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Chapter 1

Numerical linear algebra

1.1 BLAS

The BLAS1 (Basic Linear Algebra Subprograms) are routines that provide
standard building blocks for performing basic vector and matrix operations.
The Level 1 BLAS perform scalar, vector and vector-vector operations, the
Level 2 BLAS perform matrix-vector operations, and the Level 3 BLAS per-
form matrix-matrix operations. Because the BLAS are efficient, portable,
and widely available, they are commonly used in the development of high
quality linear algebra software, LAPACK for example. They are written in
Fortran77. Fortran77 does not allow dynamic allocation of the memory and
arguments are passed by reference. Therefore

PROGRAM main

c compile with

c gfortran demo.f -o demo

c run with

c ./demo

integer maxn

parameter (maxn=100)

double precision a(maxn,maxn)

integer i,j,n

n = 10

do 10 i = 1,n

do 20 j = 1,n

a(i,j) = 1.0d0*i-j

20 continue

10 continue

1http://www.netlib.org/blas
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call disp(a,maxn,n)

stop

end

SUBROUTINE disp(a,lda,n)

integer lda,n

double precision a(lda,n)

integer i,j

do 10 i = 1,n

write(6,’(10(1x,e8.2))’) (a(i,j),j=1,n)

10 continue

return

end

The subroutine for general gmatrix-matrix multiplication in double precision
d is dgemm:

* =========== DOCUMENTATION ===========

*

* Online html documentation available at

* http://www.netlib.org/lapack/explore-html/

*

* Definition:

* ===========

*

* SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

*> \par Purpose:

* =============

*>

*> \verbatim

*>

*> DGEMM performs one of the matrix-matrix operations

*>

*> C := alpha*op( A )*op( B ) + beta*C,

*>

*> where op( X ) is one of

*>

*> op( X ) = X or op( X ) = X**T,

*>

*> alpha and beta are scalars, and A, B and C are matrices, with op( A )

*> an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.

*> \endverbatim
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*

* Arguments:

* ==========

*

*> \param[in] TRANSA

*> \verbatim

*> TRANSA is CHARACTER*1

*> On entry, TRANSA specifies the form of op( A ) to be used in

*> the matrix multiplication as follows:

*>

*> TRANSA = ’N’ or ’n’, op( A ) = A.

*>

*> TRANSA = ’T’ or ’t’, op( A ) = A**T.

*>

*> TRANSA = ’C’ or ’c’, op( A ) = A**T.

*> \endverbatim

*>

*> \param[in] TRANSB

*> \verbatim

*> TRANSB is CHARACTER*1

*> On entry, TRANSB specifies the form of op( B ) to be used in

*> the matrix multiplication as follows:

*>

*> TRANSB = ’N’ or ’n’, op( B ) = B.

*>

*> TRANSB = ’T’ or ’t’, op( B ) = B**T.

*>

*> TRANSB = ’C’ or ’c’, op( B ) = B**T.

*> \endverbatim

*>

*> \param[in] M

*> \verbatim

*> M is INTEGER

*> On entry, M specifies the number of rows of the matrix

*> op( A ) and of the matrix C. M must be at least zero.

*> \endverbatim

*>

*> \param[in] N

*> \verbatim

*> N is INTEGER

*> On entry, N specifies the number of columns of the matrix
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*> op( B ) and the number of columns of the matrix C. N must be

*> at least zero.

*> \endverbatim

*>

*> \param[in] K

*> \verbatim

*> K is INTEGER

*> On entry, K specifies the number of columns of the matrix

*> op( A ) and the number of rows of the matrix op( B ). K must

*> be at least zero.

*> \endverbatim

*>

*> \param[in] ALPHA

*> \verbatim

*> ALPHA is DOUBLE PRECISION.

*> On entry, ALPHA specifies the scalar alpha.

*> \endverbatim

*>

*> \param[in] A

*> \verbatim

*> A is DOUBLE PRECISION array, dimension ( LDA, ka ), where ka is

*> k when TRANSA = ’N’ or ’n’, and is m otherwise.

*> Before entry with TRANSA = ’N’ or ’n’, the leading m by k

*> part of the array A must contain the matrix A, otherwise

*> the leading k by m part of the array A must contain the

*> matrix A.

*> \endverbatim

*>

*> \param[in] LDA

*> \verbatim

*> LDA is INTEGER

*> On entry, LDA specifies the first dimension of A as declared

*> in the calling (sub) program. When TRANSA = ’N’ or ’n’ then

*> LDA must be at least max( 1, m ), otherwise LDA must be at

*> least max( 1, k ).

*> \endverbatim

*>

*> \param[in] B

*> \verbatim

*> B is DOUBLE PRECISION array, dimension ( LDB, kb ), where kb is

*> n when TRANSB = ’N’ or ’n’, and is k otherwise.
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*> Before entry with TRANSB = ’N’ or ’n’, the leading k by n

*> part of the array B must contain the matrix B, otherwise

*> the leading n by k part of the array B must contain the

*> matrix B.

*> \endverbatim

*>

*> \param[in] LDB

*> \verbatim

*> LDB is INTEGER

*> On entry, LDB specifies the first dimension of B as declared

*> in the calling (sub) program. When TRANSB = ’N’ or ’n’ then

*> LDB must be at least max( 1, k ), otherwise LDB must be at

*> least max( 1, n ).

*> \endverbatim

*>

*> \param[in] BETA

*> \verbatim

*> BETA is DOUBLE PRECISION.

*> On entry, BETA specifies the scalar beta. When BETA is

*> supplied as zero then C need not be set on input.

*> \endverbatim

*>

*> \param[in,out] C

*> \verbatim

*> C is DOUBLE PRECISION array, dimension ( LDC, N )

*> Before entry, the leading m by n part of the array C must

*> contain the matrix C, except when beta is zero, in which

*> case C need not be set on entry.

*> On exit, the array C is overwritten by the m by n matrix

*> ( alpha*op( A )*op( B ) + beta*C ).

*> \endverbatim

*>

*> \param[in] LDC

*> \verbatim

*> LDC is INTEGER

*> On entry, LDC specifies the first dimension of C as declared

*> in the calling (sub) program. LDC must be at least

*> max( 1, m ).

*> \endverbatim

*

* Authors:
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* ========

*

*> \author Univ. of Tennessee

*> \author Univ. of California Berkeley

*> \author Univ. of Colorado Denver

*> \author NAG Ltd.

*

*> \date December 2016

*

*> \ingroup double_blas_level3

*

*> \par Further Details:

* =====================

*>

*> \verbatim

*>

*> Level 3 Blas routine.

*>

*> -- Written on 8-February-1989.

*> Jack Dongarra, Argonne National Laboratory.

