integral is required in “many” or “few” values of the parameter t. The
convergence and stability of the proposed methods are proved and error esti-
mates are given. Some numerical tests are shown in order to compare their
performances.
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A numerical method for a Volterra integral equation related
to the initial value problem for the KdV equation

Luisa Fermo
Department of Mathematics and Computer Science

University of Cagliari
fermo@unica.it

This talk deals with the following Volterra integral equation

k(x, x+ y)− 1

2

∫ y

0

∫ ∞

x+ 1
2 (y−x)

q(t)k(t, t+ s)dt ds =
1

2

∫ ∞

x+ 1
2y

q(t)dt, y ≥ 0

where q ∈ L1(R, (1 + |x|)dx) and k is the bivariate unknown function.
The above equation arises in the solution of the following initial value problem for the Korteweg-

de Vries (KdV) equation which governs the propagation of waves in shallow water




∂q(t, x)

∂t
− 6q(t, x)

∂q(t, x)

∂x
+

∂3q(t, x)

∂x3
= 0, x ∈ R, t ∈ R+

q(0, x) = q(x).

The proposed numerical method takes advantage of an analytical study of the equation ac-
cording to which it is sufficient to solve it on a specific triangle and not on the entire unbounded
domain.

This is a joint work with Cornelis van der Mee and Sebastiano Seatzu.
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A NEW CLASS OF CONSTRUCTIVE PRECONDITIONED INTEGRAL

EQUATION MODELS FOR SIMULATION OF WAVE PROPAGATION

M. GANESH AND C. MORGENSTERN

Abstract. We consider the Helmholtz acoustic wave propagation model in a bounded media
Ω with an inhomogeneous impedance boundary condition on ∂Ω. It is well known that the
standard Galerkin variational integral equation formulation of the Helmholtz partial differential
equation (PDE) in H1(Ω) is indefinite for large wavenumbers, while the Helmholtz PDE is
not indefinite. The lack of coercivity (indefiniteness) in the standard integral equation and
associated finite element method (FEM) models is one of the major difficulties for simulating
wave propagation models using iterative methods.

The concept used in some literature of terming the Helmholtz equation indefinite was
questioned in a 2014 SIAM Review article. For the constant coefficient Helmholtz equation
case, it was theoretically demonstrated in the article that a non-standard integral equation
model can produce a sign-definite variational formulation of the wave propagation model in
homogeneous media.

However, the authors of the theoretical article also questioned the practical use of their new
sign-definite formulation even for the constant coefficient Helmholtz equation with impedance
boundary condition.

Our investigation begins with addressing this key issue of a specific parameter based for-
mulation in the SIAM Review article Through various computer simulations, we provide a
concrete answer that the sign-definite formulation analyzed in the 2014 article does not alle-
viate the key difficulty of reducing the GMRES iterations of the associated FEM model if the
choice of parameter that facilitates the proof of sign-definiteness of the formulation used in
the article.

We subsequently develop, analyze, and implement a new class of constructive FEM wave
propagation models in both homogeneous and heterogeneous media.

Colorado School of Mines
E-mail address: mganesh@mines.edu

Colorado School of Mines
E-mail address: cmorgens@mymail.mines.edu
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A discrete top-down Markov
problem in approximation theory

Walter Gautschi

Abstract

The Markov brothers’ inequalities in approximation theory concern
polynomials p of degree n and assert bounds for the kth derivatives
|p(k)|, 1 ≤ k ≤ n, on [−1, 1], given that |p| ≤ 1 on [−1, 1]. Here
we go the other direction, seeking bounds for |p|, given a bound for
|p(k)|. For the problem to be meaningful, additional restrictions on p
must be imposed, for example, p(−1) = p′(−1) = · · · = p(k−1)(−1) =
0. The problem then has an easy solution in the continuous case,
where the polynomial and their derivatives are considered on the whole
interval [−1, 1], but is more challenging, and also of more interest, in
the discrete case, where one focusses on the values of p and p(k) on a
given set of n− k +1 distinct points in [−1, 1]. Analytic solutions are
presented and their fine structure analyzed by computation.
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Collocation-quadrature for the
notched half plane problem

P. Junghanns,
Chemnitz, Germany

peter.junghanns@mathematik.tu-chemnitz.de

A Cauchy singular integral equation describing the notched half plane prob-
lem of two-dimensional elasticity theory is considered. This equation contains
an additional fixed singularity represented by a Mellin convolution operator.
We study a polynomial collocation-quadrature method for its numerical so-
lution which takes into account the “natural” asymptotic of the solution at
the endpoints of the integration interval and for which until now no criterion
for stability is known. We present a new technique for proving that the op-
erator sequence of the respective collocation-quadrature method belongs to
a certain C∗-algebra, in which we can study the stability of these sequences.
One of the main ingredients of this technique is to show that the part of
the operator sequence, associated with the Mellin part of the original equa-
tion, is “very close” to the finite section of particular operators belonging
to a C∗-algebra of Toeplitz operators. Moreover, basing on these stability
results numerical results are presented obtained by an implementation of the
proposed method.

