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Chapter 1

Sobolev spaces

Some very nice examples are in [2].

1.1 Hm(Ω)

1.1.1 Ω ⊆ R

H1(Ω)

We can define H1(Ω) in the following way: it is the subspace of L2(Ω) of
functions u for which there exists g ∈ L2(Ω) such that

∫

Ω

uϕ′ = −
∫

Ω

gϕ ∀ϕ ∈ C∞
c (Ω)

We will denote g by u′. This definition is equivalent to the definition with
distributional derivatives.

Theorem 1. If u ∈ H1(Ω), there exists (unique) ũ ∈ C(Ω̄) such that

u = ũ almost everywhere

and

ũ(x)− ũ(y) =

∫ x

y

u′(t)dt

We will call ũ the continuous representative of the class of equivalence of
u. We will often indicate it simply by u when necessary. For instance, if we
want to write u(x0), x0 ∈ Ω. The scalar product in H1(Ω) is

(u, v) =

∫

Ω

uv +

∫

Ω

u′v′

with the inducted norm.
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8 CHAPTER 1. SOBOLEV SPACES

Hm(Ω)

We can define Hm(Ω) in the following way: it is the subspace of L2(Ω) of
functions u for which there exists g1, g2, . . . , gm ∈ L2(Ω) such that

∫

Ω

uϕ(j) = (−1)j
∫

Ω

gjϕ ∀ϕ ∈ C∞
c (Ω)

We will denote gj by u
(j) (u′, u′′, . . . , u(m)).

H1
0 (Ω)

H1
0 (Ω) is the closure of C1

c (Ω) in H1(Ω). If Ω = R, then H1
0 (R) = H1(R).

Since C∞
c (Ω) is dense in H1

0 (Ω), its closure is H1
0 (Ω) itself.

Theorem 2. If u ∈ H1(Ω), then u ∈ H1
0 (Ω) if and only if u = 0 on ∂Ω.

If Ω = (a, b), this is precisely a case in which the function u such that
u(a) = u(b) = 0 is the continuous representative (of the class of equivalence)
of u. Another way to characterize H1

0 (Ω) is the following: u ∈ H1
0 (Ω) if and

only if ū ∈ H1(R), where ū(x) = u(x) if x ∈ Ω and ū(x) = 0 if x ∈ R \ Ω.

1.1.2 Ω ⊆ R
n, n > 1

H1(Ω)

The definition is analogous, we have to replace the derivative with all the
partial derivatives. One main difference with the one-dimensional case is
that there are functions, like the following

u(x, y) =

(

log
1

√

x2 + y2

)k

, 0 < k < 1/2

that belongs to H1(Ω), Ω = B(0, 1) ⊂ R
2, but it is noway possible to find a

continuous representative ũ for it. So, Theorem 1 does not hold.

1.1.3 H1

0
(Ω)

H1
0 (Ω) is the closure of C

1
c (Ω) in H

1(Ω). If Ω = R
n, then H1

0 (R
n) = H1(Rn).

Since C∞
c (Ω) is dense in H1

0 (Ω), its closure is H1
0 (Ω) itself.

Now, Theorem 2 cannot be stated in the same way: in general, there is
no continuous representative which is zero at ∂Ω. Still, it is correct to think
to functions in H1

0 (Ω) as to the functions in H1(Ω) which “are zero at ∂Ω”.
Let us see in which sense.
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Theorem 3. If ∂Ω is sufficiently regular and u ∈ H1(Ω) ∩ C(Ω̄), then u ∈
H1

0 (Ω) if and only if u = 0 on ∂Ω.

Moreover, it is possible to characterize H1
0 (Ω) as above: u ∈ H1

0 (Ω) if and
only if ū ∈ H1(Rn), where ū(x) = u(x) if x ∈ Ω and ū(x) = 0 if x ∈ R \ Ω.

Theorem 4. If Ω is a bounded open subset of Rn with ∂Ω sufficiently regular,
then there exists a unique linear continuous operator T : H1(Ω) → L2(∂Ω)
such that

Tu = u|∂Ω if u ∈ H1(Ω) ∩ C(Ω̄)
‖Tu‖L2(∂Ω) ≤ C‖u‖H1(Ω)

The operator T is called trace operator and the function Tu ∈ L2(∂Ω) is
called trace of u on ∂Ω.

It is in fact not necessary to consider ∂Ω: if Γ ⊂ R
n−1 is sufficiently

regular, it is possibile to define the trace operator

T : H1(Ω) → L2(Γ)

in the same way. The operator T is not surjective on L2(∂Ω). The set of
functions in L2(∂Ω) which are traces of functions in H1(Ω) is a subspace of
L2(∂Ω) denoted by H1/2(∂Ω). We have H1(∂Ω) ⊆ H1/2(∂Ω) ⊆ H0(∂Ω) =
L2(∂Ω). If u is more regular, so is u|∂Ω in the sense that

T : Hk(Ω) → Hk−1/2(∂Ω) ⊆ Hk−1(∂Ω)

Given u ∈ H1(Ω) and uD ∈ H1/2(∂Ω), if we require that “u = uD on
∂Ω” or “u|∂Ω = uD”, we really mean that Tu = uD (almost everywhere). We
notice that for n > 1, the functions in H1/2(∂Ω) may be discontinuous. In
fact, if you take, for n = 2,

u(x, y) =

(

ln
1

√

x2 + y2

)k

, 0 < k <
1

2

then u ∈ H1(B(0, 1)) and it is not conitnuous. Now you can consider as
domain half of the disk B(0, 1): then the trace of u at the diameter is still
not a continuous function. On the other hand, functions in H1/2(∂Ω) cannot
have jumps.

Finally, we can define

H1
0 (Ω) = ker(T ) = {u ∈ H1(Ω) : Tu = 0}
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We can consider the following line source for Γℓ a line in Ω ⊂ R
2 and v ∈

H1
0 (Ω)

ℓ(v) =

∫

Γℓ

Tvdγ

Clearly, ℓ : H1 → R and

|ℓ(v)| ≤
∫

Γℓ

|Tv| dγ
C.–S.

≤ C ‖Tv‖L2(Γℓ)
≤ C ‖v‖H1(Ω)

therefore it is bounded.

1.2 Embeddings (see [1, p. 85])

Given an open bounded set Ω ⊂ R
n, we define Cm(Ω̄) as the subset of Cm(Ω)

of the functions u for which Dαu is bounded and uniformly continuous on Ω
for 0 ≤ |α| ≤ m. It is a Banach space with the norm

‖u‖Cm(Ω̄) = max
0≤|α|≤m

sup
x∈Ω

|Dαu(x)|

If Ω ⊂ R
n is “sufficiently regular” and m > n/2, then

Hj+m(Ω) → Cj(Ω̄), j = 0, 1, . . .

We mean that if u ∈ Hj+m(Ω) there exists ũ ∈ Cj(Ω̄) such that ũ = u in
Hj+m(Ω) and

‖ũ‖Cj(Ω̄) ≤ K‖u‖Hj+m(Ω)



Chapter 2

Triangulations

2.1 Quasi-uniform onedimensional discretiza-

tion

Given the interval [0, 1] and a discretization Tn of n + 2 points {xi}n+1
i=0 , we

say it is a quasi-uniform discretization if

(n+ 1) · hmin > ε > 0

where hmin = min1≤i≤n+1{xi − xi−1} and ε does not depend on n. For in-
stance, the discretization given by xi = i/(n+1) is, of course, quasi-uniform.
If we consider xi = (i/(n+ 1))2, we have

(n+ 1) · hmin =
(n+ 1)

(n+ 1)2

and therefore it is not quasi-uniform. If we consider xi = 1/2− cos(iπ/(n+
1))/2 we have

(n+ 1)
− cos iπ

n+1
+ cos (i−1)π

n+1

2
= (n+ 1) sin

(2i− 1)π

2(n+ 1)
sin

π

2(n+ 1)

from which
(n+ 1) · hmin = (n+ 1) sin2 π

2(n+ 1)

and therefore it is not quasi-uniform.
Finally, if we consider a discretization given by n+ 1 intervals of length

h0, h0r, . . . , h0r
n

with r > 1, we find that

h0 =
r − 1

rn+1 − 1
is the minimum interval and (n+ 1) · h0 is not bounded from below.
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2.2 Two-dimensional triangulations

We have a set of sites S = {s1, s2, . . . , sm} in R
2, assuming that no four sites

are co-circular.

The circumcenter of a triangle is the point where the three (perpendicu-
lar) bisectors meet. It is the center of triangle’s circumcircle.

A graph is a set of sites and arcs (called edges) connecting some of the
sites.

A planar graph is a graph with no intersecting edges.

A planar straight line graph is a planar graph whose edges are segments.

A connected graph is a graph in which any pairs of sites is connected by
a finite sequence of edges.

The convex hull of a set of sites is the smallest convex set containing all
the points.

The bisectors between pairs of sites are straight lines that partition the
plane intom convex regions, one corresponding to each site si (by induction).
Each region is called Voronoi polygon of si: it is the set of points which are
closer to si than to the remaining sites in S. The partition of the plane is
called a Voronoi diagram of S. The vertices and the edges of the convex
regions are called Voronoi vertices and Voronoi edges.

Proposition 1. The number of Voronoi vertices is 2(m − 1) − h and the
number of Voronoi edges is 3(m − 1) − h where h is the number of vertices
on the convex hull of S.

Proof. First of all, we consider a circle intersecting the unbounded edges
of the Voronoi diagram and consider the resulting planar conncected graph
made of Voronoi vertices, Voronoi edges and the additional edges for each
uonbounded Voronoi polygon. Of course, they correspond to the number of
vertices in the convex hull of S, and therefore they are h. For this graph,
2E = 3V , where E is the number of edges and V the number of points. In
fact, there are three edges departing from any point and in this way any
edge is counted twice. Then, we use Euler’s formula V − E + F = 2 getting
V = 2(F − 2) and E = 3(F − 2). With respect to Figure 2.1 it is V = 8,
E = 12 and F = 6. The number of Voronoi vertices is V −h and the number
of Voronoi edges is E−h. Since F = m+1, we have 2(m+1−2)−h Voronoi
vertices and 3(m+ 1− 2)− h Voronoi edges.

Proposition 2. The circle with center a Voronoi vertex and passing through
the (three) sites that defines its center has no other sites in its interior.
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Figure 2.1: Voronoi’s diagram.

Proof. By definition the center is the Voronoi vertex closest to the three sites.
If another site would be inside the circle, then it would be the closest to the
vertex, in contradiction with its property.

The dual of a Voronoi diagram is obtained by joining pairs of sites whose
Voronoi polygons are adjacent.

A triangulation of sites is a set of straight line segments which intersect
only at the sites and so that every region internal to the convex hull is a
triangle.

Proposition 3. The dual of a Voronoi diagram is a triangulation.

It is called Delaunay triangulation. It is unique if no four sites are co-
circular. Otherwise, the dual of a Voronoi diagram contains regions which
are not triangles. In this case, any triangulation obtained by adding edges
to the dual of a Voronoi diagram is a Delaunay triangulation.

A Delaunay triangulation maximizes the minimum angle of the triangles
among all the triangulations.

2.3 Some other definitions

A family of triangulations Th is said regular if there exists a constant δ > 0,
indipendent of h, such that

hk
ρk

≤ δ, ∀T k
h ∈ Th
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where hk is the diameter and ρk the radius of the inscribed circle of the
triangle T k

h . Regularity excludes very deformed triangles, that is with small
angles. In this sense, Delaunay triangulations are optimal.

2.3.1 Minimum angle of a triangle of a regular trian-
gulation

Given ρ the radius of the inscribed circle in a triangle of edges a, b and c,
area A and semiperimeter p we have

A = (a+ b+ c)ρ = pρ

On the other hand, by Erone’s formula

ρ =

√

p(p− a)(p− b)(p− c)

p
= (p− a)

√

(p− b)(p− c)

p(p− a)

Now, from

sin
α

2
=

√

1− cosα

2
, cos

α

2
=

√

1 + cosα

2
, cosα =

b2 + c2 − a2

2bc

we get

tan
α

2
=

√

(p− b)(p− c)

p(p− a)

and therefore

ρ = (p− a) tan
α

2

Then
h

(p− a) tan α
2

≤ δ

If the diameter h is a, the minimum value for a/(p − a) is 2, attained for
a = b = c. If not, h/(p− a) ≥ 2. Therefore,

tan
α

2
≥ 2

δ

Since this reasoning is independent of the choice of the angle, we conclude
that any angle has the same property. A related question is: how many
adjacent triangles are there? There are the three which share an edge with
the given triangle. Then, any adjacent triangle insists with an angle (bounded



2.4. ALGORITHMS 15

as seen) on one of the three vertices. Therefore, the number of adjacent
triangles is

n <
5π

2 arctan 2
δ

− 3

The number 5π is the sum of external angles of a triangle and −3 comes from
the fact that the three triangle sharing an edge insist with two angles.