*> Iain Duff, AERE Harwell.

*> Jeremy Du Croz, Numerical Algorithms Group Ltd.

*> Sven Hammarling, Numerical Algorithms Group Ltd.

*> \endverbatim

*>

* =====================================================================

SUBROUTINE dgemm(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

The BLAS collection is also known as Reference BLAS. Optimized versions
are available: AMD Core Math Library (ACML, dismissed), Intel Math Ker-
nel Library (Intel MKL), Automatically Tuned Linear Algebra Software (AT-
LAS, free), OpenBLAS (free). They are multithreaded. All high level lan-
guages (MATLAB, GNU Octave, Scilab, FreeFem++, . . . ) use optimized
BLAS.

1.2 LAPACK

LAPACK2 is written in Fortran 90 and provides routines for solving systems
of simultaneous linear equations, least-squares solutions of linear systems of

2http://www.netlib.org/lapack
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equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are
also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices
are handled, but not general sparse matrices.

* =========== DOCUMENTATION ===========

*

* Online html documentation available at

* http://www.netlib.org/lapack/explore-html/

*

* Definition:

* ===========

*

* SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )

*

* .. Scalar Arguments ..

* INTEGER INFO, LDA, M, N

* ..

* .. Array Arguments ..

* INTEGER IPIV( * )

* DOUBLE PRECISION A( LDA, * )

* ..

*

*

*> \par Purpose:

* =============

*>

*> \verbatim

*>

*> DGETRF computes an LU factorization of a general M-by-N matrix A

*> using partial pivoting with row interchanges.

*>

*> The factorization has the form

*> A = P * L * U

*> where P is a permutation matrix, L is lower triangular with unit

*> diagonal elements (lower trapezoidal if m > n), and U is upper

*> triangular (upper trapezoidal if m < n).

*>

*> This is the right-looking Level 3 BLAS version of the algorithm.

*> \endverbatim
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*

* Arguments:

* ==========

*

*> \param[in] M

*> \verbatim

*> M is INTEGER

*> The number of rows of the matrix A. M >= 0.

*> \endverbatim

*>

*> \param[in] N

*> \verbatim

*> N is INTEGER

*> The number of columns of the matrix A. N >= 0.

*> \endverbatim

*>

*> \param[in,out] A

*> \verbatim

*> A is DOUBLE PRECISION array, dimension (LDA,N)

*> On entry, the M-by-N matrix to be factored.

*> On exit, the factors L and U from the factorization

*> A = P*L*U; the unit diagonal elements of L are not stored.

*> \endverbatim

*>

*> \param[in] LDA

*> \verbatim

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,M).

*> \endverbatim

*>

*> \param[out] IPIV

*> \verbatim

*> IPIV is INTEGER array, dimension (min(M,N))

*> The pivot indices; for 1 <= i <= min(M,N), row i of the

*> matrix was interchanged with row IPIV(i).

*> \endverbatim

*>

*> \param[out] INFO

*> \verbatim

*> INFO is INTEGER

*> = 0: successful exit
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*> < 0: if INFO = -i, the i-th argument had an illegal value

*> > 0: if INFO = i, U(i,i) is exactly zero. The factorization

*> has been completed, but the factor U is exactly

*> singular, and division by zero will occur if it is used

*> to solve a system of equations.

*> \endverbatim

*

* Authors:

* ========

*

*> \author Univ. of Tennessee

*> \author Univ. of California Berkeley

*> \author Univ. of Colorado Denver

*> \author NAG Ltd.

*

*> \date December 2016

*

*> \ingroup doubleGEcomputational

*

* =====================================================================

SUBROUTINE dgetrf( M, N, A, LDA, IPIV, INFO )

All high level languages use LAPACK.

*> \brief \b DPOTRF

*

* =========== DOCUMENTATION ===========

*

* Online html documentation available at

* http://www.netlib.org/lapack/explore-html/

*

* Definition:

* ===========

*

* SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )

*

* .. Scalar Arguments ..

* CHARACTER UPLO

* INTEGER INFO, LDA, N

* ..

* .. Array Arguments ..

* DOUBLE PRECISION A( LDA, * )
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* ..

*

*

*> \par Purpose:

* =============

*>

*> \verbatim

*>

*> DPOTRF computes the Cholesky factorization of a real symmetric

*> positive definite matrix A.

*>

*> The factorization has the form

*> A = U**T * U, if UPLO = ’U’, or

*> A = L * L**T, if UPLO = ’L’,

*> where U is an upper triangular matrix and L is lower triangular.

*>

*> This is the block version of the algorithm, calling Level 3 BLAS.

*> \endverbatim

*

* Arguments:

* ==========

*

*> \param[in] UPLO

*> \verbatim

*> UPLO is CHARACTER*1

*> = ’U’: Upper triangle of A is stored;

*> = ’L’: Lower triangle of A is stored.

*> \endverbatim

*>

*> \param[in] N

*> \verbatim

*> N is INTEGER

*> The order of the matrix A. N >= 0.

*> \endverbatim

*>

*> \param[in,out] A

*> \verbatim

*> A is DOUBLE PRECISION array, dimension (LDA,N)

*> On entry, the symmetric matrix A. If UPLO = ’U’, the leading

*> N-by-N upper triangular part of A contains the upper

*> triangular part of the matrix A, and the strictly lower
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*> triangular part of A is not referenced. If UPLO = ’L’, the

*> leading N-by-N lower triangular part of A contains the lower

*> triangular part of the matrix A, and the strictly upper

*> triangular part of A is not referenced.

*>

*> On exit, if INFO = 0, the factor U or L from the Cholesky

*> factorization A = U**T*U or A = L*L**T.

*> \endverbatim

*>

*> \param[in] LDA

*> \verbatim

*> LDA is INTEGER

*> The leading dimension of the array A. LDA >= max(1,N).

*> \endverbatim

*>

*> \param[out] INFO

*> \verbatim

*> INFO is INTEGER

*> = 0: successful exit

*> < 0: if INFO = -i, the i-th argument had an illegal value

*> > 0: if INFO = i, the leading minor of order i is not

*> positive definite, and the factorization could not be

*> completed.

*> \endverbatim

*

* Authors:

* ========

*

*> \author Univ. of Tennessee

*> \author Univ. of California Berkeley

*> \author Univ. of Colorado Denver

*> \author NAG Ltd.

*

*> \date December 2016

*

*> \ingroup doublePOcomputational

*

* =====================================================================

SUBROUTINE dpotrf( UPLO, N, A, LDA, INFO )
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1.3 SuiteSparse

SuiteSparse3 is a suite of sparse matrix algorithms, including:

• UMFPACK: multifrontal LU factorization. Appears as LU and x=A\b

in MATLAB.

