Introduction to
 Advanced Numerical Methods for ODEs (by A. Ostermann* and P. Kandolf*)

M. Caliari
a.y. 2014/2015

Chapter 1

FFT Matlab friendly

We consider, for N even,

$$
\begin{aligned}
\hat{u}(x) & =\sum_{j=-N / 2}^{N / 2-1} \hat{u}_{j+1+N / 2} \frac{e^{i j 2 \pi(x-a) /(b-a)}}{\sqrt{b-a}}=\sum_{j=1}^{N} \hat{u}_{j} \frac{e^{i(j-1-N / 2) 2 \pi(x-a) /(b-a)}}{\sqrt{b-a}}= \\
& =\sum_{j=1}^{N} \hat{u}_{j} \phi_{j}(x)
\end{aligned}
$$

where \hat{u}_{j} is the approximation by trapezoidal quadrature rule of

$$
\int_{a}^{b} u(x) \overline{\phi_{j}(x)} \mathrm{d} x
$$

that is

$$
\begin{aligned}
u_{j} & =\int_{a}^{b} u(x) \overline{\phi_{j}(x)} \mathrm{d} x=\sqrt{b-a} \int_{0}^{1} u(a+y(b-a)) e^{-i(j-1) 2 \pi y} e^{i N \pi y} \mathrm{~d} y \approx \\
& \approx \frac{\sqrt{b-a}}{N} \sum_{n=1}^{N}\left(u\left(x_{n}\right) e^{i N \pi y_{n}}\right) e^{-i(j-1) 2 \pi y_{n}}=\hat{u}_{j}
\end{aligned}
$$

where $y_{n}=(n-1) / N$ and $x_{n}=a+y_{n} \cdot(b-a)$. We say that the 0 frequency is in the center of spectrum. What is written in the box is the result of $\mathrm{fft}\left(u\left(x_{n}\right) e^{i N \pi y_{n}}\right)$. We consider now, for $1 \leq j \leq N / 2$,

$$
\begin{aligned}
\operatorname{fft}\left(u\left(x_{n}\right)\right)_{j} & =\sum_{n=1}^{N} u\left(x_{n}\right) e^{-i(j-1) 2 \pi y_{n}}=\sum_{n=1}^{N}\left(u\left(x_{n}\right) e^{i N \pi y_{n}}\right) e^{-i(N / 2+j-1) 2 \pi y_{n}}= \\
& =\frac{N}{\sqrt{b-a}} \hat{u}_{N / 2+j}
\end{aligned}
$$

and, for $N / 2<j \leq N$,

$$
\begin{aligned}
\operatorname{fft}\left(u\left(x_{n}\right)\right)_{j} & =\sum_{n=1}^{N} u\left(x_{n}\right) e^{-i(j-1) 2 \pi y_{n}}=\sum_{n=1}^{N}\left(u\left(x_{n}\right) e^{i N \pi y_{n}}\right) e^{-i(j-N / 2-1) 2 \pi y_{n}}= \\
& =\frac{N}{\sqrt{b-a}} \hat{u}_{j-N / 2}
\end{aligned}
$$

taking into account that $e^{i N 2 \pi y_{n}}=1$. Therefore uhat=fftshift (fft(u))*sqrt(b-a)/N. Then we have

$$
\begin{aligned}
\hat{\hat{v}}_{n} & =\sum_{k=1}^{N} \hat{v}_{k} \phi_{k}\left(x_{n}\right)=\sum_{k=1}^{N} \hat{v}_{k} \frac{e^{i(k-1-N / 2) 2 \pi\left(x_{n}-a\right) /(b-a)}}{\sqrt{b-a}}= \\
& =\frac{N}{\sqrt{b-a}} \frac{1}{N}\left(\sum_{k=1}^{N} \hat{v}_{k} e^{i(k-1) 2 \pi y_{n}}\right) e^{-i N \pi y_{n}}
\end{aligned}
$$