2.3.2 Constrained triangulations

A constrained Delaunay triangulation of a planar straight line graph is a
triangulation in which each segment of the graph is present as a single edge
in the triangulation. It is not truly a Delaunay triangulation.

A conforming Delaunay triangulation of a planar straight line graph is a
true Delaunay triangulation in which each segment may have been subdivided
into several edges by the insertion of additional vertices, called Steiner points.

Steiner points are also inserted to meet constraints on the minimum angle
and maximum triangle area.

A constrained conforming Delaunay triangulation of a planar straight line
graph is a constrained Delaunay triangulation that includes Steiner points.
It is not truly a Delaunay triangulation, but usually takes fewer vertices.

2.4 Algorithms

There are several algorithms to make a Delaunay triangulation. It holds the
folowing

Proposition 4. The Delaunay triangulation of a set of m sites can be com-
puted in O(m logm) operations, using O(m) storage.

See, for instance, the code [13].
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Chapter 3

Strong, weak, distributional, δ

3.1 Strong or distributional?

We may think to
− uxx = f, x ∈ Ω = (0, 1) (3.1)

(which is usually called strong formulation) in a distributional sense. Let
v ∈ C∞

c (Ω) and u ∈ H1
0 (Ω). Then Lu defined by

Lu(v) =

∫ 1

0

uv

is a distribution (it belongs to (L2(Ω))′, too). As usual, we identify u and
Lu. Since u ∈ H1

0 (Ω), it has a distributional derivative ux ∈ L2(Ω) such that

〈D1Lu, v〉 = −〈Lu, vx〉 = −
∫ 1

0

uvx =

∫ 1

0

uxv

We consider now the distribution Lux
applied to vx

〈Lux
, vx〉 =

∫ 1

0

uxvx = −
∫ 1

0

uvxx = 〈−D2Lu, v〉

Moreover, if f ∈ L2(Ω) we have

∫ 1

0

fv = 〈Lf , v〉

Therefore, from the weak formulation (valid for u ∈ H1
0 (Ω) and f ∈ L2(Ω))

we have
〈−D2Lu, v〉 = 〈Lf , v〉

17
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of which (3.1) is just a short notation. This means also that, if f ∈ L2(Ω),
then u ∈ H2(Ω). In this sense, we can also write

−uxx = 4δ(x− 1/2)

where we mean
〈−D2Lu, v〉 = 〈Lδ 1

2

, v〉 = v
(

1
2

)

3.2 FD for Poisson problem with δ

In order to use Finite Differences with

−uxx = 4δ(x− 1/2), x ∈ (0, 1)

we have to split the domain into its left and right parts. We get, easily,

−uLxx = 0, 0 < x <
1

2

−uRxx = 0,
1

2
< x < 1

uL(0) = uR(0)

uL
(

1
2

)

= uR
(

1
2

)

and then we take the weak form
∫ 1

0

uxvx = 4v
(

1
2

)

split the integral and integrate by parts

vuLx
∣

∣

1

2

0
−
∫ 1

2

0

uLxxvx+ vu
R
x

∣

∣

1
1

2

−
∫ 1

1

2

uRxxvx = v
(

1
2

)

uLx
(

1
2

)

− v
(

1
2

)

uRx
(

1
2

)

= 4v
(

1
2

)

from which
uLx
(

1
2

)

− uRx
(

1
2

)

= 4

m = 11; % odd number, at least 5

x = linspace(0,1,m)’;

h = 1/(m-1);

A = toeplitz(sparse([1,1],[1,2],[2,-1]/h^2,1,m+1));

% the unknown is u = [uL;uR]

A(1,1:2) = [2/h^2,0]; % uL(0)=0

A((m+1)/2,:) = 0;
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A((m+1)/2,(m+1)/2:(m+1)/2+1) = [-1,1]; % uL(1/2)=uR(1/2)

A((m+1)/2+1,:) = 0;

A((m+1)/2+1,(m+1)/2-2:(m+1)/2+3) = [1,-4,3,3,-4,1]/(2*h); % uL’(1/2)-uR’(1/2)=4

A(m+1,m:m+1) = [0,2/h^2]; % uR(1)=0

rhs = zeros(m+1,1);

rhs((m+1)/2+1) = 4;

u=A\rhs;

uL = u(1:(m+1)/2);

uR = u((m+1)/2+1:m+1);

plot(x(1:(m+1)/2),uL,’*’,x((m+1)/2:m),uR,’o’)
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Chapter 4

Approximation theory

See [7].

4.1 One dimension

If w ∈ H1
0 (0, 1) and w|T k

h
∈ C2(T k

h ) for each T
k
h ∈ Th, then by Rolle’s theorem

∣

∣

∣
(w − Ihw)

′|T k
h
(x)
∣

∣

∣
=

∣

∣

∣

∣

∫ x

zk

(w − Ihw)
′′|T k

h
(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

zk

w′′|T k
h
(t)dt

∣

∣

∣

∣

≤

≤ hk max
x∈T k

h

|w′′(x)|
(4.1)

By the way we have

∣

∣

∣
(w − Ihw)

′(x)|T k
h

∣

∣

∣
≤
∫ xk

xk−1

|w′′(x)|dx

which is true even if w ∈ H2(T k
h ), since w

′ is absolutely continuous. Hence

|w − Ihw|2H1 =
K
∑

k=1

∫

T k
h

|(w − Ihw)
′(x)|2dx ≤

K
∑

k=1

hk

(

hk max
x∈T k

h

|w′′(x)|
)2

If we take h = max1≤k≤K hk, then

K
∑

k=1

hk

(

hk max
x∈T k

h

|w′′(x)|
)2

≤
(

h max
1≤k≤K

max
x∈T k

h

|w′′(x)|
)2 K
∑

k=1

hk =

(

h max
1≤k≤K

max
x∈T k

h

|w′′(x)|
)2

and hence
|w − Ihw|H1 ≤ h max

1≤k≤K
max
x∈T k

h

|w′′(x)|

21
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Then we can write

(w − Ihw)|T k
h
(x) =

∫ x

xk−1

(w − Ihw)
′|T k

h
(t)dt

(4.1)

≤ hk · hk max
x∈T k

h

|w′′(x)|

and therefore

‖w − Ihw‖2L2 =
K
∑

k=1

∫

T k
h

|(w − Ihw)(x)|2dx ≤
K
∑

k=1

hk

(

h2k max
x∈T k

h

|w′′(x)|
)2

and hence
‖w − Ihw‖L2 ≤ h2 max

1≤k≤K
max
x∈T k

h

|w′′(x)|

Finally
‖w − Ihw‖H1(Ω) ≤ h

√
1 + h2 max

1≤k≤K
max
x∈T k

h

|w′′(x)|

Now we introduce the space

H2(Ω, Th) = {w ∈ H1
0 (Ω) : w|T k

h
∈ H2(T k

h ) ∀k = 1, . . . , K}

with the broken seminorm and norm

|w|2H2(Ω,Th)
=

K
∑

k=1

|w|2H2(T k
h
)

‖w‖2H2(Ω,Th)
=

K
∑

k=1

‖w‖2H2(T k
h
)

We have

∣

∣

∣
(w − Ihw)

′|T k
h
(x)
∣

∣

∣
≤
∫ xk

xk−1

|w′′(x)|dx
C.–S.

≤
(

∫ xk

xk−1

12dx

)1/2(
∫ xk

xk−1

|w′′|2dx
)1/2

≤

≤ h
1/2
k

(

∫ xk

xk−1

|w′′|2dx
)1/2

and therefore

∫ xk

xk−1

|(w − Ihw)
′(x)|2 dx ≤

∫ xk

xk−1

(

hk

∫ xk

xk−1

|w′′(x)|2dx
)

dx =

= h2k

∫ xk

xk−1

|w′′(x)|2dx
(4.2)
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Hence

|w − Ihw|H1(Ω) ≤

√

√

√

√

K
∑

k=1

h2k|w|2H2(T k
h
)
≤ h|w|H2(Ω,Th) ≤ h‖w‖H2(Ω,Th)

Moreover

(w − Ihw)|T k
h
(x) =

∫ x

xk−1

(w − Ihw)
′(t)dt

and therefore

∣

∣

∣
(w − Ihw)|T k

h
(x)
∣

∣

∣
≤
∫ xk

xk−1

|(w − Ihw)
′(x)| dx

C.–S.

≤ h
1/2
k

(

∫ xk

xk−1

|(w − Ihw)
′(x)|2dx

)1/2
(4.2)

≤

≤ h
1/2
k

(

h2k

∫ xk

xk−1

|w′′(x)|2dx
)1/2

Hence
∫ xk

xk−1

|w − Ihw|2 dx ≤ hkh
3
k

∫ xk

xk−1

|w′′(x)|2dx

and

‖w − Ihw‖L2 ≤

√

√

√

√

K
∑

k=1

h4k|w|2H2(T k
h
)
≤ h2|w|H2(Ω,Th) ≤ h2‖w‖H2(Ω,Th)

Finally,

‖w − Ihw‖H1(Ω) ≤

√

√

√

√

K
∑

k=1

h2k(1 + h2k)|w|2H2(T k
h
)
≤ h

√
1 + h2|w|H2(Ω,Th) ≤

≤ h
√
1 + h2‖w‖H2(Ω,Th)

4.1.1 Example

If we consider
{

−uxx = fn x ∈ Ω = (0, 1)

u(0) = u(1) = 0

with

fn =











0 x ≤ 1
2
− 1

n

2n 1
2
− 1

n
< x < 1

2
+ 1

n

0 x ≥ 1
2
+ 1

n
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then the corresponding solution un ∈ C2(T k
h ) if the points 1

2
± 1

n
are dis-

cretization points (even if n → ∞), while un ∈ H2(Ω) (and therefore un ∈
H2(Ω, Th)) for any set of discretization point, but, if n→ ∞, it is only in the
space H2(Ω, Th) if

1
2
is a discretization point.

4.1.2 Nodal superconvergence

For the one-dimensional Poisson problem

a(u, v) =

∫ 1

0

uxvx = ℓ(v)

we have uh = Ihu, where uh is the solution of

a(uh, ϕi) = ℓ(ϕi), ∀ϕi

In fact

0 =

∫ 1

0

(uh(x)− u(x))′ϕ′
i(x)dx =

K
∑

k=1

∫

T k
h

(uh(x)− u(x))′ϕ′
i(x)dx =

=
K
∑

k=1

(uh(x)− u(x))ϕ′
i(x)|xk

xk−1
−
∫

T k
h

(uh(x)− u(x))ϕ′′
i (x)dx =

=
(uh(xi)− u(xi))− (uh(xi−1)− u(xi−1))

hi
+

− (uh(xi+1)− u(xi+1))− (uh(xi)− u(xi))

hi+1

and therefore the vector uh(xi)− u(xi) satisfies the linear system

Ah







uh(x1)− u(x1)
...

uh(xn)− u(xn)






= 0

with Ah the (SPD) stiffness matrix.

4.1.3 H1 norm general bound

We have, for wh ∈ Xh, and a(·, ·) coercive and continuous

a(u−uh, u−uh) = a(u−uh, u−wh)+a(u−uh, wh−uh) = a(u−uh, u−wh)
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Therefore

α‖u−uh‖2H1 ≤ a(u−uh, u−uh) = a(u−uh, u−wh) ≤ β‖u−uh‖H1‖u−wh‖H1

from which

‖u− uh‖H1 ≤ β

α
inf

wh∈Xh

‖u− wh‖H1

If a is symmetric, then we have

a(u− uh, u− uh) = inf
wh∈Xh

a(u− wh, u− wh)

and thus
α‖u− uh‖2H1 ≤ inf

wh∈Xh

β‖u− wh‖2H1

which is sharper than the previous since β ≥ α.

4.1.4 Output functionals

We have the following results:

• if ℓO ∈ H−1(Ω) then
∣

∣ℓO(e)
∣

∣ ≤ C ‖e‖H1(Ω) ≤ Ch ‖u‖H2(Ω,Th)

• if ℓO ∈ L2(Ω)′ then
∣

∣ℓO(e)
∣

∣ ≤ C ‖e‖L2(Ω) ≤ Ch2 ‖u‖H2(Ω,Th)

They come from boundedness and common bounds on e. Moreover, with the
help of the ajoint variables ψ and φh

• if ℓO ∈ H−1(Ω) then
∣

∣ℓO(e)
∣

∣ ≤ Ch2 ‖u‖H2(Ω,Th)
‖ψ‖H2(Ω,Th)

that is, even in the more general case ℓO ∈ H−1(Ω), ℓO(e) ∈ O(h2).