• CHOLMOD: supernodal Cholesky. Appears as CHOL and x=A\b in
MATLAB.

• SPQR: multifrontal QR. Appears as QR and x=A\b in MATLAB.

• and many other packages.

[L,U,P,Q,R] = lu (S)

1.3.1 Sparse matrices

Let A be a square matrix of dimension n with m elements different from zero.
We say it is sparse if m = O(n), instead of m = O(n2). The Compressed
Column Storage (CCS) works in the following way. There are three arrays.
The first, data, of length m contains all elements different from zero, sorted
first by column and then by row. The second, ridx, of length m contains
the row indexes of the elements of data. The third, cidx, is such that
cidx(i+1)-cidx(i) is the number of elements in column i. For instance, to
the matrix

A =









1 0 0 0
0 2 3 0
4 0 5 6
0 0 0 7









it corresponds the three vectors

data = [1, 4, 2, 3, 5, 6, 7]

ridx = [1, 3, 2, 2, 3, 3, 4]

cidx = [1, 3, 4, 6, 8]

Sometimes, the arrays ridx and cidx have elements shifted by −1. The
number of rows and columns of the matrix has to be given. The number of
elements different from zero is given by the last element in cidx (minus one).
High level languages use this format.

3http://faculty.cse.tamu.edu/davis/suitesparse.html
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1.4 Errors in solving linear systems

Suppose that a numerical method finds x̃ such that r = b−Ax̃, the residual,
is small. Then, we have

‖e‖
‖x‖ =

‖x̃− x‖
‖x‖ =

‖A−1((b− r)− b)‖
‖x‖ =

‖A−1r‖
‖x‖ ≤ ‖A−1‖‖r‖

‖x‖ ≤

≤ ‖A−1‖‖A‖‖r‖
‖b‖ ≤ cond(A)

‖r‖
‖b‖

1.5 Exercises and projects

1. Implement the function function w = matvec (data, ridx, cidx, v)

and w = matvect (data, ridx, cidx, v) which implement the sparse
(transposed) matrix-vector products for square matrices.

2. Project: implement the function [L, U, P] = lu (data, ridx, cidx)

for LU factorization of a sparse matrix.
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Chapter 2

Large sparse linear systems

Besides methods base on the SuiteSparse library (which are direct methods),
it is possible to use iterative methods [7]. By iterative methods I mean Krylov
methods and not Jacobi, Gauss–Sidel, or SOR methods. It is difficult to say
which class is better. The main advantage of iterative methods is that it is
possible to specify a tolerance for the error. Moreover, usually the entries of
the matrix A are not required, but only the action of A (and possibly of AT )
to a vector.

2.1 SPD systems

The most used method for symmetric (Hermitian) positive definite systems
is the Conjugate Gradient method. The idea is that, instead of solving the
linear system Ax = b, one tries to minimize the quadratic functional

J(x) =
1

2
xTAx− xT b

Starting from an initial guess x0, iterates are given by

xm = xm−1 + αm−1pm−1

where pm−1 is a “descent” direction. Given it, it is easy to determine αm−1:
in fact

J(xm−1+αpm−1) =
1

2
xTm−1Axm−1−xTm−1b+α(p

T
m−1Axm−1−pTm−1b)+

1

2
α2pTm−1Apm−1

and the minimum, in α, is taken by

αm−1 =
pTm−1rm−1

pTm−1Apm−1
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In the conjugate gradient method such a formula can be replaced by

αm−1 =
rTm−1rm−1

pTm−1Apm−1

. (2.1)

It is clear that such a quantity has to be positive. If not, the method can fail
to converge and, in any case, should issue a warning about the non-positive
definitness of the system. Matlab R© fails with this example

N = 10;

A = diag (1:N) + 1i * 1e-04; % clearly not SPD

b = ones (N, 1);

[x,flag] = pcg (A, b, []);

The problem seems to be the comparison operator among complex numbers.
We have therefore the following implementation of the method, known as

Hestenes–Stiefel

• x0 given, p0 = r0 = b− Ax0

• for m = 1, 2, . . . until ‖rm−1‖2 ≤ tol · ‖b‖2
wm−1 = Apm−1

αm−1 =
rTm−1rm−1

pTm−1wm−1

xm = xm−1 + αm−1pm−1

rm = rm−1 − αm−1wm−1

βm =
rTmrm

rTm−1rm−1

pm = rm + βmpm−1

end

2.1.1 NLCG

For more general functionals J(x) we can consider the following nonlinear

conjugate gradient method.

• x0 given, d0 = g0 = −∇J(x0)

• for m = 1, 2, . . . until ‖dm−1‖2 ≤ tol · ‖d0‖2
αm−1 = argmin

α
J(xm−1 + αdm−1)
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xm = xm−1 + αm−1dm−1

gm = −∇J(xm)

βm =
gTm∇J(xm)

gTm−1∇J(xm−1)

dm = gm + βmdm−1

end

It is in general not necessary to compute exactly αm−1. In this case we speak
about inexact linesearch. It can be performed, for instance, by few steps of
golden search of g(α) = J(xm−1 + αdm−1). Or it is possible to look for the
zero of the univariate function dTm−1∇J(xm−1 + αdm−1). The choice of βm
corresponds to Fletcher–Reeves. NLCG is available in FreeFem++.

2.1.2 Preconditioners

The idea is to change
Ax = b

into
P−1Ax = P−1b

in such a way that P−1A is better conditioned than A and the conjugate
gradient method faster (left preconditioning). The main problem for the
CG algorithm is that even if P is SPD, P−1A is not SPD. We can therefore
factorize P into P = RTR and consider the linear system

P−1AR−1y = P−1b⇔ R−TAR−1y = R−T b, R−1ȳ = x

Now, Ã = R−TAR−1 is SPD and we can solve the system Ãy = b̃, b̃ = R−T b,
with the CG method. Setting x̃m = Rxm, we have r̃m = b̃− Ãx̃m = R−T b−
R−TAxm = R−T rm. This is called split preconditioning. It is possible then
to arrange the CG algorithm for Ã, x̃0 and b̃ as

• x0 given, r0 = b− Ax0, Pz0 = r0, p0 = z0

• for m = 1, 2, . . . until ‖rm‖2 ≤ tol · ‖b‖2

wm−1 = Apm−1

αm−1 =
zTm−1rm−1

pTm−1wm−1

xm = xm−1 + αm−1pm−1
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rm = rm−1 − αm−1wm−1

