2 Estremanti

Nei seguenti esercizi, gli estremi superiori ed inferiori si intendono in $\mathbb{R} = \mathbb{R} \cup \{+\infty, -\infty\}$, se non specificato diversamente.

2.1 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme $\{1/n, n \in \mathbb{N}, n \neq 0\}$.

2.1.1 Risoluzione

Poiché 1/(n+1) < 1/n, il massimo (e quindi l'estremo superiore) è 1/1 = 1. Poiché l'estremo inferiore non è negativo (perché?), supponiamo, per assurdo, che sia $\varepsilon > 0$. Allora, basta prendere $n > 1/\varepsilon$ e si ha $1/n < \varepsilon$: assurdo. Dunque l'estremo inferiore è 0. Poiché non esiste n tale che 1/n = 0, l'insieme non ha minimo.

2.2 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme $\{1/n - 1/(n+1), n \in \mathbb{N}, n \neq 0\}$.

2.2.1 Risoluzione

$$1/n - 1/(n+1) > 1/(n+1) - 1/(n+2)$$

e dunque il massimo è 1/2 (n=1) e l'estremo inferiore 0. Se, per assurdo, fosse $\varepsilon > 0$, basta prendere $n > 1/\sqrt{\varepsilon}$: allora $1/n < \sqrt{\varepsilon}$ e $1/(n+1) < 1/n < \sqrt{\varepsilon}$ e dunque

$$\frac{1}{n} - \frac{1}{n+1} < \varepsilon$$

Alternativamente, basta prendere $n > 1/\varepsilon$, da cui

$$\frac{1}{n(n+1)} < \frac{1}{n} < \varepsilon.$$

2.3 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme $\{1/(n+1)-1/n, n \in \mathbb{N}, n \neq 0\}$.

2.3.1 Risoluzione

È l'insieme opposto a quello precedente.

2.4 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme delle soluzioni $x \in \mathbb{Q}$ di

$$\frac{x^2 - 5}{1 - x^4} \ge 0$$

2.4.1 Risoluzione

Il segno del numeratore è $x^2-5\geq 0$ per $x\leq -\sqrt{5}$ o $x\geq \sqrt{5}$, mentre il segno del denominatore è $1-x^4=(1-x^2)(1+x^2)>0$ per -1< x<1

		$-\sqrt{5}$		-1		1		$\sqrt{5}$	
$x^2 - 5$	+	•	_		_		_	•	+
$1 - x^4$	_		_	0	+	0	_		_
	_	•	+	0	_	0	+	•	

Dunque l'insieme delle soluzioni è $\{x,\ x\in\mathbb{Q},\ -\sqrt{5}\le x<-1,\ \text{oppure }1< x\le\sqrt{5}\}$. Gli estremi inferiore e superiore sono $-\sqrt{5}$ e $\sqrt{5}$. Mostriamo che l'estremo superiore non può essere $\eta=\eta_1.\eta_2\eta_3\ldots<\sqrt{5}$: se così fosse, per assurdo, considero $\xi=(\eta+\sqrt{5})/2=\xi_1.\xi_2\xi_3\ldots$ Questo è un numero reale maggiore di η e quindi avrà una cifra (diciamo ξ_i) maggiore della cifra η_i . Allora il numero $\xi_1.\xi_2\ldots\xi_i$ è un numero razionale maggiore di η e minore di $\xi<\sqrt{5}$.

2.5 Esercizio

Trovare, se esistono, i massimi, i minimi, gli estremi superiori e gli estremi inferiori in \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} dell'insieme delle soluzioni x appartenenti rispettivamente a \mathbb{N} , \mathbb{Z} , \mathbb{Q} e \mathbb{R} di

$$x^2 < 2$$

2.5.1 Risoluzione

In \mathbb{N} : 1,0,1,0. In \mathbb{Z} : 1,-1,1,-1. In \mathbb{Q} : non esiste, non esiste, non esiste, non esiste, non esiste, $\sqrt{2}$, $-\sqrt{2}$.

2.6 Esercizio

Qual è il più grande numero che dista da 3 meno che da 7?

2.6.1 Risoluzione

5 è l'estremo superiore dei numeri che hanno tale caratteristica.

2.7 Esercizio

Risolvere, il più velocemente possibile, la seguente disequazione:

$$|x-1| > |x-3|$$

2.7.1 Risoluzione

Si tratta di trovare i numeri che distano da 1 più che da 3: sono i numeri maggiori di 2. Si può risolvere elevando entrambi i membri al quadrato (sono positivi) o separando i vari casi.

2.8 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme $[0,1) \cap \mathbb{Q}$.

2.8.1 Risoluzione

non esiste, 1, 0, 0. $\eta < 1$ non può essere estremo superiore: sia $\eta = 0.\eta_1\eta_2...<1$, e sia η_i la prima cifra minore di 9 (se $\eta_i=9$ per ogni i, allora $\eta=1$). Allora $\eta<0.\eta_1\eta_2...\eta_{i-1}(\eta_i+1)<1$ e appartiene a $[0,1)\cap\mathbb{Q}$. Il fatto che $x=0.\overline{9}=0.99...=1$ si vede così: 10x=9.99...=10 da cui x=1.