The talk is based on joint work with Robert Kaiser, Chemnitz, Germany.
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On the numerical solution of integral equations
of Mellin type in weighted Lp spaces

Laurita Concetta
Università degli Studi della Basilicata

via dell’Ateneo Lucano, 10 85100 - Potenza Italy

concetta.laurita@unibas.it

Maria Carmela De Bonis
Università degli Studi della Basilicata

via dell’Ateneo Lucano, 10 85100 - Potenza Italy

mariacarmela.debonis@unibas.it

We are interested in the numerical solution of second kind integral equations with fixed
singularities of Mellin convolution type given by

f(y) +

∫ 1

0
k(x, y)f(x)dx+

∫ 1

0
h(x, y)f(x)dx = g(y), y ∈ (0, 1], (1)

where f is the unknown, h and g are smooth functions and

k(x, y) = ±1

x
k̄
(y
x

)
(2)

is a Mellin kernel, defined by means of a function k̄ : [0,+∞) → [0,+∞) satisfying suitable
assumptions.
Since the kernel k(x, y) has a fixed-point singularity at x = y = 0, the corresponding integral
operator

(Kf)(y) =

∫ 1

0
k(x, y)f(x)dx

is non-compact. Consequently, the standard stability proofs for numerical methods do not
apply and a modification of the classical methods in a neighbourhood of the endpoint y = 0
is needed.
Generalizing the results in [1], we propose to approximate the solutions of (1) in weighted
Lp spaces by applying a “modified” Nyström method which uses a Gauss-Jacobi quadra-
ture formula. The modification of the classical method essentially consists in a new suitable
approximation of the integral transform (Kf)(y) in points very close to 0, where the con-
vergence of the Gaussian rule is not assured.
The stability and the convergence are proved in weighted Lp spaces and error estimates are
also given. Moreover, some numerical results show the effectiveness of the method.
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Computing integrals of highly
oscillatory special functions using

quadrature processes

Gradimir V. Milovanović
Serbian Academy of Sciences and Arts

Belgrade, Serbia

Abstract

The standard methods for numerical integration are not applica-
ble to integration of rapidly oscillating functions, which appear in the
theory of special functions, as well as in many applications in theo-
retical physics, quantum chemistry, the theory of transport processes,
acoustic scattering, problems in electromagnetics, fluid mechanics, etc.
Conventional techniques for computing values of special functions are
power series, asymptotic expansions, continued fractions, differential
and difference equations, and so on. Using suitable integral repre-
sentation of special functions, in this lecture, we show how existing or
specially developed quadrature formulas can be successfully applied to
effectively calculation values of some special functions, such as highly
oscillatory integrals of Fourier type with Hankel kernel, oscillatory
Bessel transformation, Bessel-Hilbert transformation, etc. Theoretical
results and numerical examples illustrate the efficiency and accuracy
of the proposed methods.
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On the Numerical Approximation of Some Non-standard
Volterra Integral Equations
K. Nedaiasl1, A. Foroush Bastani

Institute for Advanced Studies in Basic Sciences

Zanjan, Iran.

American option pricing can be formulated as a free boundary problem
for the Black-Scholes Equation (BSE) and as soon as the free boundary is
evaluated, the option price will be known. Different approaches of investiga-
tion of the BSE, such as Fourier and Laplace transforms and Green function
method give us different integral equations, different at least in their form
[2, 3]. Some of them can be classified as follows

(1) x(t) = φ(x(t), t) +

∫ t

0
K(t, s, x(t), x(s))ds, t ∈ [a, b],

where the kernel k(t, s, x, y) is smooth or weakly singular function. The aim
this paper is to introduce these classes of integral equations and other ones
arising in this field. The existence issue of the Eq. (1) by the Schauder fixed
point theorem is discussed.

A computational method based on barycentric rational interpolatory quad-
rature [1, 4] is introduced for approximating Eq. (1) and for simplicity of
the presentation is analyzed for the special case

(2) x(t) = y(t) +

∫ t

0
K(t, s, x(t), x(s))ds, t ∈ [a, b].

Finally, the results will be compared with other methods in the finan-
cial math literature, especially an implicit Runge-Kutta discretization and
methods based on fixed point iteration [5].
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ORTHOGONAL POLYNOMIALS FOR POLLACZECK–LAGUERRE WEIGHTS

ON THE REAL SEMIAXIS

I. NOTARANGELO

University of Basilicata, DiMIE, viale dell’Ateneo Lucano 10, 85100 Potenza, Italy. incoronata.notarangelo@unibas.it

The weighted polynomial approximation for functions defined on (0,+∞) which can grow exponentially

at 0+ and/or +∞ has been considered only recently in the literature [3, 4, 5, 6], dealing in particular

with estimates for the best weighted approximation, polynomial inequalities and Gaussian rules. Also,

some properties of the orthonormal system related to the weight σ(x) = e−x
−α−xβ

, with α > 0, β > 1

and x ∈ (0,+∞), have been studied.

Here, in order to construct approximation processes such as Lagrange interpolation and Fourier sums,

we consider the orthonormal system {pm(w)}m associated to weight

w(x) = xγe−x
−α−xβ

x ∈ (0,+∞) ,

where α > 0, β > 1 and γ ≥ 0. We observe that the weight w can be seen as a combination of a Pollaczeck-

type weight e−x
−α

and a Laguerre-type weight xγe−x
β

. Nevertheless the properties of {pm(w)}m cannot

be deduced from previous results concerning these two weights.

We show that the weight w can be reduced to a weight belonging to the Levin–Lubinsky class F(C2+)

[2] and then we obtain estimates for the polynomials pm(w), their zeros and the associated Christoffel

function. Moreover, some applications to Gaussian rules and Lagrange interpolation will be discussed.