Pzm = rm

βm =
zTmrm

zTm−1rm−1

pm = zm + βmpm−1

end

The directions pm are still A conjugate directions (with Pp0 = r0). This
algorithm requires the solution of the linear system Pzm = rm at each itera-
tion. From one side P should be as close as possibile to A, from the other it
should be easy to “invert”. The simplest choice is P = diag(A). It is called
Jacobi preconditioner. This preconditioner is the default in FreeFem++. If
P is not diagonal, usually it is factorized once and for all into P = RTR, R
the triangular Cholesky factor, in such a way that zm can be recovered by
two simple triangular linear systems. A possibile choice is the incomplete
Cholesky factorization of A. That is, P = R̃T R̃ ≈ A where

{

(A− R̃T R̃)ij = 0 if aij 6= 0

r̃ij = 0 if aij = 0

The preconditioned Conjugate Gradient method does not explicitely require
the entries of P , but only the action of P−1 (which can be R−1R−T ) to
a vector zm (that is the solution of a linear system with matrix P ). The
definition of αm−1

αm−1 =
rTm−1Prm−1

pTm−1Apm−1

(2.2)

now requires that both the numerator and the denomination be positive. The
usual way to call this method in matlab is

pcg (A, x, tol, maxit, M) % a preconditioner M easy to invert

pcg (A, x, tol, maxit, M1, M2) % a preconditioner M in the form M1 * M2

From Matlab R© documentation, it seems that a left preconditioner is used,
but it is not true.

It is possible to apply a preconditioner to the nonlinear conjugate gradient
method, too. In fact, suppose that −∇J(xm) is of type b− A(xm) for some
function A : Rn → R

n. It is then possible to approximate A(x) with Amx
and use the matrix Am (which is ∇(Amx)) as preconditioner and compute
gm as −A−1

m ∇J(xm). Instead of the matrix Am, in order to reduce the cost
of inverting it, can be replaced by Ap⌊m/p⌋, for p > 1 integer.
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2.2 Unsymmetric systems

2.2.1 Arnoldi factorization

It is possibile to factorize (by Grahm-Schmidt orthogonalization, e.g.) a
matrix A ∈ R

n×n into

AVm = VmHm + hm+1,mvm+1e
T
m =

= Vm+1H̄m

(2.3)

where the first column of Vm is v1 given, Vm ∈ R
n×m is such that V T

mVm = Im,

+=

=

=

Hm is superior Hessenberg, and H̄m is a (m+1)×m matrix. (see [7, § 6.3]).
The cost is O(m2). From the relation

V T
mAVm = Hm

we get that if A is symmetric, so is Hm and since it is Hessenberg, it is in
fact trigiadonal. Therefore, the Gram–Schmidt procedure is short and the
cost is O(m).

2.2.2 GMRES and BiCGStab

When we want to solve a lienar system, we start with an initial guess x0 and
set v1 = r0/β, β = ‖r0‖2. Then, we compute the Arnoldi factorization and
we can look for an approximate solution of type

x = x0 + Vmy.

We define
J(y) = ‖b− Ax‖2 = ‖b− A(x0 + Vmy)‖2.
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Moreover, we have

b− Ax = b− A(x0 + Vmy) =

= r0 − AVmy =

βv1 − Vm+1H̄my =

= Vm+1(βe1 − H̄my).

Therefore,
J(y) = ‖βe1 − H̄my‖2

The GMRES methods attempts to minimize J and compute

ym = arg min
y∈Rm

‖βe1 − H̄my‖2, xm = x0 + Vmym.

The linear system H̄my = βe1 is rectangular (over-determined) and it is
possible to find the least squares solution using the SVD decomposition.
GMRES is available in FreeFem++.

Another popular method for general systems is BiCGStab. The main
differences are:

• given the number of iterations m, the cost of GMRES is one matrix-
vector product per iteration and m2 vector operations, while the cost of
BiCGStab is two matrix vector products per iteration (one with A and
the other with AT , even if AT is not required) and m vector operations

• GMRES uses a left preconditioner, while BiCGStab a right precondi-
tioner (Ax = b ⇔ Ay = b, Px = y, Matlab documentation is con-
fused).

2.2.3 Preconditioners

The basic code for the incomplete LU factorization is a very simple modifi-
cation of the standard LU factorization.

n = length (A);

for k = 1:n - 1

for i = k + 1:n

if (A(i, k) ~= 0)

A(i, k) = A(i, k) / A(k, k);

for j = k + 1:n

if (A(i, j) ~= 0)

A(i, j) = A(i, j) - A(i, k) * A(k, j);
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end

end

end

end

end

U = triu (A);

L = tril (A, -1) + speye (n);

It is possibile to check the behavior on the matrix









2 0 0 0
1 1 1 0
0 0 1 1
0 1 0 1









2.3 Exercises and projects

1. Understand LSQR http://web.stanford.edu/group/SOL/software/lsqr/
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Chapter 3

Eigenvalues for large sparse
matrices

The computation of eigenvalues and eigenvectors for “small” full matrices in
done in LAPACK with optimized implmentations of the QR algorithm. The
QR algorithm is based on the QR factorization of a matrix. Any matrix can
be split according to

A = QR

withQ orthogonal and R upper triangular. The QR algorithm for eigenvalues
produces a sequence

A0 = A = Q0R0, A1 = R0Q0 = Q1R1, A2 = R1Q1 = . . .

Clearly
Ak+1 = RkQk = QT

kQkRkQk = QT
kAkQk

and thus all the matrices in the sequence are similar and share the same
eigenvalues. Under some hypothesis, the limit of Ak for k → ∞ is an upper
triangular matrix whose eigenvalues are in the diagonal.

For large sparse matrices, several techniques are available.

3.1 ARPACK

3.1.1 Implicit restarted Arnoldi’s algorithm

Let us analyze the method under the popular ARPACK [6] package in For-
tran77 for eigenvalue problems. It allows to compute “some” eigenvalues of
large sparse matrices (such as the largest in magnitude, the smallest, . . . ).
We start with an Arnoldi factorization (m≪ n)

V T
mAVm = Hm
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If (θ, s) is an eigenpair for Hm, that is Hms = θs, then

(v, Ax− θx) = 0, ∀v ∈ K

where x = Vms and K is the Krylov space spanned by the columns of Vm. In
fact, v can be written as Vmy and therefore

(Vmy, Ax− θx) = yTV T
mAVms− yTV T

mVmsθ = yT (Hms− θs) = 0

The couple (θ, x) is called Ritz pair and it is close to an eigenpair of A. In
fact

