Splitting methods with boundary corrections

Alexander Ostermann University of Innsbruck, Austria

Joint work with

Strang's paper, SIAM J. Numer. Anal., 1968

$$u_t = Au_x + Bu_y$$
, $u(0) = u_0$.
 $S_k^{(5)} f = e^{\frac{k}{2}A\partial_x} e^{kB\partial_y} e^{\frac{k}{2}A\partial_x} f$

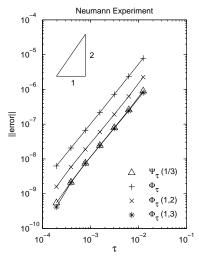
or rather second-order approximations to the exponentials

The first question is whether this alternation of one-dimensional operators retains second order accuracy. This can be decided only by a computation:

$$egin{align} S_k^{(5)}f &pprox \left(I + rac{k}{2}\,A\,\partial_x + rac{k^2}{8}\,A^2\partial_x^{\,2}
ight)\left(I + kB\partial_y + rac{k^2}{2}\,B^2\partial_y^{\,2}
ight) \ & \cdot \left(I + rac{k}{2}\,A\,\partial_x + rac{k^2}{8}\,A^2\partial_x^{\,2}
ight)f \ & pprox f + k(Af_x + Bf_y) + rac{k^2}{2}\,(A^2f_{xx} + (AB + BA)f_{xy} + B^2f_{yy}), \end{split}$$

Neumann boundary conditions

$$\partial_t u = \partial_1 (a \partial_1 u) + \partial_2 (a \partial_2 u), \qquad \Omega = (0, 1)^2$$

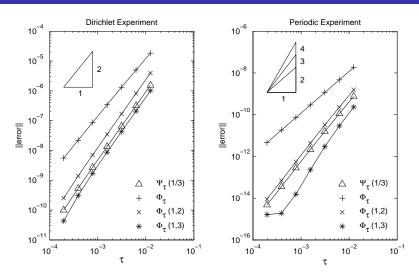


$$a(x_1, x_2) = 16x_1(1 - x_1)x_2(1 - x_2) + 1$$

$$u_0(x_1, x_2) = c \exp\left(-\frac{1}{x_1(1 - x_1)} - \frac{1}{x_2(1 - x_2)}\right)$$

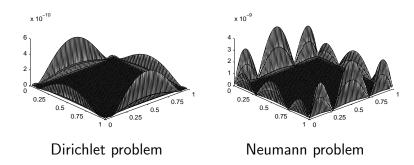
T/ au	$\Psi_{ au}$	$\Phi_{ au}$	$\Phi_{ au}(1,2)$	$\Phi_{\tau}(1,3)$
16	1.80	1.71	1.83	1.73
32	1.72	1.74	1.73	1.68
64	1.68	1.73	1.68	1.66
128	1.70	1.70	1.66	1.69
256	1.81	1.69	1.69	1.84
512	1.98	1.71	1.88	2.34

Dirichlet and periodic boundary conditions



E. Hansen, A.O., High order splitting methods for analytic semigroups exist. *BIT Numer. Math.* 49, 527–542 (2009)

Error is concentrated on the boundary



Pointwise errors at time T=0.1 for the splitting $\Phi_h(1,3)$, step size $\tau=T/512$.

Large errors are located along a thin strip around the boundary.

Outline

Diffusion-reaction splitting

Oblique boundary conditions

References

Diffusion-reaction equations: Dirichlet problem

Diffusion-reaction initial-boundary value problem

$$u_t = Du + f(u)$$

$$u|_{\partial\Omega} = b$$

$$u(0) = u_0$$

where

- u = u(t,x) for $0 < t \le T$ and $x \in \Omega \subset \mathbb{R}^d$;
- ▶ D is an elliptic differential operator (e.g., the Laplacian);
- ▶ $f: \mathbb{R} \to \mathbb{R}$ is the reaction term (usually f(0) = 0);
- ▶ $b: [0, T] \times \partial\Omega \rightarrow \mathbb{R}$ is allowed to depend on time.