We remark that the weight w is nonclassical and the coefficients of the three terms recurrence relation

for {pm(w)}m are not explicitly known. So, for the computation of the zeros and the Christoffel number

we use a procedure given in [6] and the Mathematica package OrthogonalPolynomials [1].

Bibliography
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ANTI-GAUSSIAN QUADRATURE FORMULAE
BASED ON THE ZEROS OF STIELTJES POLYNOMIALS

Sotirios E. Notaris

Department of Mathematics
National and Kapodistrian University of Athens

e-mail: notaris@math.uoa.gr

Abstract. It is well known that a practical error estimator for the Gauss quadrature
formula is by means of the corresponding Gauss-Kronrod quadrature formula developed by
Kronrod in 1964. However, recent advances show that Gauss-Kronrod formulae fail to exist,
with real and distinct nodes in the interval of integration and positive weights, for several
of the classical measures. An alternative to the Gauss-Kronrod formula, as error estimator
for the Gauss formula, is the anti-Gaussian and the averaged Gaussian quadrature formulae
presented by Laurie in 1996. These formulae always exist and enjoy the nice properties
that, in several cases, Gauss-Kronrod formulae fail to satisfy. Now, it is remarkable that,
for a certain, quite broad, class of measures, for which the Gauss-Kronrod formulae exist,
the anti-Gaussian and averaged Gaussian formulae, based on the zeros of the corresponding
Stieltjes polynomials, have elevated degree of exactness, and the estimates provided for the
error term of the Gauss formula by either the Gauss-Kronrod or the averaged Gaussian
formulae are exactly the same.
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EXTENDED LAGRANGE INTERPOLATION ON THE REAL

SEMIAXIS AND APPLICATIONS TO THE QUADRATURE

DONATELLA OCCORSIO, MARIA GRAZIA RUSSO

Abstract

Let w(x) = e−x
β

xα,, β > 1
2 , be a given Generalized Laguerre weight. Setting

w̄(x) = xw(x) and denoting by {pm(w)}m, {pn(w̄)}n the corresponding sequences
of orthonormal polynomials, then the zeros of Q2m+1 = pm+1(w)pm(w̄) are simple
[2]. The Lagrange interpolation of a given function f , continuous in (0,+∞), at
the zeros of Q2m+1 is called Extended Lagrange Interpolation.

Here we will give some results on the behaviour of this interpolation process in
suitable subspaces of Lpu((0,+∞)), 1 ≤ p < +∞ with a special attention to the
case p = 1.

Moreover as an application we show how to use the above mentioned extended
interpolation process for approximating integrals of the type

∫ +∞

0

f(x)k(x, y)w(x)dx, y > 0,

where k(x, y) should also be a weakly singular function for x = y.
The idea is to construct a “mixed” sequence of product integration rules obtained

by approximating alternatively f by means of the ordinary Lagrange polynomial
based on the zeros of pm+1(w) and the introduced extended Lagrange polynomial.

In this way we can double the number of nodes of the quadrature formula, but
reusing m+ 1 already computed samples of the function f . This approach is really
relevant when m is “large” and the procedure for computing the zeros and the
weights of the quadrature rule can fail or is too much expensive [1].

We will prove the stability and the convergence of the proposed quadrature pro-
cedure, showing also some numerical tests which confirm the theoretical estimates.
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PRODUCT INTEGRATION RULES
ON THE SQUARE

Giada Serafini

Department of Mathematics, Computer Science and Economics,
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giada.serafini@unibas.it

This talk deals with the approximation of integrals of the type

I(f ;y) =

∫

D

K(x,y)f(x)ω(x)dx, x = (x1, x2), y = (y1, y2),

D = [−1, 1] × [−1, 1],

where the function f is sufficiently smooth inside the square, with possible al-
gebraic singularities on the border, ω is the product of two Jacobi weights and
the kernel K is a “nearly”singular kernel. Kernels of this type, appear, for in-
stance, in the numerical solution of integral for BEM 3D (see [1], [4]) and in the
numerical solution of bivariate integral equations (see [2], [3]). The stability and
the convergence of the cubature rule is proved, and some numerical tests, which
confirm the theoretical estimates, are proposed.
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High-dimensional integration of kinks and jumps –
smoothing by preintegration

Ian H Sloan

i.sloan@unsw.edu.au

University of New South Wales, Australia

In many applications, including option pricing, integrals of d-variate functions with “kinks”
or “jumps” are encountered. (Kinks describe simple discontinuities in the derivative, jumps
describe simple discontinuities in function values.) The standard analyses of sparse grid or
Quasi-Monte Carlo methods fail completely in the presence of kinks or jumps not aligned to
the axes, yet the observed performance of these methods can remain reasonable.

In recent joint papers with Michael Griebel and Frances Kuo we sought an explanation by
showing that many terms of the ANOVA expansion of a function with kinks can be smooth,
because of the smoothing effect of integration. The problem settings have included both the
unit cube and d-dimensional Euclidean space. The underlying idea is that integration of a
non-smooth function with respect to a well chosen variable, say xj, can result in a smooth
function of d − 1 variables.