2.9 Esercizio

Trovare, se esistono, massimo, estremo superiore, minimo ed estremo inferiore dell'insieme $\{n/\sqrt{n^2+1}, n \in \mathbb{Z}\}.$

2.9.1 Risoluzione

È facile dimostrare che

$$\frac{x_1}{\sqrt{x_1^2 + 1}} < \frac{x_2}{\sqrt{x_2^2 + 1}}$$

se $x_1, x_2 \in \mathbb{R}$, $x_1 < x_2$ (vale la disuguaglianza inversa per il quadrato degli inversi). Poi chiaramente

$$\left| \frac{n}{\sqrt{n^2 + 1}} \right| < 1$$

Supponiamo, per assurdo, che l'estremo superiore sia minore di 1, cioè $1/\sqrt{1+\varepsilon}$, $\varepsilon > 0$. Allora basta prendere $n > 1/\sqrt{\varepsilon}$ e si ha $n/\sqrt{n^2+1} > 1/\sqrt{1+\varepsilon}$: assurdo. Dunque l'estremo superiore è 1 e l'estremo inferiore, con un ragionamento analogo, è -1.

2.10 Esercizio

Dimostrare che gli insiemi $\{n/\sqrt{n^2+1}, n=2m, m\in\mathbb{Z}\}$ e $\{n/\sqrt{n^2+1}, n=2m+1, m\in\mathbb{Z}\}$ sono disgiunti ed hanno gli stessi estremi superiori ed inferiori.

2.10.1 Risoluzione

Basta osservare che

$$\frac{n}{\sqrt{n^2+1}} < \frac{n+1}{\sqrt{(n+1)^2+1}} < \frac{n+2}{\sqrt{(n+2)^2+1}}$$

Gli estremi superiori ed inferiori sono rispettivamente 1 e -1.

2.11 Esercizio

Trovare, tra tutti i rettangoli di ugual area k^2 , quello di perimetro minimo.

2.11.1 Risoluzione

La soluzione si basa sulla seguente disuguaglianza:

$$\frac{x+y}{2} \ge \sqrt{xy}, \quad x, y > 0$$

(la media aritmetica non è inferiore alla media geometrica), ove il segno di uguaglianza vale se e solo se x=y. Tale disuguaglianza si dimostra facilmente (esercizio) a partire da

$$(x-y)^2 \ge 0$$

Dunque, chiamando x e y i lati di un rettangolo si ha che il perimetro 2p è uguale a 2(x+y). Ma $2(x+y) \ge 4\sqrt{xy} = 4k$ e vale il segno di uguaglianza se e solo se x = y = k. Dunque il rettangolo richiesto è il quadrato di lato k.

2.12 Esercizio

Trovare, tra tutti i triangoli rettangoli con somma dei cateti costante e uguale a 2k, quello di area massima e quello di area minima.

2.12.1 Risoluzione

Analogamente al precedente, l'area è massima quando \sqrt{xy} è massimo, cioè quando è uguale a (x+y)/2 = k, cioè per x = y = k. Il triangolo di area minima è quello degenere con x = 2k e y = 0.

2.13 Esercizio

Trovare i punti appartenenti alla circonferenza $x^2 + y^2 = 1$ con prodotto delle coordinate massimo.

2.13.1 Risoluzione

Basta osservare che $(x-y)^2 \ge 0$ e vale l'uguaglianza se e solo se x=y. Dunque $x^2+y^2 \ge 2xy$. Quindi il prodotto delle coordinate non supera 1/2 ed è massimo per x=y. Dunque $x=y=\sqrt{2}/2$ oppure $x=y=-\sqrt{2}/2$.

2.14 Esercizio

Per quale valore di $m \in \mathbb{R}$ il prodotto delle soluzioni $x_1, x_2 \in \mathbb{R}$ di

$$(m-1)x^2 + 2(1-m)x + (2-m) = 0, \quad m \neq 1$$

è massimo?

2.14.1 Risoluzione

Dato un polinomio $ax^2 + bx + c$, $a \neq 0$, che ammette due radici reali x_1 e x_2 , si ha

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

Dunque il prodotto delle radici è c/a mentre la somma è -b/a. Nell'equazione di partenza, la somma delle radici vale 2 e quindi il prodotto è massimo quando le radici sono uguali, cioè $x_1 = x_2 = 1$. Poiché il prodotto vale 1 = (2 - m)/(m - 1), si ha m = 3/2.

2.15 Esercizio

Per quali valori di $m \in \mathbb{R}$ l'equazione

$$x^2 - (m^3 + m + 2)x + 1 = 0$$

non ammette due soluzioni entrambe positive?

2.15.1 Risoluzione

Chiaramente non ci sono soluzioni nulle. Se le soluzioni x_1, x_2 fossero entrambe positive, soddisferebbero $(x_1+x_2) \geq 2\sqrt{x_1x_2}$, cioè $m^3+m+2 \geq 2$. Quindi per $m^3+m+2 < 2$ le soluzioni non possono essere entrambe positive. Quindi, per m < 0 non ci sono due soluzioni entrambe positive.