Diffusion-reaction splitting

The system
$$u_t = Du + f(u), \quad u|_{\partial\Omega} = b$$
 is split up into $v_t = Dv, \quad v|_{\partial\Omega} = b$ $w_t = f(w)$

Numerical example in $\Omega=(0,1)$ with $u_0(x)=1+\sin^2\pi x$, $f(u)=u^2$, 500 grid points, $b_0=b_1=1$. Error at t=0.1

	Strar	ng	Strang (m	odified)
step size	ℓ^2 error	order	ℓ^2 error	order
2.000e-02	1.524e-03	_	1.320e-05	_
1.000e-02	6.337e-04	1.2659	3.303e-06	1.9990
5.000e-03	2.628e-04	1.2697	8.264e-07	1.9987
2.500e-03	1.085e-04	1.2766	2.066e-07	1.9998
1.250e-03	4.444e-05	1.2875	5.152e-08	2.0039

Error analysis for Lie splitting

Reduction to homogeneous Dirichlet boundary conditions: let

$$Dz = 0, \quad z|_{\partial\Omega} = b$$

and consider U = u - z which satisfies

$$U_t = DU + f(U+z) - z_t, \quad U|_{\partial\Omega} = 0,$$

 $U(0) = u_0 - z_0.$

Write PDE as an abstract parabolic problem

$$U_t = AU + k(t) + g(t, U), \quad U(0) = u_0 - z_0,$$

where $\mathcal{D}(A) = H^2(\Omega) \cap H^1_0(\Omega)$, e.g., and split.

The leading term in the local error is then

$$\tau^2 \cdot Ag(t_k, U(t_k)).$$

Abstract convergence, classic Lie splitting

Theorem. (L. Einkemmer, AO, SIAM J. Sci. Comput., 2015) The classic Lie splitting is convergent of order $\tau |\log \tau|$, i.e.

$$||u_n-u(t_n)|| \leq C\tau(1+|\log \tau|), \qquad 0 \leq n\tau \leq T,$$

where C depends on T but is independent of τ and n.

Proof. We employ the parabolic smoothing property

$$\|e^{tA}(-tA)^{\alpha}\| \le C, \qquad \alpha \ge 0$$

to bound

$$\tau^2 \sum_{k=0}^{n-1} e^{(n-k-1)\tau A} Ag(t_k, U(t_k))$$

which is the leading error term.

Numerical results for Lie splitting

Numerical example in $\Omega=(0,1)$ with $u_0(x)=1+\sin^2\pi x$, $f(u)=u^2$, 500 grid points, $b_0=b_1=1$. Error at t=0.1

	Lie		Lie (mod	lified)
step size	ℓ^∞ error	order	 ℓ^∞ error	order
2.000e-02	2.872e-01	_	2.144e-01	_
1.000e-02	3.546e-03	6.3396	2.166e-03	6.6297
5.000e-03	1.957e-03	0.8575	1.090e-03	0.9910
2.500e-03	1.051e-03	0.8974	5.465e-04	0.9955
1.250e-03	5.526e-04	0.9269	2.737e-04	0.9977
6.250e-04	2.864e-04	0.9483	1.369e-04	0.9988
3.125e-04	1.468e-04	0.9636	6.849e-05	0.9994

Essential modification step

The critical error term is: $e^{(n-k-1)\tau A}Ag(t_k, U(t_k))$

Satisfy a compatibility condition for the nonlinearity.

(E. Hansen, F. Kramer, AO, Appl. Numer. Math., 2012)

Split the nonlinearity f(U+z) into a term g(t,U) such that g(t,0)=0 and a second term that does not depend on U.

Obvious choice:

$$v_t = Dv + f(z) - z_t, \quad v|_{\partial\Omega} = 0$$

 $w_t = f(w + z) - f(z)$

Modified nonlinearity g(t, U) = f(U + z(t)) - f(z(t)) satisfies g(t, 0) = 0 as required.

