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Strang's paper, SIAM J. Numer. Anal., 1968
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or rather second-order approximations to the exponentials

The first question is whether this alternation of one-dimensional operators
retains second order accuracy. This can be decided only by a computation:
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Neumann boundary conditions

8tu = al(aé?lu) + 82(302u), Q= (0, 1)2

Neumann Experiment
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Dirichlet and periodic boundary conditions

Dirichlet Experiment Periodic Experiment
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E. Hansen, A.O., High order splitting methods for analytic semigroups
exist. BIT Numer. Math. 49, 527-542 (2009)
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Error is concentrated on the boundary

Dirichlet problem Neumann problem

Pointwise errors at time T = 0.1 for the splitting ®,(1, 3),
step size 7 = T /512.

Large errors are located along a thin strip around the boundary.
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Outline

Diffusion-reaction splitting
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Diffusion-reaction equations: Dirichlet problem

Diffusion-reaction initial-boundary value problem

up = Du + f(u)
ulaQ =b
u(0) = up

where
» u=u(t,x) for0<t< T and x € Q C R
» D is an elliptic differential operator (e.g., the Laplacian);
» f: R — R is the reaction term (usually f(0) = 0);
» b: [0, T] x 9Q — R is allowed to depend on time.
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Diffusion-reaction splitting

The system up = Du+ f(u), ulpg=>b
is split up into vi = Dv, v|spa=0b
w, = f(w)

Numerical example in Q = (0, 1) with ug(x) = 1 + sin® 7x,
f(u) = u?, 500 grid points, by = by = 1. Error at t = 0.1

Strang Strang (modified)
step size 2 error order 02 error order
2.000e-02 1.524e-03 - 1.320e-05 -
1.000e-02 6.337e-04 1.2659 3.303e-06 1.9990
5.000e-03 2.628e-04 1.2697 8.264e-07 1.9987
2.500e-03 1.085e-04 1.2766 2.066e-07 1.9998
1.250e-03  4.444e-05 1.2875 5.152e-08 2.0039
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Error analysis for Lie splitting

Reduction to homogeneous Dirichlet boundary conditions: let
Dz = 07 Z‘ag =b
and consider U = u — z which satisfies

Ut:DU—i-f(U—I-Z)—Zt, U|aQ:0,
U(O) = Uy — 2p.

Write PDE as an abstract parabolic problem
U= AU+ k(t) + g(t, U), U(0) = up — 2o,
where D(A) = H*(Q) N H3(Q), e.g., and split.
The leading term in the local error is then
7 Ag(te, U(t)).



Abstract convergence, classic Lie splitting

Theorem. (L. Einkemmer, AO, SIAM J. Sci. Comput., 2015)
The classic Lie splitting is convergent of order 7 |log 7|, i.e.

|up — u(ty)]| < Cr(1+ |logT]), 0<nr<T,
where C depends on T but is independent of 7 and n.
Proof. We employ the parabolic smoothing property
le(=tA)*|<C, a>0

to bound
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which is the leading error term.
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Numerical results for Lie splitting

Numerical example in Q = (0, 1) with up(x) = 1 + sin® 7x,
f(u) = u?, 500 grid points, by = by = 1. Error at t = 0.1

Lie Lie (modified)
step size (™ error  order £%° error  order
2.000e-02 2.872e-01 - 2.144e-01 -

1.000e-02 3.546e-03 6.3396 2.166e-03  6.6297
5.000e-03 1.957e-03 0.8575 1.090e-03 0.9910
2.500e-03 1.051e-03 0.8974 5.465e-04 0.9955
1.250e-03 5.526e-04 0.9269 2.737e-04 0.9977
6.250e-04 2.864e-04 0.9483 1.369e-04 0.9988
3.125e-04 1.468e-04 0.9636 6.849¢-05 0.9994
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Essential modification step

The critical error term is: e(" A NTAAg(t,, U(t())

Satisfy a compatibility condition for the nonlinearity.
(E. Hansen, F. Kramer, AO, Appl. Numer. Math., 2012)

Split the nonlinearity f(U + z) into a term g(t, U) such that
g(t,0) = 0 and a second term that does not depend on U.