Example

Given the discretization {xi}i, is

ℓO(e) = max
i

|e(xi)|

bounded in H1
0? Yes,

ℓO(e) = e(xī) =

∫ xī

0

e′(x)dx
C.–S.

≤ √
xī

(
∫ xī

0

|e′(x)|2 dx
)1/2

≤ 1·|e|H1 ≤ ‖e‖H1
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Chapter 5

Quadrature and assembly in
one dimension

5.1 Quadrature formulas

x1 x2

h1

ϕ1

xn

hn−1

xm+1xm−2

ϕm+1ϕm−1 ϕm

xm−1 xm

hmhm−1

Let us consider the problem to approximate

∫ 1

0

f(x)ϕi(x)dx =

∫ xi+1

xi−1

f(x)ϕi(x)dx

for a “inner” hat test function ϕi(x). Let us suppose for semplicity that
hi = h, i = 1, 2, . . . , n− 1.

5.1.1 By interpolation (mass matrix)

If we consider to approximate

f(x) ≈
n
∑

j=1

f(xj)ϕj(x)

27
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then
∫ xi+1

xi−1

f(x)ϕi(x)dx ≈
∫ xi+1

xi−1

(

i+1
∑

j=i−1

f(xj)ϕj(x)

)

ϕi(x)dx =

=

∫ xi

xi−1

(f(xi−1)ϕi−1(x) + f(xi)ϕi(x))ϕi(x)dx+

+

∫ xi+1

xi

(f(xi)ϕi(x) + f(xi+1)ϕi+1(x))ϕi(x)dx =

=
h

6
f(xi−1) +

(

h

3
+
h

3

)

f(xi) +
h

6
f(xi+1)

The error in the approximation of a function f ∈ C2 by piecewise linear
polynomials is proportional to h2. Therefore

∫ xi+1

xi−1

f(x)ϕi(x)dx =

∫ xi+1

xi−1

(

m
∑

j=1

f(xj)ϕj(x) +O(h2)

)

ϕi(x)dx =

=
h

6
f(xi−1) +

(

h

3
+
h

3

)

f(xi) +
h

6
f(xi+1)+

+O(h2)

∫ xi+1

xi−1

ϕi(x)dx =

=
h

6
f(xi−1) +

(

h

3
+
h

3

)

f(xi) +
h

6
f(xi+1) +O(h2)h

Therefore the global error is O(h3).

5.1.2 By trapezoidal rule

We can approximate
∫ xi+1

xi−1

f(x)ϕi(x)dx =

∫ xi

xi−1

f(x)ϕi(x)dx+

∫ xi+1

xi

f(x)ϕi(x)dx ≈

≈ (0 + f(xi))
h

2
+ (f(xi) + 0)

h

2

The quadrature error for the first intergral is

h3

12
(f(x)ϕi(x))

′′|ξi−1
=
h3

12

(

f ′′(ξi−1)
ξi−1 − xi−1

h
+

2f ′(ξi−1)

h

)

where ξi−1 is a point in (xi−1, xi). For the second integral we have an error

h3

12
(f(x)ϕi(x))

′′|ξi =
h3

12

(

f ′′(ξi)
xi+1 − ξi

h
− 2f ′(ξi)

h

)
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where ξi−1 is a point in (xi, xi+1). Their sum is

O(h3) +
h3

12

(

2f ′(ξi−1)

h
− 2f ′(ξi)

h

)

=

= O(h3)+
h3

12

(

2f ′(xi) + 2f ′′(ηi−1)(ξi−1 − xi)− 2f ′(xi)− 2f ′′(ηi)(ξi − xi)

h

)

=

= O(h3)

Therefore a global error O(h3) if f ∈ C2. The same consideration holds if we
consider quasi-uniform meshes.

Mass matrix by trapezoidal rule

Let us compute the mass matrix. We have

Mij =

∫ xi+1

xi−1

ϕj(x)ϕi(x)dx =

∫ xi

xi−1

ϕj(x)ϕi(x)dx+

∫ xi+1

xi

ϕj(x)ϕi(x)dx =

=











hi−1

6
if j = i− 1

hi−1+hi

3
if j = i

hi

6
if j = i+ 1

If we try to approximate by trapezoidal rule the computation of the mass
matrix, we get

Mij =

∫ xi+1

xi−1

ϕj(x)ϕi(x)dx =

∫ xi

xi−1

ϕj(x)ϕi(x)dx+

∫ xi+1

xi

ϕj(x)ϕi(x)dx ≈

≈ ϕj(xi)
hi−1

2
+ ϕj(xi)

hi
2

= δij
hi−1 + hi

2

It is equivalent to the operation of lumping, that is to sum up all the elements
of each row of the exact mass matrix.

5.1.3 By barycentric formulas

Let us start with the midpoint rule to approximate

∫ xi

xi−1

f(x)ϕi(x)dx+

∫ xi+1

xi

f(x)ϕi(x)dx ≈

f

(

xi−1 + xi
2

)

h

2
+ f

(

xi + xi+1

2

)

h

2
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With the same arguments above, the error is O(h3) if f ∈ C2. Then, we
substitute

f

(

xi−1 + xi
2

)

=
f(xi−1) + f(xi)

2
+O(h2) = f̄i−1 +O(h2)

f

(

xi + xi+1

2

)

=
f(xi) + f(xi+1)

2
+O(h2) = f̄i +O(h2)

keeping the same O(h3) global error. The same consideration holds if we
consider quasi-uniform meshes. The final form can be written as

∫ xi

xi−1

f(x)ϕi(x)dx+

∫ xi+1

xi

f(x)ϕi(x)dx ≈

≈ f̄i−1

∫ xi

xi−1

ϕi(x)dx+ f̄i

∫ xi

xi−1

ϕi(x)dx =

= f̄i−1
h

2
+ f̄i

h

2

5.1.4 By Gauss–Legendre quadrature

Gauss–Legendre quadrature with one node coincides with the midpoint rule.
With two nodes, the nodes in the interval (−1, 1) are ±

√

1/3 with associated
weights both equal to 1. The error for the approximation of

∫ xi

xi−1

f(x)ϕi(x)dx+

∫ xi+1

xi

f(x)ϕi(x)dx

is O(h5) if f ∈ C4. This formula is the qf2pE formula used by FreeFem++,
while the default formula used by FreeFem++ is qf3pE, the Gauss–Legendre
formula with nodes 0 and ±

√

3/5 with associated weights 8/9 and 5/9.

5.2 Assembly

Let us see a general implementation strategy for FEM. Suppose we have
M elements {ℓm}mm=1 (in the one-dimensional case, the intervals) with the
associate points. With respect to Figure 5.1, where n =M + 1, we have

ℓm,1 = m, ℓm,2 = m+ 1, 1 ≤ m ≤M

which means that points xm and xm+1 are associate to element ℓm. The two
basis functions which have value 1 on node ℓm,k and 0 on node ℓm,3−k, for



5.2. ASSEMBLY 31

ℓ2ℓ1

x1 x2 xn

ℓMℓmℓm−1

xm+1xm−1 xm

Figure 5.1: Points (bottom) and elements (top).

k = 1, 2, have the form (on ℓm)

φℓm,1
(x) =

αm,1 + βm,1x

∆m

=

∣

∣

∣

∣

1 1
x xℓm,2

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
xℓm,1

xℓm,2

∣

∣

∣

∣

=
xℓm,2

− x

xℓm,2
− xℓm,1

=
xm+1 − x

hm

φℓm,2
(x) =

αm,2 + βm,2x

∆m

=

∣

∣

∣

∣

1 1
xℓm,1

x

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
xℓm,1

xℓm,2

∣

∣

∣

∣

=
−xℓm,1

+ x

xℓm,2
− xℓm,1

=
−xm + x

hm

(we mean that ϕℓm,k
(x) ≡ φℓm,k

(x) on ℓm) and will contribute to the elements
aℓm,kℓm,k

and aℓm,kℓm,3−k
(and its symmetric) of the stiffness matrix

aℓm,kℓm,k
=

∫ 1

0

ϕ′
ℓm,k

(x)ϕ′
ℓm,k

(x)dx

aℓm,kℓm,3−k
=

∫ 1

0

ϕ′
ℓm,k

(x)ϕ′
ℓm,3−k

(x)dx















k = 1, 2

and to the element f̃ℓm,k
of the right hand side

f̃ℓm,k
= approximation of

∫ 1

0

f(x)ϕℓm,k
(x)dx

in this way

aij =
∑

ℓm,k=i
ℓm,h=j

Aℓm,kℓm,h

f̃i =
∑

ℓm,k=i

F̃ℓm,k

where

Aℓm,kℓm,h
=

∫

ℓm

φ′
ℓm,k

(x)φ′
ℓm,h

(x)dx

F̃ℓm,k
= approximation of

∫

ℓm

f(x)φℓm,k
(x)dx
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Hence, for inner nodes,

aℓm,1ℓm,1
= Aℓm−1,2ℓm−1,2

+ Aℓm,1ℓm.1
=

=

∫

ℓm−1

(

βm−1,2

∆m−1

)2

dx+

∫

ℓm

(

βm,1

∆m

)2

dx =

=

∫

ℓm−1

(

1

∆m−1

)2

dx+

∫

ℓm

(−1

∆m

)2

dx =
1

|∆m−1|
+

1

|∆m|

aℓm,1ℓm,2
= aℓm,2ℓm,1

= Aℓm,1ℓm,2
=

∫

ℓm

βm,1

∆m

βm,2

∆m

dx =

∫

ℓm

− 1

∆m

1

∆m

dx =

= − 1

|∆m|
f̃ℓm,1

= F̃ℓm−1,2
+ F̃ℓm,1

Hence, the assembly is done by

• aij = 0, 1 ≤ i, j ≤ n, f̃i = 0, 1 ≤ i ≤ n

• for m = 1, . . . ,M

for k = 1, . . . , 2

aℓm,kℓm,k
= aℓm,kℓm,k

+ Aℓm,kℓm,k
, f̃ℓm,k

= f̃ℓm,k
+ F̃ℓm,k

for h = k + 1, . . . , 2 (h = 1, . . . , 2, h 6= k non-symm. case)

aℓm,kℓm,h
= aℓm,kℓm,h

+ Aℓm,kℓm,h

aℓm,hℓm,k
= aℓm,kℓm,h

(only symm. case)

end

end

end

5.2.1 Barycentric coordinates

Given the element ℓm, it is possible to define its barycentric coordinates in
this way: a point x in ℓm is defined by the couple (λℓm,1

(x), λℓm,2
(x)) such

that

x = xℓm,1
λℓm,1

(x) + xℓm,2
λℓm,2

(x)

The coordinates λℓm,k
(x) satisfy λℓm,k

(xℓm,h
) = δhk and λℓm,1

(x)+λℓm,2
(x) = 1.

Therefore, it is λℓm,k
(x) = ϕℓm,k

(x).
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5.3 Some examples

1e+1 1e+2 1e+3
1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

m

er
ro

r

order 1.5

barycentric

trapezoidal

interpolation

GL2

Regularity C^0

1e+1 1e+2 1e+3
1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

m

er
ro

r

order 2.5

barycentric

trapezoidal

interpolation

GL2

Regularity C^1

1e+1 1e+2 1e+3
1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

m

er
ro

r

order 3.0

barycentric

trapezoidal

interpolation

GL2

Regularity C^2

1e+1 1e+2 1e+3
1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

m

er
ro

r

order 5.0

barycentric

trapezoidal
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Figure 5.2: Maximum error over i = 2, 3, . . . ,m− 1 between
∫ 1

0
f(x)ϕi(x)dx

and the quadrature formulas, for f(x) = |x − 1/2| 12 and f(x) = |x − 1/2| 32
(top) and f(x) = |x− 1/2| 52 and f(x) = |x− 1/2| 92 (bottom).

We consider the family of functions f(x) = |x − 1/2|p−1/2 ∈ Cp−1(0, 1),

p = 1, 2, 3, 5, and approximate
∫ 1

0
f(x)ϕi(x)dx. The results are in Figure 5.2.