In still more recent joint work with Andreas Griewank, Hernan Leovey and Frances Kuo we
have extended the theoretical results from kinks to jumps, and have turned “preintegration”
into a practical method for evaluating integrals of non-smooth functions over d-dimensional
Euclidean space. In this talk I will explain both the method and the ideas behind “smoothing
by preintegration”.
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New classes of the index transforms and their applications to
solutions of higher order PDE’s

Semyon Yakubovich

University of Porto, Portugal

Abstract

We discuss new index transforms, which are associated with the
modified Bessel functions as the kernel. The boundedness and in-
vertibility are examined for these operators in the Lebesgue weighted
spaces. Inversion theorems are proved. Important particular cases are
exhibited. The results are applied to solve initial value problems for
higher order PDE, involving the Laplacian.
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Sublinear-Time Fourier Algorithms

Sina Bittens∗

In 2010, M.A. Iwen (in Found. Comput. Math., 10(3):303-338, 2010) introduced a deter-

ministic combinatorial sublinear-time Fourier algorithm for estimating the best k term Fourier

representation for a given frequency sparse signal, relying heavily on the Chinese Remainder

Theorem and combinatorial concepts. In 2016 a different deterministic sublinear Fourier algo-

rithm for input signals with small support length was proposed, which employs periodizations

of the signal and requires that the signal length is a power of 2 (Plonka and Wannenwetsch in

Numerical Algorithms, 71(4):889-905, 2016).

In this talk we will develop Iwen’s algorithm from examples for the case of an input function

with small support length, combining the Chinese Remainder Theorem approach for arbitrary

signal lengths with the structure given by the small support. This reduces the runtime of the

algorithm as the effortful combinatorial part can be omitted.

∗Institute for Numerical and Applied Mathematics, University of Göttingen
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A hybrid Fourier-Prony method

Matteo Briani1, Annie Cuyt1, and Wen-shin Lee1

1University of Antwerp

The FFT algorithm that implements the Discrete Fourier Transform is con-
sidered one of the top ten algorithms of the 20th century. Its main strengths are
the low computational cost of O(n log n) and its stability. It is one of the most
common algorithms that is used to analyze signals with a dense frequency repre-
sentation. In recent years there has been an increasing interest in sparse signal
representation and a need for new algorithms that exploit such structure. We
propose a new technique that combines the properties of the Discrete Fourier
Transform with the sparsity of the signal. This is achieved by integrating ideas
of Prony’s method into Fourier’s method. The resulting technique has the same
frequency resolution as the original FFT algorithm but uses fewer samples and
can achieve a lower computational cost.



86 F) Sparse approximation

A Region Based Easy Path Wavelet Transform for
Sparse Image Representation

Renato Budinich, joint work with Gerlind Plonka
Institut für Numerische und Angewandte Mathematik, Universität Göttingen

In [1] G. Plonka proposed an innovative method for image compression:
successively finding a suitable path in the image (i.e. reducing it to a one-
dimensional signal) and applying one level of a one dimensional wavelet
transform. This yields a sparse representation which behaves better than
the typical tensor product wavelet transform. However there are adaptivity
costs: for each level one has to store the path, i.e. a permutation of the pixel
points.

We propose a variation on this method, which consists in first segmenting
the image into regions, then successively for every level find in each region
a path (in some canonical manner, not depending on the pixel values) and
apply a one-dimensional wavelet transform to it. We will discuss various
details of this approach and present some numerical examples.

[1] G. Plonka, The easy path wavelet transform: A new adaptive wavelet transform for
sparse representation of two-dimensional data, Multiscale Model. Simul. 7 (2009),
1474–1496.
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Identification problems in sparse sampling

Annie Cuyt and Wen-shin Lee

University of Antwerp
Belgium

{annie.cuyt, wen-shin.lee}@uantwerpen.be

Abstract

We consider the interpolation of an n-variate exponential sum

F (x1, . . . , xn) =

t∑

j=1

cje
fj,1x1+fj,2x2+···+fj,nxn .

In the univariate case, n = 1, there is an entire branch of algo-
rithms, which can be traced back to Prony’s method dated in the 18th
century, devoted to the recovery of the 2t unknowns, c1, . . . , ct, f1, . . . , ft,
in

F (x) =

t∑

j=1

cje
fjx.

In the multivariate case, n > 1, it remains an active research topic
to identify and separate distinct multivariate parameters from results
computed by a Prony-like method from samples along projections.

On top of the above, if the fj,k are allowed to be complex, the eval-
uations of the imaginary parts of distinct fj,k can also collide. This
aliasing phenomenon can occur in either the univariate or the multi-
variate case.

Our method interpolates F (x1, . . . , xn) from (n+1) · t evaluations.
Since the total number of parameters cj and fj,k is exactly (n + 1) ·
t, we interpolate F (x1, . . . , xn) from the minimum possible number
of evaluations. The method can also be used to recover the correct
frequencies from aliased results.

Essentially, we offer a scheme that can be embedded in any Prony-
like algorithm, such as the least squares Prony version, ESPRIT, the
matrix pencil approach, etc., thus can be viewed as a new tool offering
additional possibilities in exponential analysis.
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A low-rank matrix completion approach
to data-driven signal processing

Ivan Markovsky
Vrije Universiteit Brussel

Department of Electrical Engineering
Email: ivan.markovsky@vub.ac.be

Abstract

In filtering, control, and other mathematical engineering areas it is common to use a model-based approach, which
splits the problem into two steps:

1. model identification and

2. model-based design.

Despite its success, the model-based approach has the shortcoming that the design objective is not taken into account
at the identification step, i.e., the model is not optimized for its intended use.

In this talk, we show a data-driven approach, which combines the identification and the model-based design into
one joint problem. The signal of interest is modeled as a missing part of a trajectory of the data generating system.
Subsequently, the missing data estimation problem is reformulated as a mosaic-Hankel structured matrix low-rank
approximation/completion problem. A local optimization method, based on the variable projections principle, is then
used for its numerical solution.

