
Introduction to
Splitting Methods for PDEs

(by A. Ostermann∗ and M. Caliari)

M. Caliari

a.y. 2016/2017

∗University of Innsbruck (Austria)



Chapter 1

FFT Matlab/GNU Octave
friendly

1.1 1-dimensional

We consider, for N even,

û(x) =

N/2−1
∑

j=−N/2

ûj+1+N/2
eij2π(x−a)/(b−a)

√
b− a

=
N
∑

j=1

ûj
ei(j−1−N/2)2π(x−a)/(b−a)

√
b− a

=

=
N
∑

j=1

ûjφj(x)

where ûj is the approximation by trapezoidal quadrature rule of

∫ b

a

u(x)φj(x)dx

(we assume u(x) periodic in [a, b]) that is

uj =

∫ b

a

u(x)φj(x)dx =
√
b− a

∫ 1

0

u(a+ y(b− a))e−i(j−1)2πyeiNπydy ≈

≈
√
b− a

N

N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(j−1)2πyn = ûj

where yn = (n− 1)/N and xn = a+ (b− a)yn. We say that the 0 frequency
is in the center of spectrum. What is written in the box is the result of fft

1



([u(x1)e
iNπy1 , . . . , u(xN )e

iNπyN ] ). We consider now, for 1 ≤ j ≤ N/2,

fft ([u(x1), . . . , u(xN )])j =
N
∑

n=1

u(xn)e
−i(j−1)2πyn =

=
N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(N/2+j−1)2πyn =
N√
b− a

ûN/2+j

and, for N/2 < j ≤ N ,

fft ([u(x1), . . . , u(xN )])j =
N
∑

n=1

u(xn)e
−i(j−1)2πyn =

=
N
∑

n=1

(

u(xn)e
iNπyn

)

e−i(j−N/2−1)2πyn =
N√
b− a

ûj−N/2

taking into account that eiN2πyn = 1. Therefore uhat = fftshift (fft

(u)) * sqrt (b - a) / N. Then we have

ˆ̂vn =
N
∑

k=1

v̂kφk(xn) =
N
∑

k=1

v̂k
ei(k−1−N/2)2π(xn−a)/(b−a)

√
b− a

=

=
N√
b− a

1

N

(

N
∑

k=1

v̂ke
i(k−1)2πyn

)

e−iNπyn

What written in the box is the result of ifft (vhat). We observe that
e−iNπyn = (−1)n+1. We consider now

N
∑

k=1

ifftshift ([v̂1, . . . , v̂N ])ke
i(k−1)2πyn =

N/2
∑

k=1

v̂N/2+ke
i(k−1)2πyn +

N
∑

k=N/2+1

v̂k−N/2e
i(k−1)2πyn =

=
N
∑

k=N/2+1

v̂ke
i(k−N/2−1)2πyn +

N/2
∑

k=1

v̂ke
i(N/2+k−1)2πyn =

= (−1)n+1

N/2
∑

k=1

v̂ke
i(k−1)2πyn + (−1)n+1

N
∑

k=N/2+1

v̂ke
i(k−1)2πyn =

=

(

N
∑

k=1

v̂ke
i(k−1)2πyn

)

e−iNπyn

2



Therefore, vhathat=ifft (ifftshift (vhat)) * N / sqrt (b - a). It
is not difficult to prove that

û(xn) = u(xn)

that is, û(x) is an approximation of u(x) which interpolates u(x) at xn,
n = 1, 2, . . . , N .

3



Chapter 2

Linear systems

2.1 Unsymmetric systems

2.2 Symmetric systems

4



Chapter 3

Finite Differences

3.1 1-dimensional

On x = linspace (a, b, n)’, with h = (b - a) / (n - 1) we can con-
struct the discretization matrices of first derivative and second derivative

Dx = toeplitz (sparse (1, 2, -1 / (2 * h), 1, n), ...

sparse (1, 2, 1 / (2 * h), 1, n));

Dxx = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / h ^ 2, 1, n));

3.1.1 Boundary conditions

Dirichlet b.c.

Periodic b.c.

Neumann b.c.