Abstract convergence, Strang splitting

Theorem. (L. Einkemmer, AO, *SIAM J. Sci. Comput.*, 2015) The classic Strang splitting is first-order convergent. The modified Strang splitting is second-order convergent.

Proof. The leading error term is $e^{(n-k-1)\tau A}A^2g(t_k, U(t_k))$.

- ▶ One power of A is bounded by parabolic smoothing;
- ▶ Another power of *A* is bounded by the modification.

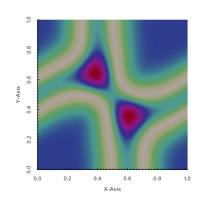
Remark. Spatially smooth functions lie in $\mathcal{D}((-\Delta)^{1/4-\varepsilon})$; therefore one observes order 1.25 in L^2 for uncorrected splitting (order $1+\frac{1}{2p}$ in L^p).

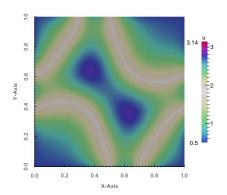
1D example, time dependent boundary conditions

1D example, $\Omega=(0,1)$, and $f(u)=u^2$, initial value $u_0(x)=1+\sin^2\pi x$, 500 grid points, boundary values $b_0(t)=b_1(t)=1+\sin 5t$.

	Strang		Strang (modified)
step size	ℓ^∞ error	order	ℓ^∞ error order
2.000e-02	2.060e-02	_	4.399e-04 –
1.000e-02	9.913e-03	1.0554	1.099e-04 2.0005
5.000e-03	4.724e-03	1.0694	2.748e-05
2.500e-03	2.212e-03	1.0947	6.867e-06 2.0005
1.250e-03	1.008e-03	1.1341	1.714e-06
6.250e-04	4.407e-04	1.1932	4.263e-07 2.0079
3.125e-04	1.813e-04	1.2817	1.043e-07 2.0316

2D example, time invariant boundary conditions





	Stran	g	Stra	ang (mod	dified)
step size	ℓ^∞ error	order	ℓ^∞ err	or	order
0.1	8.449277e-01	_	1.8351	88e-02	_
0.05	6.570760e-01	0.362768	4.9625	90e-03	1.88676
0.025	4.063934e-01	0.693183	1.2633	75e-03	1.97381
0.0125	1.670386e-01	1.2827	3.3268	22e-04	1.92507

Outline

Diffusion-reaction splitting

Oblique boundary conditions

References

Model problem with oblique b.c.

Diffusion-reaction problem on domain $\Omega \subset \mathbb{R}^d$

$$egin{aligned} u_t &= Du + f(u) \ Bu|_{\partial\Omega} &= b \ u(0) &= u_0 \end{aligned}$$

where

- ▶ $D = \sum_{i,j=1}^{d} d_{ij}(x) \partial_{ij} + \sum_{i=1}^{d} d_{i}(x) \partial_{i} + d_{0}(x) I$ is an elliptic operator with positive definite $(d_{ij}(x))$;
- ► $B = \sum_{i=1}^{d} \beta_i(x)\partial_i + \alpha(x)I$ is a first-order operator;
- ▶ B satisfies the uniform non tangentiality condition

$$\inf_{x\in\partial\Omega}\left|\sum_{i=1}^d\beta_i(x)n_i(x)\right|>0.$$

Neumann problem: $\alpha = 0$, $\beta_i(x) = \sum_{j=1}^d d_{ij}(x) n_j(x)$ for all i.