The missing data estimation approach for data-driven signal processing and the local optimization method for its
implementation in practice are illustrated on examples of control, state estimation, filtering/smoothing, and prediction.
Currently, we are missing fast algorithms with provable properties in the presence of measurement noise and distur-
bances. Development of such methods will make the matrix completion approach for data-driven signal processing a
practically feasible alternative to the model-based methods.

Reference

I. Markovsky. A low-rank matrix completion approach to data-driven signal processing. Technical report, Vrije
Univ. Brussel, 2015. http://homepages.vub.ac.be/~imarkovs/publications/ddsp.pdf
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On rational functions without Froissart doublets

Ana Matos
Université de Lille 1, France
Ana.Matos@univ-lille1.fr

Bernd Beckermann
Université de Lille 1, France

bbecker@math.univ-lille1.fr

George Labahn
University of Waterloo, Canada

glabahn@uwaterloo.ca

Abstract

In this talk we consider the problem of working with rational functions in a numeric environment. A
particular problem when modeling with such functions is the existence of Froissart doublets, where a zero is
close to a pole. We discuss three different parameters which allow one to monitor the absence of Froissart
doublets for a given general rational function. These include the euclidean condition number of an underlying
Sylvester-type matrix, a parameter for determing coprimeness of two numerical polynomials and bounds on
the spherical derivative. We show that our parameters sharpen those found in previous papers [1], [2].

References

[1] B. Beckermann and G. Labahn, When are two numerical polynomials relatively prime? Journal of
Symbolic Computation 26 (1998) 677-689.

[2] B. Beckermann and A. Matos, Algebraic properties of robust Padé approximants, Journal of Approxi-
mation Theory 190 (2015) 91-115.
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THE SPARSE GAUSS-NEWTON ALGORITHM FOR

UNDERDETERMINED SYSTEMS OF EQUATIONS

ANNA OLEYNIK AND MÅRTEN GULLIKSSON

We develop the algorithm to find sparse solutions to a nonlinear underdetermined
system of equations

f1(x1, . . . , xN ) = 0
...

fm(x1, . . . , xN ) = 0

or simply

(1) f(x) = 0.

Here x ∈ RN , f : D ⊂ RN → Rm,m < N, is twice continuously differentiable on the
open convex set D and 0 ∈ f(D).

Given
‖x‖0 = ] {i : xi 6= 0}

the problem of finding the most sparse solution to (1) reads

(2)
minx ‖x‖0
s.t. f(x) = 0.

Due to the combinatorial complexity the problem (2) is considered to be intractable
and the current algorithms do not guarantee that a sparse solution attained is a solution
to (2).

However, there is a numerical algorithm to find sparse (but not necessarily the most
sparse) solutions of (1) based on a convex relaxation of the problem, a so called `1 -
update method. We suggest an alternative approach that we refer to as the sparse Gauss-
Newton method. This is a line search method where we calculate xk+1 = xk + αkpk to
update the approximation xk, with pk being a search direction and αk the step length.
The search direction is chosen to provide a descent of the merit function and is based on
linear optimization greedy algorithms, and αk satisfies some standard criteria to ensure
global convergence.

We show that starting from some k ≥ K ∈ N the method is equivalent to the Gauss-
Newton method for underdetermined system of equations and converges globally with
a quadratic rate of local convergence.

We test the algorithm versus the `1 - update method to illustrate its advantages and
convergence properties.

A. Oleynik, Department of Mathematical Sciences and Technology, Norwegian Univer-
sity of Life Sciences, Ås, Norway

E-mail address: anna.oleynik@nmbu.no

M. Gulliksson, School of Science and Technology, Örebro University, Örebro, Sweden
E-mail address: marten.gulliksson@oru.se
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Approximate inversion of the Black-Scholes

formula using a parametric Barycentric

representation

Oliver Salazar Celis∗

Department of Mathematics and Computer Science, University of
Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium

Abstract

In this presentation, we tackle an important practical problem: the
real-time evaluation of implied volatility. It is well-known that the Black–
Scholes implied volatility (IV) is one of the most useful and important
concepts for options traders. Since a closed–form solution for the involved
inverse problem does not exist, numerical root–finding methods are typ-
ically employed. In practice, such numerical methods are the computa-
tional bottleneck when millions of options need to be inverted in real–time
situations. An attractive alternative are analytical approximations which
can deliver IVs instantaneously.

Based on S&P 500 index option data, we first illustrate that existing
bivariate approximations may not be sufficiently accurate. Then we intro-
duce our bivariate rational approximation to the IV. We give an overview
of its construction and highlight some of the important decisions taken to
reach the final result.

∗Ernst & Young Special Business Services, De Kleetlaan 2, 1831, Diegem, Belgium. (This mate-

rial has been prepared for general informational purposes only and is not intended to be relied upon

as accounting, tax, or other professional advice. Please refer to your advisors for specific advice.)
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Sparse high-dimensional FFT using rank-1 (Chebyshev) lattices

Toni Volkmer, TU Chemnitz

We consider the (approximate) reconstruction of a high-dimensional (e.g. d = 10) peri-
odic signal from samples using a trigonometric polynomial pI : Td ' [0, 1)d → C,

pI(x) :=
∑

k∈I
p̂k e2πik·x, p̂k ∈ C,

where I ⊂ Zd is a suitable and unknown frequency index set. For this setting, we
present a method which adaptively constructs the index set I of frequencies belonging
to the non-zero or (approximately) largest Fourier coefficients in a dimension incre-
mental way. This method computes projected Fourier coefficients from samples along
suitable rank-1 lattices Λ(z,M) := { jM z mod 1 : j = 0, . . . ,M − 1}, z ∈ Zd, and then
determines the frequency locations. For the computation, only one-dimensional fast
Fourier transforms (FFTs) and simple index transforms are used. When we assume
that the signal has sparsity s ∈ N in frequency domain and the frequencies k are con-
tained in the cube [−N,N ]d ∩ Zd, N ∈ N, our method requires O(d s2N) samples and
O(d s3 + d s2N log(sN)) arithmetic operations in the case

√
N . s . Nd.