3.2 2-dimensional

Let’s check how to construct a grid in Matlab/GNU Octave.

x = linspace (a, b, n)’;

hx = (b - a) / (n - 1);

Dx = toeplitz (sparse (1, 2, -1 / (2 * hx), 1, n), ...

sparse (1, 2, 1 / (2 * hx), 1, n));

Dxx = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / hx ^ 2, 1, n));

y = linspace (c, d, m)’;

hy = (d - c) / (m - 1);

Dy = toeplitz (sparse (1, 2, -1 / (2 * hy), 1, m), ...

5



sparse (1, 2, 1 / (2 * hy), 1, m));

Dyy = toeplitz (sparse ([1, 1], [1, 2], [-2, 1] / hy ^ 2, 1, m));

[X, Y] = ndgrid (x, y);

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

y

x

Figure 3.1: 2-dimensional grid.

For instance, for x = linspace (0, 4, 5)’ and y = linspace (2, 4, 3)’

it corresponds to the grid in Figure 3.1. Point i has coordinates X(i),Y(i).
Matrices of first and second partial derivatives are obtained by

DDx = kron (speye (m), Dx);

DDy = kron (Dy, speye (n));

DDxx = kron (speye (m), Dxx);

DDyy = kron (Dyy, speye (n));

Given a function U = f (X, Y), it is possible to approximate its partial
derivative with respect to x (but pay attention to the boundaries!) by

reshape (DDx * U(:), n, m)

6



Chapter 4

Matrix functions

4.1 Matrix exponential

The matrix exponential for A ∈ C
n×n is defined as

exp(A) =
∞
∑

k=0

Ak

k!

In order to numerically evaluate it, we may think to two simple strategies:
Taylor’s truncated series and eigenvalue decomposition.

4.1.1 Taylor’s truncated series

It is a strong temptation to approximate

exp(A) ≈
m
∑

k=0

Ak

k!
= Tm(A)

Unfortunately, it does not work, even in simple scalar cases (try to com-
pute the relative error e100(e−100 − Tm(−100)) for increasing values of m).
The problem is that Taylor’s series, although everywhere convergent, is fast
enough (that is it converges to machine precision before truncation errors
show up) only in a neighborhood of 0. To this aim, the scaling and squaring

technique may help. That is, taken s = 2j such that ‖A‖ < 1, E = exp(A/s)
is approximated by Tm(A/s) and later exp(A) is recovered by

E = E2 j times

7



Padé approximation

We can change the way exp(A/s) is approximated. For instance, a very
common approximation is the rational Padé one. That is

ez ≈ apz
p + ap−1z

p−1 + . . .+ a1z + a0
bqzq + bq−1zq−1 + . . .+ b1z + 1

= rp,q(z)

such that Tp+q(z) = rp,q(z) + O(zp+q+1) for z → 0. Let’s try for p = q = 1:
we have

ez ≈
1
2
z + 1

−1
2
z + 1

= r1,1(z)

By the way, this corresponds to the trapezoidal rule y1 =
(

1
2
k + 1

)

/
(

−1
2
k + 1

)

=
r1,1(k) for the solution of y′(t) = y(t), y(0) = 1 at t = k. The extension to
the matrix case is trivial

exp(A/s) ≈
(

−1

2
A/s+ I

)−1(
1

2
A/s+ I

)

Then, the scaling and squaring technique is used. In practice, the degree
p = q of common Padé approximations is around 10. Padé approximations
for the exponential share the following property

rp,p(−z) =
1

rp,p(z)

4.1.2 Eigenvalue decomposition

If A is diagonalizable, AV = V Λ, then

exp(A) = V exp(Λ)V −1

where exp(Λ) is easily seen to be diag(λ1, . . . , λn). Unfortunately, even in
this case it is possible to do very wrong, try with

A =

[

1 1
0 1 + ε

]

and compare in Matlab

A=[1,1;0,1+eps];,expm(A),[V,Lambda]=eig(A);,V*diag(exp(diag(Lambda)))/V

8



4.2 Matrix exponential-related functions

We would like to approximate the following functions

ϕℓ(A) =
∞
∑

k=0

Ak

(k + ℓ)!