Condition on the correction

Choose as correction a smooth function q that satisfies the boundary conditions of f(u)

$$Bq_n(0)|_{\partial\Omega} = Bf(u(t_n))|_{\partial\Omega} + \mathcal{O}(\tau).$$

Since

$$Bf(u)|_{\partial\Omega} = \alpha f(u)|_{\partial\Omega} + f'(u)\sum_{i=1}^{d} \beta_i(x)\partial_i u|_{\partial\Omega}$$

= $\alpha f(u)|_{\partial\Omega} + f'(u)(b - \alpha u)|_{\partial\Omega}$

and our numerical methods converge at least with order one, we can simply take

$$Bq_n|_{\partial\Omega} = \alpha f(u_n)|_{\partial\Omega} + f'(u_n)(b_n - \alpha u_n)|_{\partial\Omega}.$$

Dirichlet case:
$$\alpha=1$$
, $\beta_1=...=\beta_s=0$ and $q|_{\partial\Omega}=f(b)$. (previously called $f(z)$)

Modified splitting

With the correction q_n satisfying

$$Bq_n|_{\partial\Omega} = \alpha f(u_n)|_{\partial\Omega} + f'(u_n)(b_n - \alpha u_n)|_{\partial\Omega}.$$

at hand, we consider the boundary-corrected splitting

$$\partial_t v_n = Dv_n + q_n, \quad Bv_n|_{\partial\Omega} = b_n$$

 $\partial_t w_n = f(w_n) - q_n,$

and solve it on the time interval $[t_n, t_{n+1}]$ by the standard Lie or Strang approach.

Modified Strang splitting

For a given initial value u_n , first solve

$$\partial_t v_n = Dv_n + q_n, \quad Bv_n|_{\partial\Omega} = b_n$$

with initial value $v_n(0) = u_n$ to obtain $v_n(\frac{\tau}{2})$.

Next, integrate $\partial_t w_n = f(w_n) - q_n$ with initial value $w_n(0) = v_n(\frac{\tau}{2})$ to obtain $w_n(\tau)$.

Finally, integrate once more

$$\partial_t \tilde{\mathbf{v}}_n = D\tilde{\mathbf{v}}_n + q_n, \quad B\tilde{\mathbf{v}}_n|_{\partial\Omega} = b_n$$

but this time with initial value $\tilde{v}_n(0) = w_n(\tau)$, and set

$$u_{n+1} = \mathcal{S}_{\tau} u_n = \tilde{\mathbf{v}}_n(\frac{\tau}{2}).$$

Convergence results

Theorem. (L. Einkemmer, AO, arXiv:1601.02288, 2016) The modified Strang splitting scheme is second-order convergent. More precisely, the global error satisfies

$$||u_n - u(t_n)|| \le C\tau^2(1 + |\log \tau|), \qquad 0 \le n\tau \le T,$$

where C depends on T but is independent of τ and n.

Orders of convergence for classic Strang splitting in various norms:

boundary type	L^1	L^2	L^{∞}
$\beta_1 = \ldots = \beta_d = 0$	1.50	1.25	1.00
$\exists j$ with $eta_j eq 0$	2.00	1.75	1.50

Inhomogeneous Neumann boundary conditions

We take $f(u) = u^2$, $\Omega = (0,1)$ with $b_0 = 0$ and $b_1 = 1$, 500 points. Admissible correction $q_n(s,x) = x^2 u_n(1)$.