What written in the box is the result of ifft(vhat). We observe that $e^{-i N \pi y_{n}}=(-1)^{n+1}$. We consider now

$$
\begin{aligned}
\sum_{k=1}^{N} \text { ifftshift }\left(\hat{v}_{k}\right) e^{i(k-1) 2 \pi y_{n}} & =\sum_{k=1}^{N / 2} \hat{v}_{N / 2+k} e^{i(k-1) 2 \pi y_{n}}+\sum_{k=N / 2+1}^{N} \hat{v}_{k-N / 2} e^{i(k-1) 2 \pi y_{n}}= \\
& =\sum_{k=N / 2+1}^{N} \hat{v}_{k} e^{i(k-N / 2-1) 2 \pi y_{n}}+\sum_{k=1}^{N / 2} \hat{v}_{k} e^{i(N / 2+k-1) 2 \pi y_{n}}= \\
& =(-1)^{n+1} \sum_{k=1}^{N / 2} \hat{v}_{k} e^{i(k-1) 2 \pi y_{n}}+(-1)^{n+1} \sum_{k=N / 2+1}^{N} \hat{v}_{k} e^{i(k-1) 2 \pi y_{n}}= \\
& =\left(\sum_{k=1}^{N} \hat{v}_{k} e^{i(k-1) 2 \pi y_{n}}\right) e^{-i N \pi y_{n}}
\end{aligned}
$$

Therefore, vhathat=ifft(ifftshift(vhat)) $* N /$ sqrt (b-a).
It is not difficult to prove that

$$
\hat{u}\left(x_{n}\right)=u\left(x_{n}\right)
$$

that is, $\hat{u}(x)$ is an approximation of $u(x)$ which interpolates $u(x)$ at x_{n}, $n=1,2, \ldots, N$.

1.0.1 Computation of $u^{\prime}(x)$ by FFT

We have

$$
u^{\prime}(x) \approx\left(\sum_{j=1}^{N} \hat{u}_{j} \phi_{j}(x)\right)^{\prime}=\sum_{j=1}^{N} \hat{u}_{j} \phi_{j}^{\prime}(x)=\sum_{j=1}^{N} \hat{u}_{j} \lambda_{j} \phi_{j}(x)
$$

where $\lambda_{j}=i(j-1-N / 2) 2 \pi /(b-a)$. You can try the following Matlab code

```
a = -2;
b = 2;
N = 32;
x = linspace(a,b,N+1)';
x = x(1:N);
u = 1./(sin(2*pi*(x-a)/(b-a))+2);
u1 = - cos(2*pi*(x-a)/(b-a))*2*pi/(b-a)./(sin(2*pi*(x-a)/(b-a))+2).^2;
uhat = fftshift(fft(u))*sqrt(b-a)/N;
lambda = 1i*(-N/2:N/2-1)'*2*pi/(b-a);
vhat = uhat.*lambda;
vhathat = ifft(ifftshift(vhat))*N/sqrt(b-a);
norm(vhathat-u1,inf)
```


Chapter 2

Matrix functions

2.1 Matrix exponential

The matrix exponential for $A \in \mathbb{C}^{n \times n}$ is defined as

$$
\exp (A)=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

In order to numerically evaluate it, we may think to two simple strategies: Taylor's truncated series and eigenvalue decomposition.

2.1.1 Taylor's truncated series

It is a strong temptation to approximate

$$
\exp (A) \approx \sum_{k=0}^{m} \frac{A^{k}}{k!}=T_{m}(A)
$$

Unfortunately, it does not work, even in simple scalar cases (try to compute the relative error $e^{100}\left(e^{-100}-T_{m}(-100)\right)$ for increasing values of m). The problem is that Taylor's series, although everywhere convergent, is fast enough (that is it converges to machine precision before truncation errors show up) only in a neighborhood of 0 . To this aim, the scaling and squaring technique may help. That is, taken $s=2^{j}$ such that $\|A\|<1, E=\exp (A / s)$ is approximated by $T_{m}(A / s)$ and later $\exp (A)$ is recovered by