We then consider the Poisson problem
{

−u′′(x) = f(x) x ∈ (0, 1)

u(0) = u(1) = 0
(5.1)

with f(x) = |x− 1/2|p−1/2, p = 1, 3. The exact solution is

u(x) = − 4

(2p+ 3)(2p+ 1)

(

∣

∣

∣

∣

x− 1

2

∣

∣

∣

∣

p+3/2

−
(

1

2

)p+3/2
)

and it is u ∈ Hp+1(0, 1) (and u ∈ Cp+1(0, 1), too). The results are in Fig-
ure 5.3. The right hand side was evaluated either exactly (high precision
quadrature formula) or by the barycentric formulas.
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Figure 5.3: L2 error for the Poisson problem 5.1, p = 1 (top) and p = 3
(bottom).

5.4 Exercises

1. Consider the Poisson problem, written for semplicity in the strong form,

{

“−∂xxu = −2δ(x− 1/2)” x ∈ (0, 1)

u(0) = u(1) = 0
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(a) Find the analytical solution.

(b) What is the error in the energy norm (H1 seminorm) proportional
to when an approximate solution is computed on a uniform grid
with an odd number of points? What is the error in the L2 norm
proportional to? Verify your answers by implementation.

(c) Do the same as above with an even number of points.

(d) Why in this case the classical error bound in the H2 broken semi-
norm does not work?
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Chapter 6

Quadrature and assembly in
two dimensions

6.1 Quadrature formulas

6.1.1 By interpolation (mass matrix)

6.1.2 By trapezoidal rule
∫

ℓm

g(x, y)dxdy ≈ |∆m|
g(xℓj,1 , yℓm,1

) + g(xℓm,2
, yℓm,2

) + g(xℓm,3
, yℓm,3

)

3

Mass matrix by trapezoidal rule

Let us start computing

Mij =
∑

ℓm,k=i
ℓm,h=j

∫

ℓm

φℓm,h
(x, y)φℓm,k

(x, y)dxdy =



























∑

ℓm,k=i

|∆m|
6

, i = j

∑

ℓm,k=i
ℓm,h=j

|∆m|
12

, i 6= j

If we take the sum over j, we get

∑

j

Mij =
∑

ℓm,k=i

|∆m|
6

+ 2
∑

ℓm,k=i

|∆m|
12

=
∑

ℓm,k=i

|∆m|
3

The factor 2 comes from the fact that if a triangle has vertices i and j, then
there is another triangle with the same vertices. If we try to approximate by

37
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trapezoidal rule the computation of the mass matrix, we get

Mii ≈
∑

ℓm,k=i

|∆m|
3

Mij ≈ 0, i 6= j

It is equivalent to the operation of lumping, that is to sum up all the elements
of each row of the exact mass matrix.

6.1.3 By barycentric formulas
∫

Ω

f(x, y)ϕi(x, y)dxdy ≈
∑

ℓm,k=i

f̄m
|∆m|
3

where

f̄m =
f(xℓm,1

, yℓm,1
) + f(xℓm,2

, yℓm,2
) + f(xℓm,3

, yℓm,3
)

3

6.1.4 By Gauss–Legendre quadrature

The first Gauss–Legendre quadrature formula is
∫

ℓm

g(x, y)dxdy ≈ |∆m| g
(

xℓm,1
+ xℓm,2

+ xℓm,3

3
,
yℓm,1

+ yℓm,2
+ yℓm,3

3

)

= |∆m| g(xℓm , yℓm)

which is exact for g(x, y) ∈ P1. In fact, due to the properties of the centroid,

(x̄m, ȳm) = (xℓm , yℓm) =

(
∫

ℓm

xdxdy,

∫

ℓm

ydxdy

)

/ |∆m|

(you can see it even if you apply the trapezoidal rule to the linear functions
x and y). Now, we have

g(x, y) = g(xℓm , yℓm) +∇g · ((x, y)− (xℓm , yℓm))

and therefore
∫

ℓm

g(x, y)dxdy =

∫

ℓm

g(xℓm , yℓm)dxdy +

∫

ℓm

∇g · ((x, y)− (xℓm , yℓm)) dxdy =

= |∆m| g(xℓm , yℓm) +∇g ·
∫

ℓm

((x, y)− (xℓm , yℓm)) dxdy =

= |∆m| g(xℓm , yℓm) +∇g ·
(

|∆m| (xℓm , yℓm)−
∫

ℓm

(xℓm , yℓm)dxdy

)

=

= |∆m| g(xℓm , yℓm)
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There exist high order Gauss–Legendre quadrature formulas for triangles,
involving three (qf2pT), seven (qf5pT, the default in FreeFem++) or more
points.

6.2 Assembly

ℓj

ℓj,1 ℓj,2

ℓj,3

The assembly in the two-dimensional case is not much different from the
one-dimensional case.

First of all, the number of points is m and the number of triangles is n.
Then, we consider the basis function ϕℓm,k

which has value 1 on node ℓm,k

and 0 on nodes ℓm,h, h ∈ {1, 2, 3}, h 6= k of the triangle ℓm. It has the form

k

φℓm,k
(x, y) =

αm,k + βm,kx+ γm,ky

2∆m

=

∣

∣

∣

∣

∣

∣

1 1 1
xℓm,1

x xℓm,3

yℓm,1
y yℓm,3

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

1 1 1
xℓm,1

xℓm,2
xℓm,3

yℓm,1
yℓm,2

yℓm,3

∣

∣

∣

∣

∣

∣

where ∆m is the area (with sign) of triangle ℓm. We need to compute

∫

ℓm

(

∂φℓm,k
(x, y)

∂x

∂φℓm,h
(x, y)

∂x
+
∂φℓm,k

(x, y)

∂y

∂φℓm,h
(x, y)

∂y

)

dxdy, h, k = 1, 2, 3

for the stiffness matrix (and also derivatives with respect to y) and

∫

ℓm

f(x, y)φℓm,k
(x, y)dxdy
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for the right hand side. We have

∫

ℓm

∂φℓm,k
(x, y)

∂x

∂φℓm,h
(x, y)

∂x
dxdy =

∫

ℓm

βm,k

2∆m

βm,h

2∆m

dxdy =
βm,kβm,h

4 |∆m|
∫

ℓm

∂φℓm,k
(x, y)

∂y

∂φℓm,h
(x, y)

∂y
dxdy =

∫

ℓm

γm,k

2∆m

γm,h

2∆m

dxdy =
γm,kγm,h

4 |∆m|

and their sum correspond to Aℓm,kℓm,h
and

∫

ℓm

f(x, y)φℓm,k
(x, y)dxdy ≈ F̃ℓm,k

The algorithm for the assembly is

• aij = 0, 1 ≤ i, j ≤ n, f̃i = 0, 1 ≤ i ≤ n

• for m = 1, . . . ,M

for k = 1, . . . , 3

aℓm,kℓm,k
= aℓm,kℓm,k

+
βm,kβm,k

4|∆m|
+

γm,kγm,k

4|∆m|
, f̃ℓm,k

= f̃ℓm,k
+ F̃ℓm,k

for h = k + 1, . . . , 3 (h = 1, . . . , 3, h 6= k non-symm. case)

aℓm,kℓm,h
= aℓm,kℓm,h

+
βm,kβm,h

4|∆m|
+

γm,kγm,h

4|∆m|

aℓm,hℓm,k
= aℓm,kℓm,h

(only symm. case)

end

end

end

6.2.1 Barycentric coordinates

The barycentric coordinates on element ℓm are λℓm,k
(x, y) = ϕℓm,k

(x, y), k =
1, 2, 3.



Chapter 7

Higher order basis functions

We consider, for semplicity, the homogeneous Dirichlet problem.

7.1 One-dimensional case

In the one dimensional case Ω is an open interval and X = H1
0 (Ω). We just

consider the space X2
h = {vh ∈ X : vh|Th

∈ P2(Th)}. A polynomial of degree
two on a interval is defined by three points, usually the two extreme points
and the middle point. Therefore, given an original set of nodes {yj}mj=1 ⊂ Ω,

we have to consider the new set of nodes {xi}2m−1
i=1 ⊂ Ω given by







xi = y(i+1)/2, i odd

xi =
yi/2 + yi/2+1

2
, i even

and the set of basis functions

ϕi(x) ∈ X2
h, ϕi(xj) = δij, 1 ≤ i, j ≤ 2m− 1

41
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On the element ℓj, with endpoints ℓj,1 and ℓj,3 and middle point ℓj,2, the form
of ϕℓj,k is

φℓj,1(x) =

∣

∣

∣

∣

1 1
x xℓj,2

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
x xℓj,3

∣

∣

∣

∣

∣

∣

∣

∣

1 1
xℓj,1 xℓj,2

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
xℓj,1 xℓj,3

∣

∣

∣

∣

φℓj,2(x) =

∣

∣

∣

∣

1 1
xℓj,1 x

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
x xℓj,3

∣

∣

∣

∣

∣

∣

∣

∣

1 1
xℓj,1 xℓj,2

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
xℓj,2 xℓj,3

∣

∣

∣

∣

φℓj,3(x) =

∣

∣

∣

∣

1 1
xℓj,1 x

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
xℓj,2 x

∣

∣

∣

∣

∣

∣

∣

∣

1 1
xℓj,1 xℓj,3

∣

∣

∣

∣

·
∣

∣

∣

∣

1 1
xℓj,2 xℓj,3

∣

∣

∣

∣

Clearly now some of the basis function ϕi shares its support with ϕi−2, ϕi−1, ϕi+1, ϕi+2

and therefore the stiffness matrix, for instance, is a pentadiagonal matrix.

7.1.1 Error estimates

The weak formulation is

find u ∈ H1(Ω) such that a(u, v) = ℓ(v), ∀v ∈ H1(Ω)

with a bilinear, coercive, continuos and ℓ linear bounded. Therefore we
assume that u ∈ H1(Ω). Let us denote the generic triangle (edge) by T k

h and
its length by hk. The maximum length of the triangles is h.

H1 norm, Xr
h space

Let be uh ∈ Xr
h. Then:

• if u ∈ Hp+1(Ω, Th) (u “piecewise regular”) and s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

T k
h
∈Th

(

h2sk |u|2Hs+1(T k
h
)

)1/2

≤ Chs |u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

T k
h
∈Th

(

h2sk |u|2Hs+1(T k
h
)

)1/2

≤ Chs |u|Hs+1(Ω)
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Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

L2 norm, Xr
h space

Let be uh ∈ Xr
h. If from ℓ(v) = ℓf (v) =

∫

Ω
fv (therefore f ∈ L2(Ω)) it

follows that u ∈ H2(Ω) (it is called elliptic regularity, for instance, Poisson
problem), then

• if u ∈ Hp+1(Ω, Th) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1 |u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1 |u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.

7.2 Two-dimensional case

In the two-dimensional case Ω is a polygon and X = H1
0 (Ω). We just consider

the space X2
h = {vh ∈ X ∩ C0(Ω̄) : vh|Th

∈ P2(Th)}. A polynomial of degree
two on a triangle is defined by six points in general position. Usually the
three vertices and the three middle points of the edges are taken. We intro-
duce the barycentric coordinates: any point x in a triangle ℓj with vertices
{x1, x2, x3} ∈ Ω can be written in a unique way as

x = λ1(x)x1 + λ2(x)x2 + λ3(x)x3, λ1(x) + λ2(x) + λ3(x) ≡ 1

We have that λk(x) coincides, on the triangle, with the piecewise linear func-
tion φℓj,k(x).

Six distinct points in the plane and six correponding values are not enough
for the uniqueness of the interpolation polynomial of degree two. Even in
the simpler case of degree one, there is no polynomial of such a degree which
takes the values 0, 0, 1 in the three distinct points (0, 0), (0, 1) and (0, 2). On
the other hand, there are infinite polynomials of degree one taking the values
(0, 0, 0) on the same points.

Proposition 5. Given three non-collinear points x1, x2, x3 ∈ Ω and the cor-
responding middle points x12, x13, x23, a polynomial p(x) of total degree two
is well defined by the values of p(x) at the six points.
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Proof. It is enough to prove that if p(x1) = p(x2) = p(x3) = p(x12) =
p(x13) = p(x23) = 0, than p ≡ 0. Along the edge x2x3 p is a quadratic
polynomial in one variable which is zero at three points. Therefore it is zero
on the whole edge and we can write p(x) = λ1(x)w1(x) with w1(x) ∈ P1

(take p(x), divide by λ1(x) and observe that the reminder is 0). In the same
way p is zero along the edge x1x3 and therefore p(x) = λ1(x)λ2(x)w0(x) with
w0(x) = γ ∈ P0. If we now take the point x12, we have

0 = p(x12) = λ1(x12)λ2(x12)γ =
1

2

1

2
γ

and therefore γ = 0.