Stran	g	Strang	<u> </u>
ℓ^∞ error	order	ℓ^2 error	order
1.806e-01	_	8.733e-02	_
2.211e-04	9.67	2.130e-05	12.00
7.684e-05	1.52	6.364e-06	1.74
2.638e-05	1.54	1.895e-06	1.75
8.897e-06	1.57	5.612e-07	1.76
Strang (mo	odified)	Strang (mod	dified)
ℓ^∞ error	order	ℓ^2 error	order
8.752e-02	_	5.471e-02	_
1.495e-05	12.51	3.931e-06	13.76
2 0600 06	1 05	0 7736-07	2.01
3.000e-00	1.55	9.1136-01	2.01
1.002e-06	1.95	2.428e-07	2.01
	ℓ^{∞} error 1.806e-01 2.211e-04 7.684e-05 2.638e-05 8.897e-06 Strang (mo ℓ^{∞} error 8.752e-02 1.495e-05	$\begin{array}{cccc} 1.806\text{e-}01 & - \\ 2.211\text{e-}04 & 9.67 \\ 7.684\text{e-}05 & 1.52 \\ 2.638\text{e-}05 & 1.54 \\ 8.897\text{e-}06 & 1.57 \\ \\ \hline Strang (modified) \\ \ell^{\infty} \text{ error} & \text{order} \\ 8.752\text{e-}02 & - \\ 1.495\text{e-}05 & 12.51 \\ \hline \end{array}$	ℓ^{∞} error order ℓ^2 error $1.806\text{e}\text{-}01$ - $8.733\text{e}\text{-}02$ $2.211\text{e}\text{-}04$ 9.67 $2.130\text{e}\text{-}05$ $7.684\text{e}\text{-}05$ 1.52 $6.364\text{e}\text{-}06$ $2.638\text{e}\text{-}05$ 1.54 $1.895\text{e}\text{-}06$ $8.897\text{e}\text{-}06$ 1.57 $5.612\text{e}\text{-}07$ Strang (modified) Strang (modified) ℓ^{∞} error order ℓ^2 error $8.752\text{e}\text{-}02$ - $5.471\text{e}\text{-}02$

Mixed Dirichlet/Neumann boundary conditions

Dirichlet b.c. (with $b_0 = 1$) and Neumann b.c. (with $b_1 = 1$). Correction is given by $q_n(s,x) = 1 + 2xu_n(1)$.

	Stran	g	Strang	
step size	ℓ^∞ error	order	ℓ^2 error ord	ler
1.250e-02	5.718e-03	_	5.815e-04	_
6.250e-03	2.736e-03	1.06	2.379e-04 1.	29
3.125e-03	1.288e-03	1.09	9.652e-05 1.	30
1.563e-03	5.904e-04	1.13	3.855e-05 1.	32
7.813e-04	2.596e-04	1.19	1.499e-05 1.	36
	Strang (mo	dified)	Strang (modifie	d)
step size	ℓ^∞ error	order	ℓ^2 error ord	ler
1.250e-02	8.222e-05	_	2.567e-05	_
6.250e-03	2.087e-05	1.98	6.426e-06 2.	00
3.125e-03	5.292e-06	1.98	1.609e-06 2.	00
1.563e-03	1.341e-06	1.98	4.031e-07 2.	00
7.813e-04	3.395e-07	1.98	1.009e-07 2.	00

Various possible corrections

Problem with Dirichlet b.c. ($b_0 = 1, b_1 = 2$) and 500 grid points. The error is given at t = 0.1 with a step size $\tau = 1.25 \cdot 10^{-3}$.

method	correction	ℓ^∞ error
Lie	none	2.31e-03
Lie (mod.)	harmonic: $q = 1 + x$	1.20e-03
Lie (mod.)	$q = 1 + x + \sin \pi x$	2.43e-03
Lie (mod.)	$q = 1 + x + \sin 10\pi x$	3.21e-03
method	correction	ℓ^∞ error
method Strang	correction	ℓ^{∞} error 1.84e-03
Strang	none	1.84e-03

References

L. Einkemmer, A. Ostermann. A comparison of boundary correction methods for Strang splitting.

Preprint (09-2016)

http://arxiv.org/abs/1609.xxxxx

L. Einkemmer, A. Ostermann.

Overcoming order reduction in diffusion-reaction splitting.

Part 2: oblique boundary conditions.

SIAM J. Sci. Comput. 38, A3741-A3757 (2016)

http://arxiv.org/abs/1601.02288

L. Einkemmer, A. Ostermann.

Overcoming order reduction in diffusion-reaction splitting.

Part 1: Dirichlet boundary conditions.

SIAM J. Sci. Comput. 37, A1577–A1592 (2015)

http://arxiv.org/abs/1411.0465