‖Ax− θx‖2 = ‖(AVm − VmHm)s‖2 =
∣

∣βme
T
ms
∣

∣

where βm = ‖wm‖2. “In the Hermitian case, this estimate on the residual
can be turned into a precise statement about the accuracy of the Ritz value
θ as an approximation to the eigenvalue of A that is nearest to θ. However,
an analogous statement in the non-Hermitian case is not possible without
further information concerning nonnormality and defectiveness.” [6, p. 64].
We can compute the eigenvalues of Hm, for instance by the QR method,
and select an “unwanted” eigenvalue µm (which is an approximation of an
eigenvalue µ of A). Then, we apply one iteration of shifted QR algorithm,
that is

Hm − µmIm = Q1R1, H+
m = R1Q1 + µmIm

Of course, Q1 is Hessenberg and Q1H
+
m = HmQ1. Now we right-multiply the

Arnoldi factorization, in order to get

AVmQ1 = VmHmQ1 + wme
T
mQ1 (3.1)

With few manipulations

AVmQ1 = VmQ1H
+
m + wme

T
mQ1

AVmQ1 = (VmQ1)(R1Q1 + µmIm) + wme
T
mQ1

(A− µmIn)VmQ1 = (VmQ1)(R1Q1) + wme
T
mQ1

(A− µmIn)Vm = VmQ1R1 + wme
T
m

and by setting V +
m = VmQ1, we have that the first column of the last expres-

sion is
(A− µmIn)v1 = V +

mR1e1 = v+1 (e
T
1R1e1)

that is, the first column of V +
m is a multiple of (A − µmIn)v1. If v1 was a

linear combination of the eigenvectors xj of A, then

v+1 ‖ (A− µmIn)v1 =
∑

j

(αjλjxj − αjµmxj)
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Since µm is close to a λj, v
+
1 lacks the component parallel to xj. Relation (3.1)

can be rewritten as
AV +

m = V +
mH

+
m + wme

T
mQ1

ans if we consider the first column, it is an Arnoldi factorization with a start-
ing vector v+1 (which is of unitary norm) lacking the unwanted component.
In practice, given the m eigenvalues of Hm, they are split into the k wanted
and the p = m − k unwanted and p shifted QR decompositions (with each
of the unwanted eigenvalues) are performed. Then, the Arnoldi factorization
is right-multiplied by Q = Q1Q2 . . . Qp and the first k columns kept. This
turns out to be an Arnoldi factorization. In fact

AV +
m Im,k = AV +

k ,

where now V +
m = VmQ, and

V +
mH

+
mIm,k = V +

k H
+
k + (V +

m ek+1hk+1,k)e
T
k

and, since the Qj are Hessenberg matrices, the last row of Q, that is eTmQ, has
the first k−1 entries which are zero and then a value σ (and then something
else). Therefore

wme
T
mQIm,k = wmσe

T
k

All together, the first k columns are

AV +
k = V +

k H
+
k + w+

k e
T
k , w+

k = (V +
m ek+1hk+1,k + wmσ)

that is an Arnoldi factorization applied to an initial vector lacking the un-
wanted components. Then, the the factorization is continued up tom columns.

The easyest to compute eigenvalues with a Krylov methods are the largest
in magnitute (as for the power method). Therefore, if some other eigevalues
are desired, it is necessary to apply proper transformations. Let us consider
the generalized problem

Ax = λMx

If we are interested into eigenvalues around σ, first we notice that

(A− σM)x = (λ− σ)Mx⇒ x = (λ− σ)(A− σM)−1Mx

from which

(A− σM)−1Mx = νx, ν =
1

λ− σ

Therefore, if we apply the Krylov method (or the power method) to the
operator OP−1B = (A − σM)−1M we end up with the eigenvalues closer
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to σ. In order to do that, we need to be able to solve linear systems with
(A− σM) and multiply vectors with M .

High level languages use ARPACK, although Matlab moved to a Krylov–
Schur method [8] inside its eigs function. Another possible method is de- show

Mat-
lab
help

scribed here [2]. A gateway for the Jacobi–Davidson method is here1. Skew-
symmetric matrices!

3.2 SVD decomposition

Let us start with the SVD decomposition. Given a matrix A ∈ R
m×n, it

is A = USV T , where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices
and S ∈ R

m×n is “diagonal” with elements σi, i = 1, 2, . . . ,min{m,n}. The
elements σi satisfy σ1 ≥ σ2 ≥, . . . , σmin{m,n} ≥ 0 and r among them are
strictly positive if r = rank(A). The values σi are called “singular values”
of A and do coincide with the square roots of the eigenvalues of ATA. The
SVD decomposition in MATLAB is [U, S, V] = svd (A) and it is based
on LAPACK libraries.

3.2.1 SVD for sparse matrices

“Many problems in scientific computation require knowledge of a few of the
largest or smallest singular values of a matrix and associated left and right
singular vectors. These problems include the approximation of a large matrix
by a matrix of low rank, the computation of the null space of a matrix, total
least-squares prolems, as well as tracking of signals” [3]. A simple approach
is the following: it is possible to compute few eigenvalues of

Z =

[

0 A
AT 0

]

In fact, from

Z

[

u
v

]

= λ

[

u
v

]

we get
Av = λu, ATu = λv ⇒ ATAv = ATλu = λ2v.

Therefore, |λ| is a singular value of A. Notice that Z is a symmetric ma-
trix (all eigenvalues are real) and if λ ∈ σ(Z), so is −λ (associated to the

1http://www.win.tue.nl/casa/research/scientificcomputing/topics/jd/
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eigenvector [−u, v]T ). Therefore, we have

[

0 A
AT 0

]

=

[

U −U
V V

] [

S 0
0 −S

] [

UT V T

−UT V T

]

where if σ ∈ S, then σ ≥ 0, from which A = USV T . Since UUT + UUT = I
and V V T + V V T = I,

√
2U and

√
2V are orthogonal matrices.
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Chapter 4

{N}FFT Matlab/GNU Octave
friendly

4.1 1-dimensional transform

We consider, for N even,

û(x) =

N/2−1
∑

j=−N/2

ûj+1+N/2
eij2π(x−a)/(b−a)

√
b− a

=

=
N
∑

j=1

ûj
ei(j−1−N/2)2π(x−a)/(b−a)

√
b− a

=
N
∑

j=1

ûjφj(x)