Figure 7.1: m = 5, n = 3 (right) and m = 4, n = 3 (left).

Given the number m of original nodes and the number n of triangles, by
Euler’s formula we have that the number of edges ism+(n+1)−2 = m+n−1
(in Euler’s formula it has to be counted also the unbounded region outside the
triangularion). Therefore, the dimension ofX2

h ism+(m+n−1) = 2m+n−1.
It is not possible, as well, to know a priori the structure of the stiffness

matrix.

7.2.1 Bandwidth reduction

Even in the simplest case of piecewise linear basis function, an ordering of the
nodes as in Figure 7.2 (left) would yield a sparsity pattern as in Figure 7.2
(right). The degree of a node is the number of adjacent to it. We can consider
the following heuristic algorithm, called Cuthill–McKee reordering

• Select a node i and set the first element of the array R to i.

• Put the adjacent nodes of i in the increasing order of their degree in
the array Q.
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Figure 7.2: Unordered mesh and corresponding sparsity pattern.

• do until Q is empty

Take the first node in Q: if it is already in R, delete it, otherwise
add it to R, delete it from Q and add to Q the adjacent nodes of
it which are not already in R or in Q, in the increasing order of
their degree,

The new label of node R(j) is j. A variant is the so called reverse Cuthill–
McKee ordering, in which the final ordering produced by the previous al-
gorithm is reversed. The ordering produced by the reverse Cuthill–McKee
algorithm with initial node 1 (a node with smallest degree) is shown in Fig-
ure 7.3.

7.2.2 Error estimates

The weak formulation is

find u ∈ H1(Ω) such that a(u, v) = ℓ(v), ∀v ∈ H1(Ω)

with a bilinear, coercive, continuos and ℓ linear bounded. Therefore we
assume that u ∈ H1(Ω). Let us denote the generic triangle by K and its
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Figure 7.3: Reverse Cuthill–McKee ordered mesh and corresponding sparsity
pattern.

diameter by hK . The maximum diameter of the triangles is h.

H1 norm, Xr
h space

Let be {Th}h a family of regular triangulations of Ω, polygonal, convex and
uh ∈ Xr

h. Then Let be uh ∈ Xr
h. Then:

• if u ∈ Hp+1(Ω, Th) (u “piecewise regular”) and s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

T k
h
∈Th

(

h2sk |u|2Hs+1(T k
h
)

)1/2

≤ Chs |u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) (u “regular” and therefore “piecewise regular”) and
s = min{p, r}

‖uh − u‖H1(Ω) ≤ C
∑

T k
h
∈Th

(

h2sk |u|2Hs+1(T k
h
)

)1/2

≤ Chs |u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.
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L2 norm, Xr
h space

Let be {Th}h a family of regular triangulations of Ω polygonal, convex and
uh ∈ Xr

h. If from ℓ(v) = ℓf (v) =
∫

Ω
fv (therefore f ∈ L2(Ω)) and Ω convex

it follows that u ∈ H2(Ω) (it is called elliptic regularity, for instance, Poisson
problem), then

• if u ∈ Hp+1(Ω, Th) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1 |u|Hs+1(Ω,Th)

• if u ∈ Hp+1(Ω) and s = min{p, r}

‖uh − u‖L2(Ω) ≤ Chs+1 |u|Hs+1(Ω)

Of course, the seminorms on the right end sides can be overestimated by the
corresponding norms.
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Chapter 8

Discontinuous Galerkin

8.1 mean and jump

Unfortunately, the notation for discontinuous Galerkin methods in [9] and
[4] (based on [10]) is different. Let’s try to understand. With reference to
Figure 8.1 we have

[v] = v+n+ + v−n−, {{∇u}} =
(∇u)+ + (∇u)−

2

and these two terms are coupled with a minus sign in front, that is
∫

Ω

−∆uv =

∫

Ω

∇u · ∇v −
∑

e∈Eh

∫

e

[v] · {{∇u}}

where Eh is the set of internal edges (with homogeneous Dirichlet b.c.).

n−

+

n+

−

Figure 8.1: Adjacent triangles.

In FreeFem++, the average (called mean) is defined in the same way but
the jump (called jump) is defined as external value minus internal value.
On boundary edges, mean is simply the internal value and jump its opposite.

49
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Each internal edge is counted twice in the command intalledges, each time
with a different external normal, denoted by N. So, for the internal edge in
the figure, if you call

intallegdes(Th)(mean(N.x*dx(u)+N.y*dy(u))*jump(v)/nTonEdge)

you get

1

2

(∇u+ · n− +∇u− · n−

2
(v+ − v−) +

∇u− · n+ +∇u+ · n+

2
(v− − v+)

)

=

= −{{∇u}} · [v]

being nTonEdge equal to 2 on internal edges. For short, on internal edges,
we can write

1

2
mean

(

∂u

∂N

)

jump(v) = −{{∇u}} · [v]

In the same way, on internal edges,

1

2
jump(u)jump(v) = [u] · [v]

Now, on external edges, mean(u) is just internal value and jump(u) is the
opposite of the interval value. The interior penalty method for Poisson’s
equation (with Dirichlet boundary conditions in Nitsche’s way) writes

∫

Ω

∇uδ·∇vδ+
∑

e∈Eh

∫

e

1

2
mean

(

∂uδ
∂N

)

jump(vδ)+
∑

e⊆∂Ω

∫

e

mean

(

∂uδ
∂N

)

jump(vδ)+

+ τ
∑

e∈Eh

∫

e

1

2
mean

(

∂vδ
∂N

)

jump(uδ) + τ
∑

e⊆∂Ω

∫

e

mean

(

∂vδ
∂N

)

jump(uδ)+

τ
∑

e⊆∂Ω

∫

e

gδ
∂vδ
∂N

+ γ
∑

e∈Eh

1

|e|

∫

e

1

2
jump(uδ)jump(vδ)+

+ γ
∑

e⊆∂Ω

1

|e|

∫

e

jump(uδ)jump(vδ)− γ
∑

e⊆∂Ω

1

|e|

∫

e

gδvδ =

∫

Ω

fvδ

The integral over the boundary can be computed by int1d(Th) and the
length of an edge is lenEdge.

Now we try to get in FreeFem++ the upwind average

{{bu}}b =











bu+ b · n+ > 0

bu− b · n+ < 0

b{u} b · n− = 0
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With reference to Figure 8.1, on internal edges it is

{{bu}}b · [v] = 1

2
(|b · N| jump(u)/2− (b · N)mean(u)) jump(v)

On boundary edges, we have would like to have

{{bu}}b =

{

bu b · n > 0

0 otherwise

Since in this case, jump(u) = −u, whereas mean(u) = u, we should correct
the previous formula with

{{bu}}b·[v] = (|b · N| jump(u)/2− (b · N)mean(u)/(3− nTonEdge)) jump(v)/nTonEdge

The DG formulation with upwind advection and Nitsche imposition of
boundary conditions of the advection-diffusion problem

{

div(−µ∇u+ bu) = f, Ω

u = g, Γ = Γ+ ∪ Γ− = ∂Ω

where Γ+ = {e ∈ ∂Ω: b · n ≥ 0}, is

∑

K∈Ω

∫

K

µ∇uδ · ∇vδ −
∑

e∈Eh

∫

e

[vδ] · {{µ∇uδ}} −
∑

e∈Γ

∫

e

µvδ∇uδ · n

− τ
∑

e∈Eh

∫

e

[uδ] · {{µ∇vδ}} − τ
∑

e∈Γ

∫

e

µ(uδ − gδ)∇vδ · n

+
∑

e∈Eh

∫

e

γ

|e| [uδ] · [vδ] +
∑

e∈Γ

∫

e

γ

|e|(uδ − gδ)vδ

−
∑

K∈Ω

∫

K

uδb ·∇vδ +
∑

e∈Eh

∫

e

{{buδ}}b · [vδ]+
∑

e∈Γ+

∫

e

uδvδb ·n+
∑

e∈Γ−

∫

e

gδvδb ·n

−
∑

K∈Ω

∫

fvδ = 0

8.2 Basis functions

We first consider the space of discontinuous piecewise linear basis functions
in one dimension. For the choice of basis functions, we have at least two
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possibilities. If we consider the intervals ℓm = [xm, xm+1] we can use φℓm,k
,

k = 1, 2. Given a function u(x), it can be approximated by

û(x) =
M
∑

m=1

2
∑

k=1

ukmφℓm,k
(x) (8.1)

In order to recover the coefficients ukm, we need two conditions for each inter-
val: for instance, we could prescribe interpolation at the two extreme points
for each interval. Since in general the function to approximate is discontin-
uous, we can prescribe u1m = u(x+ℓm,1

) and u2m = u(x−ℓm,2
). But then

û(x2) = u21φℓ1,2(x2) + u12φℓ2,1(x2) = u21 + u12 = u(x+2 ) + u(x−2 )

The problem is that at the common points between two adjacent intervals
there are two basis functions which take value one. In one dimension, it would
be possibile to remedy by restricting the basis functions φℓm,2

to the interval
[xℓm,1

, xℓm,2
), except the last φℓM,2

. But in a two-dimensional triangulation it
is not possible to specifiy in an easy way which single basis function should
take value one at a vertex. In this sense, representantion (8.1) should be
understood as

û(x)|ℓm =
2
∑

k=1

ukmφℓm,k
(x)

In two dimensions, it is even not easy, given a discontinuous function to
represent, to associate the correct value to the coefficients. Therefore, the
common way is to prescribe three interpolation conditions at inner points
close to the vertices. For instance, in one dimension,

yℓm,k
=
xℓm,1

+ xℓm,2

2
+ 0.99 ·

(

xℓm,k
− xℓm,1

+ xℓm,2

2

)

In this way, the approximation û(x) would not be continuous in general and
the coefficients ukm would preserve the meaning of “almost” the values of
u(x) at the discretization points. This approach is taken by [4]. Another
completely different way is to abandon the idea of retrieving the values at
the discretization points (which, in the framework of discontinuous meth-
ods, is not that important). First of all, we need the normalized Legendre
polynomials of degree 0 and 1, namely

L0(x) = 1, L1(x) =
√
3(2x− 1)

They satisfy
∫ 1

0

Lh(x)Lk(x)dx = δhk
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Then, given the interval Ii = [xi, xi+1], it is

1

xi+1 − xi

∫

Ii

Lh

(

x− xi
xi+1 − xi

)

Lk

(

x− xi
xi+1 − xi

)

dx = δhk

We can therefore define

Li
h(x)|Ij = δij

1√
xi+1 − xi

Lh

(

x− xi
xi+1 − xi

)

and we have
∫

Il

Li
h(x)L

j
k(x)dx = δhkδijδilδjl

The set {Li
h(x)}0≤h≤1,1≤i≤M is the set of basis functions. Given v(x) ∈

L2([0, 1]), its approximation in the finite element space is

v̂(x) =
M
∑

m=1

1
∑

k=0

v̂kmL
m
k (x)

with

v̂km =

∫

Im

v(x)Lm
k (x)dx

In general, v̂(x) does not interpolate v(x) at the nodes and the coefficients v̂km
have no physical meaning. In two dimensions, an appropriate orthonormal
basis from 1, x, y can be obtained by the Gram–Schmidt procedure. The
d.o.f. of a piecewise linear discontinuos elements is given by three times the
number of triangles.

8.3 Computation of local error estimator

We consider the following local error estimator

ηK(uh) =

√

√

√

√h2K ‖f +∆uh‖2L2(K) +
∑

e∈K

|e|
∥

∥

∥

∥

[

∂uh
∂n

]∥

∥

∥

∥

2

L2(e)

used in [4] (similar to that used in [9]). The jump notation means (∇uh)+ ·
n+ + (∇uh)− · n− on internal edges and its L2 norm corresponds to the L2

norm of jump(∇uh · N). In fact, with reference to Figure 8.1, if K is the
triangle denoted by +
∣

∣

∣

∣

[

∂uh
∂n

]
∣

∣

∣

∣

=
∣

∣∇u+h · n+ +∇u−h · n−
∣

∣ =
∣

∣(∇u−h −∇u+h ) · n+
∣

∣ = |jump(∇uh · N)|
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Each of the two terms under the square root can be computed at once us-
ing the basis functions of the space P0 of piecewise contant functions on a
triangulation, which are in fact χK functions.

h2K ‖f +∆uh‖L2(K) =

∫

Ω

h2K |f +∆uh|2 χK = ℓ(χK)

which is a linear functional on P0 (hK can be recovered by hTriangle).