This method can be transfered to the non-periodic case, where we consider the (ap-
proximate) reconstruction of a multi-dimensional signal restricted to the domain [−1, 1]d

using an algebraic polynomial aĨ : [−1, 1]d → R in Chebyshev basis,

aĨ(x) :=
∑

k∈Ĩ
âk Tk(x) =

∑

k∈Ĩ
âk

d∏

t=1

Tkt(xt), âk ∈ R,

where Ĩ ⊂ Nd0, x := (x1, . . . , xd)
> ∈ [−1, 1]d, k := (k1, . . . , kd)

> ∈ Nd0 and Tk(x) :=
cos(k arccosx) for k ∈ N0. Here, we sample along suitable rank-1 Chebyshev lattices
CL(z,M) := {cos( j

M πz) : j = 0, . . . ,M}, z ∈ Nd0, and again only use one-dimensional
FFTs / discrete cosine transforms as well as simple index transforms.

This is joint work with Daniel Potts.

References

[1] D. Potts and T. Volkmer. Fast and exact reconstruction of arbitrary multivariate
algebraic polynomials in Chebyshev form. In 11th International Conference on Sam-
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A multivariate generalization of

Prony’s method

Ulrich von der Ohe

Osnabrück University

Motivated by a problem from physics, in 1795 de Prony proposed a method to recon-
struct the parameters of an exponential sum, i. e. a linear combination of exponential
functions, given a finite set of samples of sufficient cardinality [2]. By his approach the
original interpolation problem is translated into the problem of solving a single univariate
polynomial equation. Several variants and generalizations of Prony’s method have been
studied recently, cf. Plonka-Tasche [4] for a survey. In particular the multivariate case
has been studied [1, 5, 3]. This talk is about a generalization of Prony’s method to the
case of multivariate exponential sums that is based on solving systems of multivariate
polynomial equations. In particular, we consider some of its algebraic properties.

This talk is based on joint work with Stefan Kunis, H. Michael Möller, Thomas Peter,
and Tim Römer. Support by DFG-GRK1916 is gratefully acknowledged.
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Determining system poles using rows of sequences of

orthogonal Hermite-Padé approximants

Nattapong Bosuwan and Guillermo López Lagomasino

Abstract

We introduce a new definition of orthogonal Hermite-Padé approximants.
We study a relation of the convergence of poles of row sequences of orthogonal
Hermite-Padé approximants and the system poles of the vector of approximated
functions. We give necessary and sufficient conditions for the convergence with
geometric rate of the common denominators of orthogonal Hermite-Padé approx-
imants. Thereby, we obtain analogues of the theorems of Montessus de Ballore
[3] and Gonchar [2] which extend results in [1].

Keywords: Padé approximants of orthogonal expansions, Padé-orthogonal ap-
proximation, Orthogonal polynomials, Fourier-Padé approximation, Inverse problems,
Montessus de Ballore’s theorem, Orthogonal Hermite-Padé approximants.
2010 Mathematics Subject Classification: Primary 30E10, 41A27; Secondary
41A21.
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Bivariate orthogonal polynomials, 2D Toda lattices

and Lax–type representation

Cleonice F. Bracciali Teresa E. Pérez
Departamento de Matemática Aplicada IEMath-UGR - Instituto de Matemáticas &

UNESP–Universidade Estadual Paulista Departamento de Matemática Aplicada

São José do Rio Preto, SP, Brazil Universidad de Granada, Spain

Abstract

We explore the connection between an infinite system of points in R2 described by a bi–dimensional
version of the Toda equations with the standard theory of orthogonal polynomials in two variables. We
consider a Toda lattice in one–time variable t and two dimensional space variables describing a mesh of
interacting points over the plain. We prove that this Toda lattice is related with the matrix coefficients of
the three term relations for bivariate orthogonal polynomials associated with an exponential modification
of the measure. Moreover, Lax–type pairs for block matrices is deduced.
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OpenCL based parallel algorithm for RBF-PUM

interpolation

Roberto Cavoretto1, Teseo Schneider2, Patrick Zulian2

roberto.cavoretto@unito.it, teseo.schneider@usi.ch,
patrick.zulian@usi.ch

We present a parallel algorithm for multivariate Radial Basis Function
Partition of Unity Method (RBF-PUM) interpolation [1]. The concurrent
nature of the PUM allows us to deal with a large number of scattered data-
points in high space dimensions. To efficiently exploit this concurrency,
our algorithm makes use of shared-memory parallel processors through the
OpenCL standard. This efficiency is achieved by a parallel space partition-
ing strategy with linear computational-time complexity with respect to the
input and evaluation points.

The speed of our algorithm allows for computationally more intensive
construction of the interpolant. In fact, the RBF-PUM can be coupled with
a cross validation technique that searches for optimal values of the shape
parameters associated with each local RBF interpolant [2], thus reducing the
global interpolation error. The numerical experiments support our claims by
illustrating the interpolation errors and the running times of our algorithm.