$$
E=E^{2} j \text { times }
$$

Padé approximation

We can change the way $\exp (A / s)$ is approximated. For instance, a very common approximation is the rational Padé one. That is

$$
e^{z} \approx \frac{a_{p} z^{p}+a_{p-1} z^{p-1}+\ldots+a_{1} z+a_{0}}{b_{q} z^{q}+b_{q-1} z^{q-1}+\ldots+b_{1} z+1}=r_{p, q}(z)
$$

such that $T_{p+q}(z)=r_{p, q}(z)+\mathcal{O}\left(z^{p+q+1}\right)$ for $z \rightarrow 0$. Let's try for $p=q=1$: we have

$$
e^{z} \approx \frac{\frac{1}{2} z+1}{-\frac{1}{2} z+1}=r_{1,1}(z)
$$

By the way, this corresponds to the trapezoidal rule $y_{1}=\left(\frac{1}{2} k+1\right) /\left(-\frac{1}{2} k+1\right)=$ $r_{1,1}(k)$ for the solution of $y^{\prime}(t)=y(t), y(0)=1$ at $t=k$. The extension to the matrix case is trivial

$$
\exp (A / s) \approx\left(-\frac{1}{2} A / s+I\right)^{-1}\left(\frac{1}{2} A / s+I\right)
$$

Then, the scaling and squaring technique is used. In practice, the degree $p=q$ of common Padé approximations is around 10. Padé approximations for the exponential share the following property

$$
r_{p, p}(-z)=\frac{1}{r_{p, p}(z)}
$$

2.1.2 Eigenvalue decomposition

If A is diagonalizable, $A V=V \Lambda$, then

$$
\exp (A)=V \exp (\Lambda) V^{-1}
$$

where $\exp (\Lambda)$ is easily seen to be $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Unfortunately, even in this case it is possible to do very wrong, try with

$$
A=\left[\begin{array}{cc}
1 & 1 \\
0 & 1+\varepsilon
\end{array}\right]
$$

and compare in Matlab

```
A=[1,1;0,1+eps];,\operatorname{expm(A),[V,Lambda]=eig(A);,V*diag(exp(diag(Lambda)))/V}
```


2.2 Matrix exponential-related functions

We would like to approximate the following functions

$$
\varphi_{\ell}(A)=\sum_{k=0}^{\infty} \frac{A^{k}}{(k+\ell)!}
$$

We have $\varphi_{0}(z)=e^{z}$,

$$
\varphi_{1}(z)=\frac{e^{z}-1}{z}
$$

and, in general,

$$
\begin{array}{ll}
\varphi_{\ell}(z)=z \varphi_{\ell+1}(z)+\frac{1}{\ell!}, & \ell \geq 0 \\
\varphi_{\ell}(z)=\frac{1}{(\ell-1)!} \int_{0}^{1} e^{(1-\theta) z} \theta^{\ell-1} d \theta, & \ell \geq 1
\end{array}
$$

Of course it is possible a Taylor or Padé approximation in a neighborhood of 0 . The scaling and squaring technique is more involved, however. For instance

$$
\varphi_{1}(z)=\frac{1}{2}\left(e^{z / 2}+1\right) \varphi_{1}\left(\frac{z}{2}\right)
$$

But, if one is interested only in $\varphi_{\ell}(A) w, w \in \mathbb{C}^{n}$, then the following theorem can be used (see [1]).

Theorem 1. Let $A \in \mathbb{C}^{n \times n}, W=\left[w_{1}, \ldots, w_{p}\right] \in \mathbb{C}^{n, p}, \tau \in \mathbb{C}$ and

$$
\tilde{A}=\left[\begin{array}{cc}
A & W \\
0 & J
\end{array}\right] \in \mathbb{C}^{(n+p) \times(n+p)}, \quad J=\left[\begin{array}{cc}
0 & I_{p-1} \\
0 & 0
\end{array}\right] \in \mathbb{R}^{p \times p}
$$

then for $X=\exp (\tau \tilde{A})$ we have

$$
X(1: n, n+j)=\sum_{k=1}^{j} \tau^{k} \varphi_{k}(\tau A) w_{j-k+1}, \quad j=1,2, \ldots, p
$$