Obvious choice:

Ve =Dv+f(z) =z, v]ga=0

w, = f(w + z) — f(2)
Modified nonlinearity g(t, U) = f(U + z(t)) — f(z(t))
satisfies g(t,0) = 0 as required.
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Abstract convergence, Strang splitting

Theorem. (L. Einkemmer, AO, SIAM J. Sci. Comput., 2015)
The classic Strang splitting is first-order convergent.
The modified Strang splitting is second-order convergent.

Proof. The leading error term is e(""x=DTAA2g (¢, U(ty)).
» One power of A is bounded by parabolic smoothing;
» Another power of A is bounded by the modification.
Remark. Spatially smooth functions lie in D((—A)Y4~¢);

therefore one observes order 1.25 in L? for uncorrected
splitting (order 1 + 2—1p in LP).
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1D example, time dependent boundary conditions

1D example, Q = (0,1), and f(u) = v,

initial value ug(x) = 1 + sin® x, 500 grid points,

boundary values by(t) = by(t) = 1 + sin5t.

Strang Strang (modified)
step size  £° error  order > error  order
2.000e-02 2.060e-02 - 4.399e-04 -
1.000e-02 9.913e-03 1.0554 1.099e-04 2.0005
5.000e-03 4.724e-03 1.0694 2.748e-05 2.0002
2.500e-03 2.212e-03 1.0947 6.867e-06 2.0005
1.250e-03 1.008e-03 1.1341 1.714e-06  2.0020
6.250e-04 4.407e-04 1.1932 4.263e-07 2.0079
3.125e-04 1.813e-04 1.2817 1.043e-07 2.0316
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example, time invariant boundary conditions

08 1.0

06

w
[
kS
B o
(AR RN
w

2 2
< <
> >
1
g 05
0.0 0.2 0.4 0.6 0.8 1.0 ° 0.0 0.2 0.4 0.6 0.8 1.0
X-Axis X-Axis
Strang Strang (modified)
step size  £°° error order £°° error order
0.1 8.449277e-01 - 1.835188e-02 -
0.05 6.570760e-01  0.362768 4.962590e-03  1.88676
0.025 4.063934e-01 0.693183 1.263375e-03  1.97381
0.0125 1.670386e-01  1.2827 3.326822e-04  1.92507
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Outline

Oblique boundary conditions
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Model problem with oblique b.c.

Diffusion-reaction problem on domain Q C R¢

ur = Du + f(u)
BU‘@Q =b
u(0) = uo

where

» D= Z,d p dii(x )3U+Z, 1 di(x)0; + do(x)1

is an elliptic operator with positive definite (d;(x));
» B="7 Bi(x)d + a(x)! is a first-order operator;
» B satisfies the uniform non tangentiality condition

infecan | S0, Bi(x)ni(x)| > 0.
Neumann problem: a =0, Si(x) = ZJ 1 dii(x)n;j(x) for all i.
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Condition on the correction

Choose as correction a smooth function g that satisfies the
boundary conditions of f(u)

Bqn(0)loa = Bf (u(th))lon + O(7).
Since
Bf (u)|oq = af (o + F'(u)>7, Bi(x)0ula
= Ckf(u)’ag + f’(u)(b — (}’U)|OQ

and our numerical methods converge at least with order one,
we can simply take

Basloa = af (u)|aa + '(un) (b — atn) |og.