References
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Meshless methods for pulmonary image registration

R. Cavoretto, A. De Rossi, R. Freda, H. Qiao*, E. Venturino
Department of Mathematics “G. Peano”, University of Torino, Italy
roberto.cavoretto@unito.it, alessandra.derossi@unito.it

roberta.freda@edu.unito.it, hanli.qiao@unito.it
ezio.venturino@unito.it

Lung is one of the most important organs in the human respiratory
system but is also one of the most prone to be lesioned. Hence, analy-
sis of pulmonary images for the diagnosis and treatments of lung diseases
deserves to be considered. Moreover, during the implementation of image-
guided and computer-aided operations, compensating the deformation of
pulmonary images is crucial. Based on these reasons, image registration of
lungs has become a key technology. In this poster, meshless methods and
state of the art for non-rigid pulmonary image registration are reviewed. We
also discuss the research trend and the role of pulmonary image registration
in clinical implications.
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Spectral filtering for the resolution of the Gibbs

phenomenon in MPI applications

S. De Marchi1 W. Erb2, F. Marchetti3

1 Department of Mathematics, University of Padova
2 Institute of Mathematics, University of Lübeck

3 Department of Mathematics, University of Padova
1 E-mail: demarchi@math.unipd.it
2 E-mail: erb@math.uni-luebeck.de

3 E-mail: francesco.marchetti.1@studenti.unipd.it

Polynomial interpolation on the node points of Lissajous curves using Chebyshev series
is an effective way for a fast image reconstruction in Magnetic Particle Imaging. Due to
the nature of spectral methods, a Gibbs phenomenon occurs in the reconstructed image
if the underlying function has discontinuities. A possible solution for this problem are
spectral filtering methods acting on the coefficients of the interpolating polynomial.

In this work, after a description of the Gibbs phenomenon in two dimensions, we present
an adaptive spectral filtering process for the resolution of this phenomenon and for an
improved approximation of the underlying function or image. In this adaptive filtering
technique, the spectral filter depends on the distance of a spatial point to the nearest
discontinuity. We show the effectiveness of this filtering approach in theory, in numerical
simulations as well as in the application in Magnetic Particle Imaging.
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A rescaled method for RBF approximation

Stefano De Marchi∗1, Andrea Idda†2, and Gabriele Santin‡3

1Department of Mathematics - University of Padova (Italy)
2Banco di Lodi - Verona (Italy)

3IANS - University of Stuttgart (Germany)

In the recent paper [1], a new method to compute stable kernel-based inter-
polants has been presented. This rescaled interpolation method combines the
standard kernel interpolation with a properly defined rescaling operation, which
smooths the oscillations of the interpolant. Although promising, this procedure
lacks a systematic theoretical investigation.

Through our analysis, this novel method can be understood as standard
kernel interpolation by means of a properly rescaled kernel. This point of view
allow us to consider its error and stability properties.

First, we prove that the method is an instance of the Shepard’s method,
when certain weight functions are used. In particular, the method can reproduce
constant functions.

Second, it is possible to define a modified set of cardinal functions strictly
related to the ones of the not-rescaled kernel. Through these functions, we
define a Lebesgue function for the rescaled interpolation process, and study its
maximum - the Lebesgue constant - in different settings.

Also, a preliminary theoretical result on the estimation of the interpolation
error is presented.

As an application, we couple our method with a partition of unity algorithm.
This setting seems to be the most promising, and we illustrate its behavior with
some experiments.
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Integration on manifolds by mapped
low-discrepancy points and greedy

minimal ks-energy points
Stefano De Marchi1 and Giacomo Elefante2

Abstract

We know that low-discrepancy points are the best choice in order to
integrate function through quasi-Monte Carlo method (qMCM) in the unit
cube [0, 1]d. When we map them to a manifold, the map should preserve
their uniformity in the unit cube, with respect to the Lebesgue measure, so
that they will remain a set of good points for the qMCM on the manifold.

Thanks to the Poppy-seed Bagel Theorem (cf. [1]) we know that the
minimal Riesz s-energy are asymptotically uniformly distributed with respect
to the normalized Hausdorff measure, and so they are an appropiate choice
of points to integrate functions on manifolds via the qMCM.

A method for extracting minimal Riesz s-energy points from a discretiza-
tion of the manifold is the so-called greedy algorithm. In principle we do not
know if these extracted points remain a good choice to integrate functions
by using the qMC approach. Through numerical experiments we attempt to
answer to this question.
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The Dynamical Functional Particle Method

Let F be an operator and v = v(x), v : X → Rk, k ∈ N, where X is a Banach space that
will be defined by the actual problem setting. Consider the abstract equation

F(v) = 0 (1)

that could be, e.g., a system of linear equations or a differential equation. Our main idea
is to solve the differential equation

µutt + ηut = F(u). (2)

for u = u(x,t), u : X × T → Rk such that ut, utt → 0 when t → t1, t1 ≤ ∞, i.e.,
limt→t1 u(x,t) = v(x).

The parameters µ = µ(x,u(x,t),t), η = η(x,u(x,t),t) are the mass and damping param-
eters that can be used to improve the convergence. In addition, the two initial conditions
u(t0) and ut(t0) can be chosen for a good inital starting approximation.