(4.1)

where ûj is the approximation by trapezoidal quadrature rule of

∫ b

a

u(x)φj(x)dx

(we assume u(x) periodic in [a, b]) that is

uj =

∫ b

a

u(x)φj(x)dx =
√
b− a

∫ 1

0

u(a+ y(b− a))e−i(j−1)2πyeiNπydy ≈

≈
√
b− a

N

N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(j−1)2πyn = ûj

where yn = (n− 1)/N and xn = a+ (b− a)yn. We say that the 0 frequency
is in the center of spectrum. What is written in the box is the result of fft
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([u(x1)e
iNπy1 , . . . , u(xN )e

iNπyN ] ). We consider now, for 1 ≤ j ≤ N/2,

fft ([u(x1), . . . , u(xN )])j =
N
∑

n=1

u(xn)e
−i(j−1)2πyn =

=
N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(N/2+j−1)2πyn =
N√
b− a

ûN/2+j

and, for N/2 < j ≤ N ,

fft ([u(x1), . . . , u(xN )])j =
N
∑

n=1

u(xn)e
−i(j−1)2πyn =

=
N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(j−N/2−1)2πyn =
N√
b− a

ûj−N/2

taking into account that eiN2πyn = 1. Therefore uhat = fftshift (fft

(u)) * sqrt (b - a) / N. Then we have

ˆ̂vn =
N
∑

k=1

v̂kφk(xn) =
N
∑

k=1

v̂k
ei(k−1−N/2)2π(xn−a)/(b−a)

√
b− a

=

=
N√
b− a

1

N

(

N
∑

k=1

v̂ke
i(k−1)2πyn

)

e−iNπyn

What written in the box is the result of ifft (vhat). We observe that
e−iNπyn = (−1)n+1. We consider now

N
∑

k=1

ifftshift ([v̂1, . . . , v̂N ])ke
i(k−1)2πyn =

N/2
∑

k=1

v̂N/2+ke
i(k−1)2πyn +

N
∑

k=N/2+1

v̂k−N/2e
i(k−1)2πyn =

=
N
∑

k=N/2+1

v̂ke
i(k−N/2−1)2πyn +

N/2
∑

k=1

v̂ke
i(N/2+k−1)2πyn =

= (−1)n+1

N/2
∑

k=1

v̂ke
i(k−1)2πyn + (−1)n+1

N
∑

k=N/2+1

v̂ke
i(k−1)2πyn =

=

(

N
∑

k=1

v̂ke
i(k−1)2πyn

)

e−iNπyn
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Therefore, vhathat=ifft (ifftshift (vhat)) * N / sqrt (b - a). It
is not difficult to prove that

û(xn) = u(xn)

that is, û(x) is an approximation of u(x) which interpolates u(x) at xn,
n = 1, 2, . . . , N . The advantage of using the FFT algorithm (over a standard
matrix-vector product) is that its cost is O(N logN) instead of O(N2). The
use of the scaling factor sqrt (b - a) / N has the following purpose. With
the definition (4.1), we have

∫ b

a

|u(x)|2 dx =
∞
∑

j=−∞

|uj|2

(Parseval’s identity), withouth any scaling factor. When we replace the series
by a sum, what happens in practice is

∫ b

a

|u(x)|2 dx ≈ b− a

N

N
∑

n=1

|u(xn)|2 =
N
∑

j=1

|ûj|2 .

The three main common mistakes when using FFT in Matlab are

• to forget to remove the last point from x = linspace (a, b, N + 1)

• to use the transpose conjugate operator ’ (single quote) to simply trans-
pose a vector, while the operator .’ was probably what needed.

• to use i for the imaginary unit and then to overwrite it. Use 1i instead.

4.1.1 Computation of u′(x) by FFT

We have

u′(x) ≈
(

N
∑

j=1

ûjφj(x)

)′

=
N
∑

j=1

ûjφ
′
j(x) =

N
∑

j=1

ûjλjφj(x)

where λj = i(j− 1−N/2)2π/(b− a). You can try the following Matlab code

a = -2;

b = 2;

N = 32;

x = linspace(a,b,N+1)’;

x = x(1:N);
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u = 1./(sin(2*pi*(x-a)/(b-a))+2);

u1 = -cos(2*pi*(x-a)/(b-a))*2*pi/(b-a)./(sin(2*pi*(x-a)/(b-a))+2).^2;

uhat = fftshift(fft(u))*sqrt(b-a)/N;

lambda = 1i*(-N/2:N/2-1)’*2*pi/(b-a);

vhat = uhat.*lambda;

vhathat = ifft(ifftshift(vhat))*N/sqrt(b-a);

norm(vhathat-u1,inf)

4.1.2 Application to circulant matrices

A N ×N circulant matrix is

C =















c1 cN . . . c3 c2
c2 c1 cN c3
... c2 c1

. . .
...

cN−1
. . . . . . cN

cN cN−1 . . . c2 c1















Given the column vector c, we can compute C as toeplitz (c, c([1,N:-1:2])).
We can write the linear system Cx = b as the circular convolution c̄ ⋆ x̄ = b̄,
where we mean

(c̄ ⋆ x̄)m =
N
∑

n=1

x̄nc̄m+1−n, m = 1, 2, . . . , N

and we consider the vectors c̄, x̄, and b̄ as the extended by periodicity versions
of c, x, and b, respectively. Then,

fft((c̄ ⋆ x̄)) = fft (c) .* fft (x)

and hence
x = ifft (fft (b) ./ fft (c))

4.2 2-dimensional and n-dimensional trans-

forms

Given the 2-dimensional array u of dimension N(1) × N(2), we can apply
the Fourier transform from the rectangle [a(1), b(1)]× [a(2), b(2)] with the
command fftshift (fft2 (u)) * prod (sqrt (b - a) ./ N). For a n-
dimensional array, fftshift (fftn (u)) * prod (sqrt (b - a) ./ N).
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4.3 NFFT

The Nonuniform Fast Fourier Transform aims at being fast (O(N logN)) in
evaluating a truncated Fourier series at a set of N general points. In fact,
given the set of points {xn}Nn=1, one could compute the matrix

Φ = (φj(xk))

and evaluate










û(x1)
û(x2)
...

û(xN)











= Φ











û1
û2
...
ûN











.

This would cost O(N2). The NFFT algorithm developed in [5] works in the
following way. It evaluates in a fast (and approximate) way a sum of type

N/2−1
∑

j=−N/2

ψ̂je
−2πijξn , ξn ∈

[

−1

2
,
1

2

)

.

It is clear that we have to manipulate it in order to evaluate a sum of
type (4.1), with xn ∈ [a, b). In fact, the NFFT algorithm has to be fed
with

ξn = mod

(

xn − a

b− a
, 1

)

− 1

2

ψ̂j = ûj
eπi(j−1−N/2)

√
b− a

= ûj
(−1)j−1−N/2

√
b− a

Paper [4] contains a library for an easy integration and usage of NFFT (up
to dimension 3) in Matlab/GNU Octave.
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Chapter 5

Finite Differences

5.1 1-dimensional

On x = linspace (a, b, n)’, with h = (b - a) / (n - 1) we can con-
struct the discretization matrices of first derivative and second derivative

Dx = toeplitz (sparse (1, 2, -1 / (2 * h), 1, n), ...

sparse (1, 2, 1 / (2 * h), 1, n));

Dxx = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / h ^ 2, 1, n));

5.1.1 Boundary conditions

Dirichlet b.c.