Chapter 9

Iterative methods for sparse
linear systems

9.1 Direct methods can be unfeasible

Let us consider the Poisson equation on the square discretized by a regular
triangulation with 40 discretization points on each edge. The stiffness matrix
has size 1600 with a number of non-zero elements 7840. Its sparsity pattern
is in Figure 9.1. If we compute a Cholesky factorization, the upper triangular

0 500 1000 1500

0

500

1000

1500

sparsity pattern after reordening

Figure 9.1: Sparsity pattern of the stiffness matrix.

factor R has 68135 elements different from zero. So, we did not profit of the
sparsity of the matrix.

55
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9.2 Projection methods

Given a Hilbert space H and subspacesM and L, the projection Px of x ∈ H
onto M orthogonally to L is defined by

Px ∈M, (x− Px, y)H = 0 ∀y ∈ L

If L =M , than P is called orthogonal projection and in this case the following
is true

argmin
y∈M

‖x− y‖H = Px

If the projection is not orthogonal, than it is called oblique. Let us consider
the linear system

Ax = b

whose exact solution is denoted by x̄ = x0 + δ̄.

Proposition 6. If A ∈ R
n×n is SPD, then a vector x̃ is the result of an

orthogonal projection from R
n onto K ⊂ R

n with the starting vector x0, that
is

x̃ = x0 + δ̃, δ̃ ∈ K
(b− Ax̃, δ) = 0, ∀δ ∈ K

in and only if
x̃ = arg min

x∈x0+K
E(x)

where, given x = x0 + δ,

E(x) = (A(x̄− x), x̄− x)1/2 = (A(δ̄ − δ), δ̄ − δ)1/2

Proof. First of all, A can be written as A = RTR (Choleski). If x̃ is the
minimizer of E, we have

E(x̃) = min
x∈x0+K

E(x) = min
δ∈K

(A(δ̄ − δ), δ̄ − δ)1/2 = min
δ∈K

(R(δ̄ − δ), R(δ̄ − δ))1/2 =

= min
δ∈K

∥

∥R(δ̄ − δ)
∥

∥

2
= min

δ∈K

∥

∥Rδ̄ −Rδ
∥

∥

2
= min

w∈RK

∥

∥Rδ̄ − w
∥

∥

2

which is taken by w̃ = Rδ̃, where x̃ = x0 + δ̃. But the minimum in RK is
taken by the orthogonal projection of Rδ̄ onto RK, too. Therefore w̃ is such
a projection and satisfies, for any w = Rδ, δ ∈ K,

0 = (Rδ̄− w̃, w) = (R(δ̄− δ̃), w) = (A(δ̄− δ̃), δ) = (A(x̄− x̃), δ) = (b−Ax̃, δ).

If, on the contrary, x̃ is the result of an orthogonal projection, then the
previous argument can be used starting from the end.
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In this case, δ̃ is the orthogonal projection of δ̄ onto K through the scalar
product (·, ·)A. In fact,

(δ̄ − δ̃, δ)A = δTA(x̄− x̃) = (b− Ax̃, δ) = 0 ∀δ ∈ K

This is not true for x̃ and x̄, since x̃ 6∈ K.

Proposition 7. If A is non-singular and L = AK, then a vector x̃ is the
result of an oblique projection method onto K orthogonally to L with the
starting vector x0, that is

x̃ = x0 + δ̃, δ̃ ∈ K
(b− Ax̃, w) = 0, ∀w ∈ L = AK

in and only if
x̃ = arg min

x∈x0+K
R(x)

where, given x = x0 + δ,

R(x) = ‖b− Ax‖2 = (b−Ax, b−Ax)1/2 = (A(x̄−x), A(x̄−x))1/2 = (A(δ̄−δ), A(δ̄−δ))1/2

Proof. We have

R(x̃) = min
x∈x0+K

R(x) = min
δ∈K

(A(δ̄ − δ), A(δ̄ − δ))1/2 =

= min
δ∈K

∥

∥A(δ̄ − δ)
∥

∥

2
= min

δ∈K

∥

∥Aδ̄ − Aδ
∥

∥

2
= min

w∈L

∥

∥Aδ̄ − w
∥

∥

2

which is taken by w̃ = Aδ̃, where x̃ = x0 + δ̃. But the minimum in AK = L
is taken by the orthogonal projection of Aδ̄ onto L, too. Therefore w̃ is such
a projection and satisfies, for any w ∈ L,

0 = (Aδ̄ − w̃, w) = (A(δ̄ − δ̃), w) = (A(x̄− x̃), w) = (b− Ax̃, w)

9.2.1 Conjugate Gradient (CG) method

See [12] for a “painless” introduction. Given a SPD matrix A of dimension
n, the idea is to solve

Ax̄ = b

by minimizing the quadratic functional

J(x) = xTAx− 2bTx
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whose gradient is ∇J(x) = 2Ax− 2b = −2r(x). If we introduce the error

e(x) = x− x̄

we have r(x) = −Ae(x). Moreover, if we consider the functional

E(x) = e(x)TAe(x) = r(x)TA−1r(x)

we have ∇E(x) = ∇J(x) and E(x) ≥ 0 and E(x̄) = 0. So, the minimization
of J(x) is equivalent to the minimization of E(x). Starting from an initial
vector x0, we can use a descent method to find a sequence

xm = xm−1 + αm−1pm−1 (9.1)

in such a way that E(xm) < E(xm−1). Given pm−1, we can compute an
optimal αm−1 in such a way that

αm−1 = argmin
α
E(xm−1 + αpm−1)

It is

E(xm−1 + αpm−1) = E(xm−1)− 2αpTm−1rm−1 + α2pTm−1Apm−1

and therefore the minimum of the parabola E(xm−1 + αpm−1) is taken at

αm−1 =
pTm−1rm−1

pTm−1Apm−1

Proposition 8. If αm−1 is optimal, then

rTmpm−1 = pTm−1rm = 0 (9.2)

Proof. First of all, we have

rm = b− Axm = b− A(xm−1 + αm−1pm−1) = rm−1 − αm−1Apm−1 (9.3)

and then

rTmpm−1 = rTm−1pm−1 − αm−1p
T
m−1Apm−1 = rTm−1pm−1 − pTm−1rm−1 = 0
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The equation E(x) = E(xm−1) is that of an ellipsoid passing through
xm−1, with rm−1 a vector orthogonal to the surface and pointing inside.

Given pm−1 and αm−1, we can compute xm and rm. Now, we are ready for
the next direction pm. It has to be “simple” to compute, so we may require

pm = rm + βmpm−1 (9.4)

with βm to find in such a way to have the maximum reduction of E(x) starting
from E(xm). Therefore

E(xm+1) = E(xm + αmpm) = E(xm)− 2αmp
T
mrm + α2

mp
T
mApm

and using the definition of αm

E(xm+1) = E(xm)

(

1− (pTmrm)
2

E(xm)(pTmApm)

)

= E(xm)

(

1− (pTmrm)
2

(rTmA
−1rm)(pTmApm)

)

We observe that, using (9.2),

pTmrm = (rm + βmpm−1)
T rm = rTmrm

and this relation holds always true if p0 = r0. Therefore, the only possibility
to minimize E(xm+1) is to take pTmApm as small as possible, and hence, from

pTmApm = rTmArm + 2βmr
T
mApm−1 + β2

mp
T
m−1Apm−1

we get

βm = − rTmApm−1

pTm−1Apm−1

With this choice, we obtain

pTmApm−1 = 0

Using again (9.2) we get

pTm−1rm−1 = rTm−1rm−1 + βm−1p
T
m−2rm−1 = rTm−1rm−1

and therefore

αm−1 =
pTm−1rm−1

pTm−1Apm−1

=
rTm−1rm−1

pTm−1Apm−1

Finally, from definition (9.4) of pm−1 we have

Apm−1 = Arm−1 + βm−1Apm−2
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and therefore
pTm−1Apm−1 = pTm−1Arm−1 = rTm−1Apm−1

Taking expression (9.3) for rm, if we multiply by rTm−1 we get

rTmrm−1 = rTm−1rm = rTm−1rm−1 −
rTm−1rm−1

pTm−1Apm−1

rTm−1Apm−1 = 0

and if we multiply by rTm we get

rTmrm = rTmrm−1−
rTm−1rm−1

pTm−1Apm−1

rTmApm−1 = −rTm−1rm−1
rTmApm−1

pTm−1Apm−1

= rTm−1rm−1βm

from which

βm =
rTmrm

rTm−1rm−1

We have therefore the following implementation of the method, knowns as
Hestenes–Stiefel

• x0 given, p0 = r0 = b− Ax0

• for m = 1, 2, . . . until ‖rm−1‖2 ≤ tol · ‖b‖2
wm−1 = Apm−1

αm−1 =
rTm−1rm−1

pTm−1wm−1

xm = xm−1 + αm−1pm−1

rm = rm−1 − αm−1wm−1

βm =
rTmrm

rTm−1rm−1

pm = rm + βmpm−1

end

Some properties of the CG method

It is possible to prove the following thorem

Theorem 1. For m > 1, if ri 6= 0 for 0 ≤ i ≤ m− 1, then

pTi rm−1 = 0 i < m− 1 (9.5)

pTi Apm−1 = 0 i < m− 1 (9.6)

rTi rm−1 = 0 i < m− 1 (9.7)

span{r0, r1, . . . , rm−1} = span{r0, Ar0, . . . , Am−1r0} (9.8)

span{p0, p1, . . . , pm−1} = span{r0, Ar0, . . . , Am−1r0} (9.9)



9.2. PROJECTION METHODS 61

Sketch of the proof. First of all, we observe that if for a certain i it is ri = 0,
then xi is the exact solution.

The proof of all properties is by induction. The basic step of each state-
ment is easy since p0 = r0. Then, it is important to assume all the statemets
true for m− 1 and prove them for m.

Definition 1. The space Km = span{r0, Ar0, . . . , Am−1r0} is called Krylov
space.

The set {r0, r1, . . . , rm−1} is an orthogonal basis for the Krylov space,
which has therefore dimensionm. It follows that the set {p0, p1, . . . , pm−1} is a
set of linear independent vectors. Since A is SPD, the property pTi Apm−1 = 0,
i < m− 1 means pTi Apj = 0 for i, j < m− 1, i 6= j.

Definition 2. A set of vectors different from 0 and satisfying

vTi Avj = 0, for i, j < m, i 6= j

is called a set of conjugate (with respect to A) vectors.

By construction, the approximate solution xm produced by the algorithm
is in the space x0+Km. By the way, it is possible to prove indipendently the
following

Proposition 9. A set of conjugate vectors is a set of linear independent
vectors.

Proof. Let us suppose that
k
∑

i=1

civi = 0

with cj 6= 0. Then

(

k
∑

i=1

civi

)T

Avj = 0 =
k
∑

i=1

ci(v
T
i Avj) = cjvjA

Tvj

Since A is SPD, the result cannot be 0, unless vj = 0 (absurd).

Theorem 2. The approximate solution xm produced by the algorithm satisfies

E(xm) = inf
x∈x0+Km

E(x)
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Proof. Let us take a vector x ∈ x0 +Km. It is of the form

x0 +
m−1
∑

i=0

λipi

and therefore, taking into account that pi, i = 0, 1, . . . ,m − 1 are conjugate
vectors

E(x) = E

(

x0 +
m−1
∑

i=0

λipi

)

= E(x0)− 2
m−1
∑

i=0

λip
T
i r0 +

m−1
∑

i=0

λ2i p
T
i Api

Now, we observe that

pTi r0 = pTi (r1 + α0Ap0) = pTi r1 = pTi (r2 + α1Ap1) = pTi r2 = . . . = pTi ri

Therefore

E(x) = E(x0)− 2
m−1
∑

i=0

λip
T
i ri +

m−1
∑

i=0

λ2i p
T
i Api

and the minimum is taken for λi = αi, i ≤ m− 1.

This is a remarkable property: we started with looking for u ∈ X such
that

a(u, v) = ℓ(v), ∀v ∈ X

Then we selected a proper Xh ⊂ X and discovered that uh staisfying

a(uh, v) = ℓ(v), ∀v ∈ Xh

satisfyes
|||uh − u||| = inf

v∈Xh

|||v − u|||

too. Now, if uh =
∑n

j=1 x̄jϕj and vm =
∑n

j=1 xmjϕj with xm ∈ x0 +Km

E(x) = (x− x̄)TA(x− x̄) = a(vm − uh, vm − uh) = |||vm − uh|||2

The Conjugate Gradient method can find the infimum of E(x) on the space
x0 + Km. Therefore, the solution xm of the CG method is the result of an
orthogonal projection method onto Km (see Proposition 6). This is clear also
from the properties of the method, since

0 = rTmri = (b− Axm, ri), 0 ≤ i ≤ m− 1

and {r0, r1, . . . , rm−1} is a basis for Km.
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Proposition 10. The CG algorithm converges in n iterations at maximum.