Dirichlet case: a =1, 51 = ... = Bs = 0 and q|sq = f(b).
(previously called f(z))
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Modified splitting

With the correction g, satisfying
Banloa = af (ua)|aa + f'(un) (by — ctn)|oq.
at hand, we consider the boundary-corrected splitting

atVn - DVn + an, Ban@Q - bn
at'Wn — f(Wn) — Qn,

and solve it on the time interval [t,, t,.1] by the standard
Lie or Strang approach.
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Modified Strang splitting

For a given initial value u,, first solve
atVn - DVn + an, BVn|6§2 - bn

with initial value v,(0) = u, to obtain v,(%).

Next, integrate O,w, = f(w,) — g, with initial value
wn(0) = v,(3) to obtain w,(7).

Finally, integrate once more
0tV = DVy + qn,  Biploq = by
but this time with initial value ¥,(0) = w,(7), and set
Uny1 = Srtn = V,(5)-
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Convergence results

Theorem. (L. Einkemmer, AO, arXiv:1601.02288, 2016)

The modified Strang splitting scheme is second-order
convergent. More precisely, the global error satisfies

|up — u(ty)|| < CT3(1 + |log 7]), 0<nT<T,
where C depends on T but is independent of 7 and n.

Orders of convergence for classic Strang splitting in various norms:

boundary type Lt L2 L%
bi=...=P4=0 1.50 1.25 1.00
dj with 8; #0 2.00 1.75 1.50
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Inhomogeneous Neumann boundary conditions

We take f(u) = u?, Q = (0,1) with by = 0 and b; = 1, 500 points.
Admissible correction gn(s,x) = x?un(1).

Strang Strang

step size £°° error order 22 error order
3.125e-02  1.806e-01 - 8.733e-02 -
1.562e-02 2.211e-04 9.67 2.130e-05 12.00
7.812e-03  7.684e-05 1.52 6.364e-06 1.74
3.906e-03  2.638e-05 1.54 1.895e-06 1.75
1.953e-03  8.897e-06 1.57 5.612e-07 1.76

Strang (modified) Strang (modified)
step size £°° error order 02 error order
3.125e-02  8.752e-02 - 5.471e-02 -
1.562e-02  1.495e-05 12.51 3.931e-06 13.76
7.812e-03  3.868e-06 1.95 9.773e-07 2.01
3.906e-03  1.002e-06 1.95 2.428e-07 2.01
1.953e-03  2.603e-07 1.94 6.023e-08 2.01
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Mixed Dirichlet/Neumann boundary conditions

Dirichlet b.c. (with by = 1) and Neumann b.c. (with b; = 1).
Correction is given by gn(s, x) = 1 + 2xu,(1).

Strang Strang

step size £°° error order 02 error order
1.250e-02  5.718e-03 - 5.815e-04 -
6.250e-03  2.736e-03 1.06 2.379e-04 1.29
3.125e-03  1.288e-03 1.09 9.652e-05 1.30
1.563e-03  5.904e-04 1.13 3.855e-05 1.32
7.813e-04  2.596e-04 1.19 1.499e-05 1.36

Strang (modified) Strang (modified)
step size £°° error order 02 error order
1.250e-02  8.222e-05 - 2.567e-05 -
6.250e-03  2.087e-05 1.98 6.426e-06 2.00
3.125e-03  5.292e-06 1.98 1.609e-06 2.00
1.563e-03  1.341e-06 1.98 4.031e-07 2.00
7.813e-04  3.395e-07 1.98 1.009e-07 2.00
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Various possible corrections

Problem with Dirichlet b.c. (bg = 1, by = 2) and 500 grid points.
The error is given at t = 0.1 with a step size 7 = 1.25 - 1073,

method correction £ error

Lie none 2.31e-03
Lie (mod.) harmonic: g =1+ x  1.20e-03
Lie (mod.) g=1+x+sinmx 2.43e-03
Lie (mod.) g=1+x+sinl0rx 3.21e-03

method correction > error

Strang none 1.84e-03
Strang (mod.) harmonic: g =1+ x  1.20e-06
Strang (mod.) g =1+ x+sinmx 1.27e-06
Strang (mod.) g =1+ x+sin10rx 7.02e-05
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