Before giving the proof, let us consider a simple example: we want to compute $\varphi_{1}(\tau A) w$. We consider

$$
\tilde{A}=\left[\begin{array}{ll}
A & w \\
0 & 0
\end{array}\right]
$$

and compute $X=\exp (\tau \tilde{A})$, extract the first n rows, last column and divide by τ.

```
n=4;
tau=rand;
A=rand (n);
w=rand (n, 1);
Atilde=[A,w;zeros(1,n),0];
X=expm(tau*Atilde);
X(1:n,n+1)/tau
(tau*A)\((expm (tau*A)-eye(n))*W)
```

If interested into $\exp (\tau A) v+\tau \varphi_{1}(\tau A) w$, we can do

```
n=4;
tau=rand;
A=rand(n);
v=rand (n,1);
w=rand (n,1);
eta=2^(-ceil(log2(norm(w,1))));
Atilde=[A,eta*w;zeros(1,n),0];
X=expm(tau*Atilde)*[v;1/eta];
X(1:n)
expm(tau*A)*v+tau*((tau*A)\((expm(tau*A)-eye(n))*W))
```

The use of the parameter η is for numerical stability (see [1]).
The possibility to compute $\varphi_{\ell}(A) w$ without computing $\varphi_{\ell}(A)$ is similar to the possibility to compute the solution of $A x=w$ without computing A^{-1}.

Proof. We start computing

$$
\tilde{A}^{2}=\left[\begin{array}{cc}
A & W \\
0 & J
\end{array}\right]\left[\begin{array}{cc}
A & W \\
0 & J
\end{array}\right]=\left[\begin{array}{cc}
A^{2} & A W+W J \\
0 & J^{2}
\end{array}\right]
$$

and we easily get

$$
\tilde{A}^{k}=\left[\begin{array}{cc}
A^{k} & M_{k} \\
0 & J^{k}
\end{array}\right]
$$

with $M_{0}=0, M_{1}=W, M_{k}=A^{k-1} W+M_{k-1} J$. Then $W J(:, j)=w_{j-1}$ and $J J(:, j)=J(:, j-1)$ for $1 \leq j \leq p$ where we define $w_{0}=J(:, 0)=0$. Thus

$$
\begin{aligned}
M_{k}(:, j) & =A^{k-1} w_{j}+\left(A^{k-2} W+M_{k-2} J\right) J(:, j)= \\
& =A^{k-1} w_{j}+A^{k-2} w_{j-1}+M_{k-2} J(:, j-1)= \\
& =\sum_{i=1}^{\min \{k, j\}} A^{k-i} w_{j-i+1}
\end{aligned}
$$

Moreover

$$
X(1: n, n+1: n+p)=\sum_{k=0}^{\infty} \frac{\tau^{k} M_{k}}{k!}=\sum_{k=1}^{\infty} \frac{\tau^{k} M_{k}}{k!}
$$

and now we can compute

$$
\begin{aligned}
X(1: n, n+j) & =\sum_{k=1}^{\infty} \frac{\tau^{k} M_{k}(:, j)}{k!}=\sum_{k=1}^{\infty} \frac{1}{k!}\left(\sum_{i=1}^{\min \{j, k\}} \tau^{i}(\tau A)^{k-i} w_{j-i+1}\right)= \\
& =\sum_{i=1}^{j} \tau^{i}\left(\sum_{k=i}^{\infty} \frac{(\tau A)^{k-i}}{k!}\right) w_{j-i+1}= \\
& =\sum_{i=1}^{j} \tau^{i}\left(\sum_{k=0}^{\infty} \frac{(\tau A)^{k}}{(k+i)!}\right) w_{j-i+1}=\sum_{i=1}^{j} \tau^{i} \varphi_{i}(\tau A) w_{j-i+1}
\end{aligned}
$$

Bibliography

[1] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488-511, 2011.