Proof. The Krylov space Km = {p0, p1, . . . , pm−1} has dimension n at maxi-
mum.

In practice, since it is not possible to compute truly conjugate directions in
machine arithmetic, usually the CG algorithm is used as an iterative method
(and it is sometimes called semiiterative method).

It is possible to prove the following convergence estimate

|||e(xm)||| =
√

E(xm) ≤ 2

(

√

cond2(A)− 1
√

cond2(A) + 1

)m

|||e(x0)|||

Here cond2(A) is the condition number in the 2-norm, that is

cond2(A) = ‖A‖2 · ‖A−1‖2 =
√

ρ(ATA) ·
√

ρ(A−TA−1) =
λmax

λmin

There exists a slightly better estimate

|||e(xm)||| ≤ 2

(

cm

1 + c2m

)

|||e(x0)|||

where c =

√
cond2(A)−1√
cond2(A)+1

(see [12]).

Computational costs

If we want to reduce the initial error E0 by a quantity ε, we have to take

2

(

√

cond2(A)− 1
√

cond2(A) + 1

)m

= ε

from which

m =
ln ε

2

ln

(√
cond2(A)−1√
cond2(A)+1

) =
ln ε

2

ln

(

1− 2√
cond2(A)+1

) ≈ ln ε
2

− 2√
cond2(A)+1

≈

≈ 1

2
ln

2

ε

√

cond2(A)

For a matrix with cond2(A) ≈ h−2 the number of expected iterations is
therefore O(1/h). The cost of a single iteration is O(n) if A is sparse. The
algorithm does not explicitely require the entries of A, but only the “action”
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of A to a vector v. For instance, if A is the stiffness matrix of the 1d Poisson
problem and

vh(x) =
n
∑

j=1

vjϕj(x)

then the i-th row of Av = A[v1, v2, . . . , vn]
T can be obtained by

∫

Ω

v′h(x)ϕ
′
i(x)dx

9.3 Methods for nonsymmetric systems

We have seen that the Conjugate Gradient method produces in practice an
orhogonal basis {rj}m−1

j=0 of the Krylov space Km and therefore the solution
can be written as xm = x0 +

∑m
j=1 yjrj−1. With nonsymmetric matrices, we

would like to do the same (that is, to construct an orthogonal basis for the
Krylov space). It is possible with Arnoldi’s algorithm.

9.3.1 Arnoldi’s algorithm

It is possibile to factorize a matrix A ∈ R
n×n into

AVm = VmHm + wme
T
m (9.10)

where the first column of Vm is v1 given, Vm ∈ R
n×m such that V T

mVm = Im
and V T

mwm = 0 and Hm is superior Hessenberg (see [11, § 6.3]). The cost is
O(m2). From the relation

V T
mAVm = Hm

we get that if A is symmetric, so is Hm and since it is Hessenberg, it is in
fact trigiadonal. Therefore, the Gram–Schmidt procedure is short and the
cost is O(m).

9.3.2 Implicit restarted Arnoldi’s algorithm

Let us analyze the method under the popular ARPACK [6] package for eigen-
value problems. It allows to compute “some” eigenvalues of large sparse ma-
trices (such as the largest in magnitute, the smallest, . . . ). We start with an
Arnoldi factorization

V T
mAVm = Hm

If (θ, s) is an eigenpair for Hm, that is Hms = θs, then

(v, Ax− θx) = 0, ∀v ∈ K
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where x = Vms and K is the Krylov space spanned by the columns of Vm. In
fact, v can be written as Vmy and therefore

(Vmy, Ax− θx) = yTV T
mAVms− yTV T

mVmsθ = yT (Hms− θs) = 0

The couple (θ, x) is called Ritz pair and it is close to an eigenpair of A. In
fact

‖Ax− θx‖2 = ‖(AVm − VmHm)s‖2 =
∣

∣βme
T
ms
∣

∣

where βm = ‖wm‖2. We can compute the eigenvalues of Hm, for instance
by the QR method, and select an “unwanted” eigenvalue µm (which is an
approximation of an eigenvalue µ of A). Then, we apply one iteration of
shifted QR algorithm, that is

Hm − µmIm = Q1R1, H+
m = R1Q1 + µmIm

Of course, Q1 is Hessenberg and Q1H
+
m = HmQ1. Now we right-multiply the

Arnoldi factorization, in order to get

AVmQ1 = VmHmQ1 + wme
T
mQ1 (9.11)

With few manipulations

AVmQ1 = VmQ1H
+
m + wme

T
mQ1

AVmQ1 = (VmQ1)(R1Q1 + µmIm) + wme
T
mQ1

(A− µmIn)VmQ1 = (VmQ1)(R1Q1) + wme
T
mQ1

(A− µmIn)Vm = VmQ1R1 + wme
T
m

and by setting V +
m = VmQ1, we have that the first column of the last expres-

sion is
(A− µmIn)v1 = V +

mR1e1 = v+1 (e
T
1R1e1)

that is, first column of V +
m is a multiple of (A − µmIn)v1. If v1 was a linear

combination of the eigenvectors xj of A, then

v+1 ‖ (A− µmIn)v1 =
∑

j

(αjλjxj − αjµmxj)

Since µm is close to a λj, v
+
1 lacks the component parallel to xj. Rela-

tion (9.11) can be rewritten as

AV +
m = V +

mH
+
m + wme

T
mQ1

ans if we consider the first column, it is an Arnoldi factorization with a start-
ing vector v+1 (which is of unitary norm) lacking the unwanted component.
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In practice, given the m eigenvalues of Hm, they are split into the k wanted
and the p = m − k unwanted and p shifted QR decompositions (with each
of the unwanted eigenvalues) are performed. Then, the Arnoldi factorization
is right-multiplied by Q = Q1Q2 . . . Qp and the first k columns kept. This
turns out to be an Arnoldi factorization. In fact

AV +
m Im,k = AV +

k ,

where now V +
m = VmQ, and

V +
mH

+
mIm,k = V +

k H
+
k + (V +

m ek+1hk+1,k)e
T
k

and, since the Qj are Hessenberg matrices, the last row of Q, that is eTmQ, has
the first k−1 entries which are zero and then a value σ (and then something
else). Therefore

wme
T
mQIm,k = wmσe

T
k

All together, the first k columns are

AV +
k = V +

k H
+
k + w+

k e
T
k , w+

k = (V +
m ek+1hk+1,k + wmσ)

that is an Arnoldi factorization applied to an initial vector lacking the un-
wanted components. Then, the the factorization is continued up tom columns.

The easyest to compute eigenvalues with a Krylov methods are the largest
in magnitute (as for the power method). Therefore, if some other eigevalues
are desired, it is necessary to apply proper transformations. Let us consider
the generalized problem

Ax = λMx

If we are interested into eigenvalues around σ, first we notice that

(A− σM)x = (λ− σ)Mx⇒ x = (λ− σ)(A− σM)−1Mx

from which

(A− σM)−1Mx = νx, ν =
1

λ− σ

Therefore, if we apply the Krylov method (or the power method) to the
operator OP−1B = (A − σM)−1M we end up with the eigenvalues closer
to σ. In order to do that, we need to be able to solve linear systems with
(A− σM) and multiply vectors with M .

Suppose we want to compute in FreeFem++ the eigenvalues closest to
σ = 20 of Poisson’s problem

∫

Ω

∇u · ∇v = λ

∫

Ω

uv, u ∈ H1
0 (Ω)

We should set
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real sigma = 20.0;

varf op(u,v) = int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v)-sigma*u*v)

+on(1,2,3,4,u=0);

varf b(u,v) = int2d(Th)(u*v);

matrix OP = op(Vh,Vh,solver=Crout,factorize=1);

matrix B = b(Vh,Vh);

int nev = 20; // number of computed eigenvalues close to sigma

real[int] ev(nev); // to store nev eigenvalues

Vh[int] eV(nev); // to store nev eigenvectors

int k = EigenValue(OP,B,sym=true,sigma=sigma,value=ev,vector=eV,tol=1e-10);

We have to pay attention that OP is not positive definite, so a general
factorization such as LU or Crout should be used.

9.3.3 Solution of overdetermined systems

Suppose we want to “solve” the linear system

H̄ym = b, H̄ ∈ R
(m+1)×m, ym ∈ R

m, b ∈ R
m+1

with H̄ of rank m. Since it is overdetermined, we can look for the following
least square solution

ym = argmin
∥

∥b− H̄y
∥

∥

2

2

Since ∇y

∥

∥b− H̄y
∥

∥

2

2
= −2H̄T b+2H̄T H̄y, the minimum is taken at the solu-

tion of

H̄T H̄ym = H̄T b

This is called normal equation and it is usually not used in order to compute
ym. A second possibility is to compute the QR factorization of H̄. If H̄ = QR,
with Q ∈ R

(m+1)×(m+1) orthogonal and R ∈ R
(m+1)×m upper triangular (of

rank m), then

H̄THym = H̄T b⇔ RTQTQRym = RTQT b⇔ RT (Rym −QT b) = 0

Since the last column of RT is zero, we can consider only the first m rows
of the linear system Rym = QT b, thus getting a square linear system. Yet
another possibility (used by Matlab and GNU Octave) is to consider the SVD
decomposition. We have

H̄ = USV T
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with U ∈ R
(m+1)×(m+1) and V ∈ R

m×m orthogonal matrices and

S =















s1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 sm
0 . . . . . . 0















∈ R
(m+1)×m

Therefore
∥

∥b− H̄ym
∥

∥

2
=
∥

∥UT (b− H̄(V V T )ym)
∥

∥

2
=
∥

∥UT b− UT H̄V (V Tym)
∥

∥

2
= ‖f − Sz‖2

where z = V Ty and f = UT b. Now, clearly

argmin ‖f − Sz‖2
has components zi = fi/si, i = 1, 2, . . . ,m and ym = V z.

9.4 Preconditioning

The idea is to change
Ax̄ = b

into
P−1Ax̄ = P−1b

in such a way that P−1A is better conditioned than A. The main problem
for the CG algorithm is that even if P is SPD, P−1A is not SPD. We can
therefore factorize P into P = RTR and consider the linear system

P−1AR−1ȳ = P−1b⇔ R−TAR−1ȳ = R−T b, R−1ȳ = x̄

Now, Ã = R−TAR−1 is SPD and we can solve the system Ãȳ = b̃, b̃ = R−T b,
with the CG method. Setting x̃m = Rxm, we have r̃m = b̃− Ãx̃m = R−T b−
R−TAxm = R−T rm. It is possible then to arrange the CG algorithm for Ã,
x̃0 and b̃ as

• x0 given, r0 = b− Ax0, Pz0 = r0, p0 = z0

• for m = 1, 2, . . . until ‖rm‖2 ≤ tol · ‖b‖2
wm−1 = Apm−1

αm−1 =
zTm−1rm−1

pTm−1wm−1
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xm = xm−1 + αm−1pm−1

rm = rm−1 − αm−1wm−1

Pzm = rm

βm =
zTmrm

zTm−1rm−1

pm = zm + βmpm−1

end

The directions pm are still A conjugate directions (with Pp0 = r0). It is
easy to see that if P = A, then x1 = A−1b = x. This algorithm requires
the solution of the linear system Pzm = rm at each iteration. From one
side P should be as close as possibile to A, from the other it should be
easy to “invert”. The simplest choice is P = diag(A). It is called Jacobi
preconditioner. This preconditioner is the default in FreeFem++, since quite
effective due to the penalty method to impose Dirichlet boundary conditions
(it is a sort of balancing of the rows of the matrix). If P is not diagonal,
usually it is factorized once and for all into P = RTR, R the triangular
Cholesky factor, in such a way that zm can be recovered by two simple
triangular linear systems. A possibile choice is the incomplete Cholesky
factorization of A. That is, P = R̃T R̃ ≈ A where

{

(A− R̃T R̃)ij = 0 if aij 6= 0

r̃ij = 0 if aij = 0

The preconditioned Conjugate Gradient method does not explicitely require
the entries of P , but only the action of P−1 (which can be R−1R−T ) to a
vector zm (that is the solution of a linear system with matrix P ).