Periodic b.c.

Neumann b.c.

5.2 2-dimensional

Let’s check how to construct a grid in Matlab/GNU Octave.

x = linspace (a, b, n)’;

hx = (b - a) / (n - 1);

Dx = toeplitz (sparse (1, 2, -1 / (2 * hx), 1, n), ...

sparse (1, 2, 1 / (2 * hx), 1, n));

Dxx = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / hx ^ 2, 1, n));

y = linspace (c, d, m)’;

hy = (d - c) / (m - 1);

Dy = toeplitz (sparse (1, 2, -1 / (2 * hy), 1, m), ...
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sparse (1, 2, 1 / (2 * hy), 1, m));

Dyy = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / hy ^ 2, 1, m));

[X, Y] = ndgrid (x, y);

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

y

x

Figure 5.1: 2-dimensional grid.

For instance, for x = linspace (0, 4, 5)’ and y = linspace (2, 4, 3)’

it corresponds to the grid in Figure 5.1. Point i has coordinates X(i),Y(i).
Matrices of first and second partial derivatives are obtained by

DDx = kron (speye (m), Dx);

DDy = kron (Dy, speye (n));

DDxx = kron (speye (m), Dxx);

DDyy = kron (Dyy, speye (n));

Given a function U = f (X, Y), it is possible to approximate its partial
derivative with respect to x (but pay attention to the boundaries!) by

reshape (DDx * U(:), n, m)
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Chapter 6

Finite Elements

6.1 Poisson problem

We aim at solving

{

−∆u(x, y) = f(x, y) (x, y) ∈ Ω

u(x, y) = 0 ∈ ∂Ω

We consider the weak formulation

−
∫

Ω

∆uv =

∫

Ω

fv, ∀v, v|∂Ω = 0

and apply Green’s formula on the left hand side

∫

Ω

∇u · ∇v −
∫

Ω

fv −
∫

∂Ω

v∇u · ~n = 0 =

∫

Ω

∇u · ∇v −
∫

Ω

fv, ∀v, v|∂Ω = 0

We introduce a set of discretization points {(xi, yi)}ni=1 and a triangulation
on Ω with triangles Tk and functions ϕi(x, y) which are

1. continuous

2. linear in x and y on each triangle

3. with ϕi(xj, yj) = δij

We assume that an approximate solution can be written as

û(x, y) =
∑

j

ûjϕj(x, y).
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We insert such an approximation into the equation and get
∫

Ω

∇û · ∇v̂ −
∫

Ω

fv̂ = 0, ∀v̂, v̂|∂Ω = 0 (6.1)

where by ∇û we mean the piecewise gradient of û. The first term is a bilinear
form on û and v̂ and the second a linear form on v̂ (that is a trivial bilinear
form on nothing and v̂). If we insert the definitions of û and consider all the
ϕi instead of all the v̂, we get

∑

j

ûj

(

∑

k

∫

Tk

∇ϕj · ∇ϕi

)

−
(

∑

k

∫

Tk

fϕi

)

, ∀ϕi.

This is a linear system in the unknowns ûj. Formulation (6.1) can be solved
by FreeFem++.

Another possibility it to look for the minimum of the functional

J(u) =
1

2

∫

Ω

|∇u|2 −
∫

Ω

fu.

In fact, a critical point for J is

δJ(u)v =

∫

Ω

∇u · ∇v −
∫

Ω

fv = 0, ∀v, v|∂Ω = 0

Of course, we have to restrict the search in the finite dimensional space and
look for

û = arg min
v̂, v̂|∂Ω=0

J(v̂)

6.2 p-Laplace problem

Now we consider the solution of
{

−div(|∇u|p−2 ∇u) = f Ω

u = 0 ∂Ω

for p ≥ 2. This problem is the Poisson problem for p = 2. The corresponding
J functional is

J(u) =
1

p

∫

Ω

|∇u|p −
∫

Ω

fu.

In FreeFem++ it possible to use the nonlinear conjugate gradient method to
find

û = arg min
v̂, v̂|∂Ω=0

J(v̂).
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It is necessary to compute

δJ(u)v =

∫

Ω

|∇u|p−2 ∇u · ∇v −
∫

Ω

fv =

∫

Ω

(∇u · ∇u) p−2

2 ∇u · ∇v −
∫

Ω

fv.

Since û =
∑

j ûjϕj and v̂ =
∑

i v̂iϕi, it is possible to introduce the functional
δJR(û) : R

n → R defined by

δJR(û)v̂ =

∫

Ω

∣

∣

∣

∣

∣

∑

j

ûj∇ϕj

∣

∣

∣

∣

∣

p−2
∑

j

ûj∇ϕj ·
∑

i

v̂i∇ϕi −
∫

Ω

f
∑

i

v̂iϕi =

=
∑

i

v̂i





∫

Ω

∣

∣

∣

∣

∣

∑

j

ûj∇ϕj

∣

∣

∣

∣

∣

p−2
∑

j

ûj∇ϕj · ∇ϕi −
∫

Ω

fϕi



 .

Another way to write it is v̂
T δJR(û). By the nonlinear conjugate gradient

method (NLCG in FreeFem++) it is possible to solve

û = argmin
v̂

JR(v̂).

Only the action of δJR(û) is required.

6.2.1 Use of a preconditioner

In a minimization method, a sequence {ûm}m is produced which tries to
minimize JR defined by

JR(û) =
1

p

∫

Ω

∣

∣

∣

∣

∣

∑

j

ûj∇ϕj

∣

∣

∣

∣

∣

p

−
∫

Ω

f
∑

j

ûjϕj

From the definition of δJR(û), we see that it is of type A(û) − b ∈ R
n. At

iteration m, its i-th component can be approximated by

∫

Ω

∣

∣

∣

∣

∣

∑

j

ûmj ∇ϕj

∣

∣

∣

∣

∣

p−2
∑

j

ûj∇ϕj · ∇ϕi −
∫

Ω

fϕi =

=
∑

j

ûj





∫

Ω

∣

∣

∣

∣

∣

∑

j

ûmj ∇ϕj

∣

∣

∣

∣

∣

p−2

∇ϕj · ∇ϕi



−
∫

Ω

fϕi

in such a way that the approximate differential can be casted as

Am
û− b,

with Am a symmetric matrix. Well, Am, which is δ(Am
û) (which is an

approximation of δ(A(û)− b)) is a preconditioner.
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6.3 Exercises and projects

1. Write a FreeFem++ code which solve the p-Laplace problem for p up
to 1000.
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Chapter 7

Matrix functions

7.1 Matrix exponential

The matrix exponential for A ∈ C
n×n is defined as

exp(A) =
∞
∑

k=0

Ak

k!