For a differential equation (1) and (2) need to be discretized to attain a numerical
solution. For simplicity, we exemplify by applying finite differences but it is possible to
use, e.g., finite elements, basis sets or any other method of discretization. We define a
grid x1,x2, . . . and approximate v(xi) by vi and assume that the discretized version of (1)
can be written as

Fi(v1 . . . ,vn) = 0, i = 1, . . . ,n (3)

where Fi : Rn → R.
Turning to the dynamical system (2) it is discretized such that ui(t) approximates

u(xi,t) and µi(t) = µ(xi,ui(t),t), ηi(t) = η(xi,ui(t),t) for i = 1, . . . ,n. Further, F(u) is
discretized as F(v) in (3) and we approximate (2) with the system of ordinary differential
equations

µiüi + ηiu̇i = Fi(u1, . . . ,un), i = 1, . . . ,n (4)

with initial conditions ui(t0), u̇i(t0). Our idea in the discrete setting is to solve (3) by
solving (4) such that u̇i(t), üi(t) → 0 when t → t1, t1 ≤ ∞, i.e., limt→t1 ui(t) = vi. The
overall approach for solving (1) using (4) is named the Dynamical Functional Particle
Method, DFPM.

We will show how to apply DFPM to solve linear equations, linear eigenvalue problems,
nonlinear equations, optimization problems with nonlinear constraints, the stationary
nonlinear Schrödinger equation (NLSE), and (NLSE) with additional constraints (in the
setting of mean-field description of bosonic atoms).
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Approximation with Faber–Walsh polynomials on

disconnected compact sets in the complex plane

Jörg Liesen∗ Olivier Sète†

We present our recent results from [1] on Faber–Walsh polynomials,
which allow the series expansion of analytic functions on disconnected com-
pact sets.

More precisely, let E ⊆ C be a compact set with connected complement.
E itself may consists of several disjoint components. Then the Faber–Walsh
polynomials bk(z) for E have degree k. Any analytic function f on E has
an expansion in a Faber–Walsh series

f(z) =
∞∑

k=0

akbk(z), z ∈ E,

which is uniformly and maximally convergent on E. The Faber–Walsh series
generalizes several classical series expansions, in particular the Taylor series
on a disk, the Chebyshev series on [−1, 1] and the Faber series on a simply
connected compact set.

References
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Around operators not increasing the degree of polynomials

P. Maroni, T. A. Mesquita1

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France &
UPMC Univ Paris 06, UMR 7598, Lab. Jacques-Louis Lions, F-75005, Paris, France;
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Abstract

We present a generic operator J simply defined as a linear map not increasing
the degree from the vectorial space of polynomial functions into itself and we
address the problem of finding the polynomial sequences that coincide with the
(normalized) J-image of themselves. The technique developed assembles different
types of operators and initiates with a transposition of the problem to the dual
space.

1Corresponding author (teresam@portugalmail.pt)
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Quadrature of Quadratures:

Compressed Sampling

by Tchakaloff Points

F. Piazzon, A. Sommariva and M. Vianello∗

Dept. of Mathematics, University of Padova (Italy)

We show that a discrete version of Tchakaloff theorem on the existence
of positive algebraic cubature formulas, entails that the information required
for multivariate polynomial approximation can be suitably compressed; cf.
[4, 5, 6]. Extracting such “Tchakaloff points” from the support of discrete
measures by NonNegative Least Squares (NNLS) applied to the moment
system, we are able to compress algebraic quadrature, least square approxi-
mation and polynomial meshes on multivariate compact sets; cf. [1, 2, 3, 5].
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Variational Bézier or B-spline curves and surfaces

Christophe Rabut
Université Fédérale de Toulouse (INSA ; IMT, IREM, MAIAA)
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Abstract

Given a control polygon, we use some least-square criterion, to derive “B-curves” (i.e.
Bernstein, B-spline, hyperbolic or circular spline curves...) which are closer the control
polygon, still being in the same vectorial space as the original one. We usually loose the
convex hull property, and better preserve the general shape of the control polygon. The
idea is simple : we minimize some L2-distance between the curve and the control polygon.

Furthermore, by increasing (resp. decreasing) the degree of the parametric polynomial
curve, in the same way we derive a curve still closer (resp. further) the control polygon.
Similarly we obtain the same type of results by increasing (resp. decreasing) the number
of knots of the spline curve

Actually the so-obtained curves (or surfaces, or any multi-dimensional object) are in
the space generated by the original B-functions and some “new control points” which are
easily derived. The obtained curve (or surface) is the quasi-interpolation, by using the
original B-functions, of the so-obtained “new control polygon”. We so keep all the known
properties of the original quasi-interpolation (including convex hull property), express in
this “new control polygon”.

We give ways to derive new B-functions which are linear combinations of the original B-
functions (i.e. Bernstein polynomials, B-splines, hyperbolic or circular B-spline curves...),
such that the associated Bézier curve is closer the control polygon than the usual one
(still being in the same functional space, but possibly not in the convex hull of the control
polygon), and better preserving the general shape of the control polygon. We also give
ways to derive associated basis functions such that the so-obtained curve is further form
the control polygon (more cutting the angles), while being in the same functional space.

Finally we propose to mix this least-square criterion together with a least-square dis-
tance between some points of the curve and the control points, and with a variational
criterion aiming to cut down the oscillations of the curve. Various curves are presented to
show the interest of these new curves.

The same strategy is possible for surfaces by using corresponding B-surfaces, such
as tensorial product of Bernstein polynomials, of B-splines, or by using polyharmonic
B-splines.
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