9.4.1 Differential preconditioners

If u(x) ≈ ū(x) ≈ ũ(x) with

ū(x) =
m
∑

i=1

ūiφi(x)

with ūi ≈ u(xi) and

ũ(x) =
n
∑

j=1

ũjψj(x), n ≤ m
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with ũj ≈ u(yj), then it is possbile to evaluate ũ(xi) by

[ũ(x1), . . . , ũ(xm)]
T = Rũ, R ∈ R

m×n, Rij = ψj(xi)

and ū(yj) by

[ū(y1), . . . , ū(yn)]
T = Qū, Q ∈ R

n×m, Qji = φi(yj)

We also have
[u(x1), . . . , u(xm)]

T ≈ ū ≈ Rũ

[u(y1), . . . , u(yn)]
T ≈ ũ ≈ Qū

and
[u(x1), . . . , u(xm)]

T ≈ RQū

[u(y1), . . . , u(yn)]
T ≈ QRũ

Therefore
RQ ≈ Im, QR ≈ In

Thus, in order to solve the “difficult” problem

Āū = b̄

we may want to compute Ã of the “easy” problem

Ãũ = b̃

and then use the approximation

Āū ≈ RÃQū⇔ Ā ≈ RÃQ

to compute a preconditioner Ā−1 ≈ (RÃQ)−1 ≈ RÃ−1Q.

9.4.2 Algebraic preconditioners
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Optimization methods

We consider a couple of methods for the minimization of a function.

10.1 Nonlinear conjugate gradient method

We can extend the Conjugate Gradient method for the minimization of
JR(x), x ∈ R

n×1 in the following way.

• x0 given, d0 = g0 = −∇JR(x0)

• for m = 1, 2, . . . until ‖dm−1‖2 ≤ tol · ‖d0‖2
αm−1 = argmin

α
JR(xm−1 + αdm−1)

xm = xm−1 + αm−1dm−1

gm = −∇JR(xm)

βm =
gTm∇JR(xm)

gTm−1∇JR(xm−1)

dm = gm + βmdm−1

end

It is in general not necessary to compute exactly αm−1. In this case we speak
about inexact linesearch. It can be performed, for instance, by few steps of
golden search of g(α) = JR(xm−1 + αdm−1). Or it is possible to look for the
zero of dTm−1∇JR(xm−1+αdm−1). The choice of βm corresponds to Fletcher–
Reeves. It is possible to use a preconditioner. In fact, suppose −∇JR(xm) is
of the form b−A(xm) for some A : Rn → R

n and b ∈ R
n. It is then possible

to use Ã as preconditioner and gm is computed as

gm = −Ã−1∇JR(xm)

71
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10.2 (Quasi)-Newton methods

It is possible to approximate JR (if regular enough and with an SPD Hessian)
by a quadratic model

JR(x) ≈ JR(x0) +∇JR(x0)
T (x− x0) +

1

2
(x− x0)

THJR(x0)(x− x0)

The minimum of the model is given by

x− x0 = −HJR(x0)
−1∇JR(x0)

and therefore we can define

x1 = x0 −HJR(x0)
−1∇JR(x0)

In this form, it is equivalent to the first step of Newton method for the
solution of the nonlinear system of equations

∇JR(x) = 0

Instead of the exact Hessian, it is possible to approximate it.

10.3 An example: p-Laplacian problem

We are interested in the solution of

−div(|∇u|p−2 ∇u) = f

with p > 2 and homogeneous Dirichlet boundary conditions. We can compute

J(u) =

∫

Ω

|∇u|p
p

−
∫

Ω

fu

J ′(u)v =

∫

Ω

|∇u|p−2 ∇u · ∇v −
∫

Ω

fv

J ′′(u)(w, v) =

∫

Ω

(p− 2) |∇u|p−4∇u · ∇w∇u · ∇v+

+

∫

Ω

|∇u|p−2∇w · ∇v

Given uh, vh ∈ Vh and the basis functions {ϕi}mi=1, it is

JR : Rn → R, JR(uh) =

∫

Ω

|∑i(uh)i∇ϕi|p

p
− f

∑

i

(uh)iϕi

(

∇JR(uh)
)

i
=

∫

Ω

|∇uh|p−2∇uh · ∇ϕi −
∫

Ω

fϕi = J ′(uh)ϕi
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and

vh
T∇JR(uh) =

∑

i

(vh)i

(
∫

Ω

|∇uh|p−2∇uh · ∇ϕi −
∫

Ω

fϕi

)

=

=

∫

Ω

|∇uh|p−2 ∇uh ·
∑

i

(vh)i∇ϕi −
∫

Ω

f
∑

i

(vh)iϕi = J ′(uh)vh

and therefore J ′(uh)vh is the scalar product in R
m of the vectors with com-

ponents J ′(uh)ϕi and (vh)i, respectively. Moreover, if wh ∈ Vh, then

(

HJR(uh)wh

)

i
= J ′′(uh)(wh, ϕi) =

=

∫

Ω

(p− 2) |∇uh|p−4 ∇uh ·
(

∑

j

(wh)j∇ϕj

)

∇uh · ∇ϕi+

+

∫

Ω

|∇uh|p−2

(

∑

j

(wh)j∇ϕj

)

· ∇ϕi =

=
∑

j

(wh)j

(

∫

Ω

(p− 2) |∇uh|p−4∇uh · ∇ϕj∇uh · ∇ϕi+

+

∫

Ω

|∇uh|p−2 ∇ϕj · ∇ϕi

)

and therefore J ′′(uh)(wh, ϕi) is the matrix-vector product between the (sym-
metric) matrix HJR(uh) = J ′′(uh)(ϕj, ϕi) and the vector with components
(wh)j.

10.3.1 Minimization approach

The minimization approach is: find uh ∈ Vh such that

uh = arg min
vh∈Vh

J(vh)

In order to use, for instance, the nonlinear Conjugate Gradient method
(see § 10.1) we just need ∇JR(xm) = J ′((uh)m)ϕi, where xm = (uh)m is
the current approximation of uh. As a preconditioner it is possible to use,
for a fixed uh, the matrix

H̃JR(uh)i,j =

∫

Ω

|∇uh|p−2 ∇ϕj · ∇ϕi

which corresponds to a simplification of HJR(uh).
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10.3.2 Galerkin approach

The Galerkin approach is: find uh ∈ Vh such that

J ′(uh)vh = 0 ∀vh ∈ Vh

We can consider the nonlinear function F (uh) with components

Fi(uh) = J ′(uh)ϕi

In order to write Newton’s method for it, we need its Jacobian applied to
δh ∈ Vh, whose i-th component is

∇uh
Fi(uh)δh = J ′′(uh)(δh, ϕi)

and Newton’s iteration writes

∇uh
F (urh)δ

r
h = −F (urh)

ur+1
h = urh + δrh
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ADR equations

The Advection-Diffusion-Reaction equation (see [5]) is

{

−div(µ∇u) + b · ∇u+ σu = f, u ∈ Ω ⊂ R
n, n = 1, 2, 3

u = 0, u ∈ ∂Ω

11.1 Estimates

11.1.1 div(b), σ ∈ L2(Ω)

In this case we have

∫

Ω

vb · ∇vdΩ +

∫

Ω

σv2dΩ =

∫

Ω

v2
(

−1

2
div(b) + σ

)

dΩ

ans using Cauchy–Schwartz inequality

∫

Ω

∣

∣

∣

∣

v2
(

−1

2
div(b) + σ

)∣

∣

∣

∣

dΩ ≤
∥

∥v2
∥

∥

L2(Ω)

∥

∥

∥

∥

−1

2
div(b) + σ

∥

∥

∥

∥

L2(Ω)

Since v ∈ H1(Ω), then v ∈ L4(Ω) (see [9, § 2.5]). Moreover

∣

∣

∣

∣

∫

Ω

σuvdΩ

∣

∣

∣

∣

≤ ‖σ‖L2(Ω) ‖uv‖L2(Ω) ≤ ‖σ‖L2(Ω) ‖u‖L4(Ω) ‖v‖L4(Ω) ≤

≤ C ‖σ‖L2(Ω) ‖u‖H1(Ω) ‖v‖H1(Ω)

In fact H1(Ω) ⊂ L4(Ω) with a continuous immersion.
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11.1.2 div(b), σ ∈ L∞(Ω)

In this case we have
∫

Ω

vb · ∇vdΩ +

∫

Ω

σv2dΩ =

∫

Ω

v2
(

−1

2
div(b) + σ

)

dΩ

ans using Hölder’s inequality
∫

Ω

∣

∣

∣

∣

v2
(

−1

2
div(b) + σ

)∣

∣

∣

∣

dΩ ≤
∥

∥v2
∥

∥

L1(Ω)

∥

∥

∥

∥

−1

2
div(b) + σ

∥

∥

∥

∥

L∞(Ω)

Therefore v ∈ L2(Ω). Moreover
∣

∣

∣

∣

∫

Ω

σuvdΩ

∣

∣

∣

∣

≤ ‖σ‖L∞(Ω) ‖uv‖L1(Ω) ≤ ‖σ‖L∞(Ω) ‖u‖L2(Ω) ‖v‖L2(Ω) ≤

≤ ‖σ‖L∞(Ω) ‖u‖H1(Ω) ‖v‖H1(Ω)

11.2 One-dimensional AD problem

For the problem










−µu′′(x) + bu′(x) = 0

u(0) = 0

u(1) = 1

the analytical solution is

u(x) =



















x, b = 0,

exp
(

b
µ
x
)

− 1

exp
(

b
µ

)

− 1
, b 6= 0

After the discretization with piecewise linear finite elements, for the difference
equation we have

−(Pe + 1) + 2ρ+ (Pe− 1)ρ2 = 0

If Pe = 0, ρ1 = ρ2 = 1, the general solution is

ui = A1ρ
i
1 + A2iρ

i
2

from which, by imposing boundary conditions,

A1 = 0, A2 =
1

M
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If Pe = 1, ρ1 = (Pe + 1)/2. Therefore

ui = Aρi

and by imposing boundary conditions,

A = 0

In the general case

ρ1 = (1 + Pe)/(1− Pe), ρ2 = 1

We can try to find ε such that u(1− ε) ≈ 0. It is

f(ε) = u(1− ε) ≈ f(0) + f ′(0)ε = 1 +
− b

µ
exp

(

b
µ

)

exp
(

b
µ

)

− 1
ε = 0

from which

ε =
µ

b

exp
(

b
µ

)

− 1

exp
(

b
µ

) = O
(µ

b

)

Therefore the boundary layer width is O
(

µ
b

)

.

11.2.1 Artificial diffusion

We want to find a function φ such as the new Péclet number is

Pe

1 + φ(Pe)

We need

• φ(Pe) ≥ Pe− 1, but not too much

• φ(|b| h/2µ) ∈ O(h2), for h → 0, so that the new scheme is still second
order in h

A possibile solution is

φ(z) = z − 1 + e−z =
z2

2
+O(z3)

A better solution (Scharfetter–Gummel) is

φ(z) = z − 1 +
2z

e2z − 1
=
z2

3
+O(z4)
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11.3 A time-dependent nonlinear ADR equa-

tion

We want to solve

ut + b · div(u) = µ∆u+ ρu2(u− 1), Ω

which can be rewritten as
ut = Lu+ g(u)

with the θ-method with time step k. We want to make zero the function

Fi(u
n+1
h ) =

∫

(un+1
h −unh)ϕi−kθ

(

aL(u
n+1
h , ϕi) + g(un+1

h )ϕi

)

−k(1−θ) (aL(unh, ϕi) + g(unh)ϕi)

We compute its Jacobian applied to δh (which is a bilinear form in δh and
ϕi)

JF (u
n+1
h )δh =

∫

δhϕi − kθ
(

aL(δh, ϕi) + g′(un+1
h )δhϕi

)

Therefore, each Newton iteration is the solution of the week formulation

JF (u
n+1,r
h )δrh + F (un+1,r

h ) = 0

un+1,r+1
h = un+1,r

h + δrh

with un+1,0
h = unh. Such a week formulation requires boundary conditions. If

un+1
h |∂Ω = unh|∂Ω, then it is enough to set δrh|∂Ω = 0. Otherwise, it is necessary

first to set un+1,0
h |∂Ω to the proper boundary conditions.

If we consider the two-dimensional equation with b1 = b2, the exact solu-
tion is

u(t, x, y) =
1

1 + exp(a(x+ y − bt) + c)

where a =
√

ρ/(4µ), b = 2b1 +
√
ρµ and c = a(b − 1) (see [5, § 10.6]). Of

course, it requires time-dependent Dirichlet boundary conditions.
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