In order to numerically evaluate it, we may think to two simple strategies:
Taylor’s truncated series and eigenvalue decomposition.

7.1.1 Taylor’s truncated series

It is a strong temptation to approximate

exp(A) ≈
m
∑

k=0

Ak

k!
= Tm(A)

Unfortunately, it does not work, even in simple scalar cases (try to com-
pute the relative error e100(e−100 − Tm(−100)) for increasing values of m).
The problem is that Taylor’s series, although everywhere convergent, is fast
enough (that is it converges to machine precision before truncation errors
show up) only in a neighborhood of 0. To this aim, the scaling and squaring

technique may help. That is, taken s = 2j such that ‖A‖ < 1, E = exp(A/s)
is approximated by Tm(A/s) and later exp(A) is recovered by

E = E2 j times
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Padé approximation

We can change the way exp(A/s) is approximated. For instance, a very
common approximation is the rational Padé one. That is

ez ≈ apz
p + ap−1z

p−1 + . . .+ a1z + a0
bqzq + bq−1zq−1 + . . .+ b1z + 1

= rp,q(z)

such that Tp+q(z) = rp,q(z) + O(zp+q+1) for z → 0. Let’s try for p = q = 1:
we have

ez ≈
1
2
z + 1

−1
2
z + 1

= r1,1(z)

By the way, this corresponds to the trapezoidal rule y1 =
(

1
2
k + 1

)

/
(

−1
2
k + 1

)

=
r1,1(k) for the solution of y′(t) = y(t), y(0) = 1 at t = k. The extension to
the matrix case is trivial

exp(A/s) ≈
(

−1

2
A/s+ I

)−1(
1

2
A/s+ I

)

Then, the scaling and squaring technique is used. In practice, the degree
p = q of common Padé approximations is around 10. Padé approximations
for the exponential share the following property

rp,p(−z) =
1

rp,p(z)

7.1.2 Eigenvalue decomposition

If A is diagonalizable, AV = V Λ, then

exp(A) = V exp(Λ)V −1

where exp(Λ) is easily seen to be diag(λ1, . . . , λn). Unfortunately, even in
this case it is possible to do very wrong, try with

A =

[

1 1
0 1 + ε

]

and compare in Matlab

A=[1,1;0,1+eps];,expm(A),[V,Lambda]=eig(A);,V*diag(exp(diag(Lambda)))/V
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7.2 Matrix exponential-related functions

We would like to approximate the following functions

ϕℓ(A) =
∞
∑

k=0

Ak

(k + ℓ)!

We have ϕ0(z) = ez,

ϕ1(z) =
ez − 1

z

and, in general,

ϕℓ(z) = zϕℓ+1(z) +
1

ℓ!
, ℓ ≥ 0

ϕℓ(z) =
1

(ℓ− 1)!

∫ 1

0

e(1−θ)zθℓ−1dθ, ℓ ≥ 1

Of course it is possible a Taylor or Padé approximation in a neighborhood
of 0. The scaling and squaring technique is more involved, however. For
instance

ϕ1(z) =
1

2
(ez/2 + 1)ϕ1

(z

2

)

The function φ1 is very important. For instance, the solution of a linear,
constant coefficients system of ODEs

{

y′(t) = Ay(t) + b

y(t0) = y0

is
y(t) = y0 + (t− t0)ϕ1((t− t0)A)b

If one is interested only in ϕℓ(A)w, w ∈ C
n, then the following theorem can

be used (see [1]).

Theorem 1. Let A ∈ C
n×n, W = [w1, . . . , wp] ∈ C

n,p, τ ∈ C and

Ã =

[

A W
0 J

]

∈ C
(n+p)×(n+p), J =

[

0 Ip−1

0 0

]

∈ R
p×p

then for X = exp(τÃ) we have

X(1 : n, n+ j) =

j
∑

k=1

τ kϕk(τA)wj−k+1, j = 1, 2, . . . , p
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Before giving the proof, let us consider a simple example: we want to
compute ϕ1(τA)w. We consider

Ã =

[

A w
0 0

]

and compute X = exp(τÃ), extract the first n rows, last column and divide
by τ .

n=4;

tau=rand;

A=rand(n);

w=rand(n,1);

Atilde=[A,w;zeros(1,n),0];

X=expm(tau*Atilde);

X(1:n,n+1)/tau

(tau*A)\((expm(tau*A)-eye(n))*w)

If interested into exp(τA)v + τϕ1(τA)w, we can do

n=4;

tau=rand;

A=rand(n);

v=rand(n,1);

w=rand(n,1);

eta=2^(-ceil(log2(norm(w,1))));

Atilde=[A,eta*w;zeros(1,n),0];

X=expm(tau*Atilde)*[v;1/eta];

X(1:n)

expm(tau*A)*v+tau*((tau*A)\((expm(tau*A)-eye(n))*w))

The use of the parameter η is for numerical stability (see [1]).
The possibility to compute ϕℓ(A)w without computing ϕℓ(A) is similar to

the possibility to compute the solution of Ax = w without computing A−1.

Proof. We start computing

Ã2 =

[

A W
0 J

] [

A W
0 J

]

=

[

A2 AW +WJ
0 J2

]

and we easily get

Ãk =

[

Ak Mk

0 Jk

]
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with M0 = 0, M1 = W , Mk = Ak−1W +Mk−1J . Then WJ(:, j) = wj−1 and
JJ(:, j) = J(:, j − 1) for 1 ≤ j ≤ p where we define w0 = J(:, 0) = 0. Thus

Mk(:, j) = Ak−1wj + (Ak−2W +Mk−2J)J(:, j) =

= Ak−1wj + Ak−2wj−1 +Mk−2J(:, j − 1) =

=

min{k,j}
∑

i=1

Ak−iwj−i+1

Moreover

X(1 : n, n+ 1 : n+ p) =
∞
∑

k=0

τ kMk

k!
=

∞
∑

k=1

τ kMk

k!

and now we can compute

X(1 : n, n+ j) =
∞
∑

k=1

τ kMk(:, j)

k!
=

∞
∑

k=1

1

k!





min{j,k}
∑

i=1

τ i(τA)k−iwj−i+1



 =

=

j
∑

i=1

τ i

(

∞
∑

k=i

(τA)k−i

k!

)

wj−i+1 =

=

j
∑

i=1

τ i

(

∞
∑

k=0

(τA)k

(k + i)!

)

wj−i+1 =

j
∑

i=1

τ iϕi(τA)wj−i+1
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