We have ϕ0(z) = ez,

ϕ1(z) =
ez − 1

z

and, in general,

ϕℓ(z) = zϕℓ+1(z) +
1

ℓ!
, ℓ ≥ 0

ϕℓ(z) =
1

(ℓ− 1)!

∫ 1

0

e(1−θ)zθℓ−1dθ, ℓ ≥ 1

Of course it is possible a Taylor or Padé approximation in a neighborhood
of 0. The scaling and squaring technique is more involved, however. For
instance

ϕ1(z) =
1

2
(ez/2 + 1)ϕ1

(z

2

)

The function φ1 is very important. For instance, the solution of a linear,
constant coefficients system of ODEs

{

y′(t) = Ay(t) + b

y(t0) = y0

is
y(t) = y0 + (t− t0)ϕ1((t− t0)A)b

If one is interested only in ϕℓ(A)w, w ∈ C
n, then the following theorem can

be used (see [1]).

Theorem 1. Let A ∈ C
n×n, W = [w1, . . . , wp] ∈ C

n,p, τ ∈ C and

Ã =

[

A W
0 J

]

∈ C
(n+p)×(n+p), J =

[

0 Ip−1

0 0

]

∈ R
p×p

then for X = exp(τÃ) we have

X(1 : n, n+ j) =

j
∑

k=1

τ kϕk(τA)wj−k+1, j = 1, 2, . . . , p

9



Before giving the proof, let us consider a simple example: we want to
compute ϕ1(τA)w. We consider

Ã =

[

A w
0 0

]

and compute X = exp(τÃ), extract the first n rows, last column and divide
by τ .

n=4;

tau=rand;

A=rand(n);

w=rand(n,1);

Atilde=[A,w;zeros(1,n),0];

X=expm(tau*Atilde);

X(1:n,n+1)/tau

(tau*A)\((expm(tau*A)-eye(n))*w)

If interested into exp(τA)v + τϕ1(τA)w, we can do

n=4;

tau=rand;

A=rand(n);

v=rand(n,1);

w=rand(n,1);

eta=2^(-ceil(log2(norm(w,1))));

Atilde=[A,eta*w;zeros(1,n),0];

X=expm(tau*Atilde)*[v;1/eta];

X(1:n)

expm(tau*A)*v+tau*((tau*A)\((expm(tau*A)-eye(n))*w))

The use of the parameter η is for numerical stability (see [1]).
The possibility to compute ϕℓ(A)w without computing ϕℓ(A) is similar to

the possibility to compute the solution of Ax = w without computing A−1.

Proof. We start computing

Ã2 =

[

A W
0 J

] [

A W
0 J

]

=

[

A2 AW +WJ
0 J2

]

and we easily get

Ãk =

[

Ak Mk

0 Jk

]

10



with M0 = 0, M1 = W , Mk = Ak−1W +Mk−1J . Then WJ(:, j) = wj−1 and
JJ(:, j) = J(:, j − 1) for 1 ≤ j ≤ p where we define w0 = J(:, 0) = 0. Thus

Mk(:, j) = Ak−1wj + (Ak−2W +Mk−2J)J(:, j) =

= Ak−1wj + Ak−2wj−1 +Mk−2J(:, j − 1) =

=

min{k,j}
∑

i=1

Ak−iwj−i+1

Moreover

X(1 : n, n+ 1 : n+ p) =
∞
∑

k=0

τ kMk

k!
=

∞
∑

k=1

τ kMk

k!

and now we can compute

X(1 : n, n+ j) =
∞
∑

k=1

τ kMk(:, j)

k!
=

∞
∑

k=1

1

k!





min{j,k}
∑

i=1

τ i(τA)k−iwj−i+1



 =

=

j
∑

i=1

τ i

(

∞
∑

k=i

(τA)k−i

k!

)

wj−i+1 =

=

j
∑

i=1

τ i

(

∞
∑

k=0

(τA)k

(k + i)!

)

wj−i+1 =

j
∑

i=1

τ iϕi(τA)wj−i+1

11



Bibliography

[1] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix
exponential with an application to exponential integrators. SIAM J. Sci.

Comput., 33(2):488–511, 2011.

12


