ADVANCED METHODS FOR ODES - LAB EXERCISES Verona, 20-30 May 2015

© 0 N O U e W N

e T e e
W N O Uk W N = O

W N =

© 0 N o wu

10
11
12
13
14

. FFT anp IFFT iNn MATLAB:

Use the Fast Fourier Transform to compute compute the k-th derivative of an appropriate
function.

In MATLAB the interface for this function could look like
y=fft_diff_k(N,I,f,k), with the following input variables:

N: number of grid points
I: interval for the grid
f: the function to differentiate

k: order of differentiation

Test you method and verify the results with an appropriate function, e.g.

o =eos () (10 (2)

on [0, 327].

Possible solution:

% Exercise 1

function y=Exercisel(N,I,f,k)
%#Gridpoints

x=linspace(I(1),I(2),N+1)°’; x=x(1:N);
%Interval length & scaling factor
1=I(2)-I(1); sf=sqrt(l)/N;

%shifted and scaled versions of fft/ifft
myfft=@(x)fftshift (fft(x))*sf;
myifft=0(x)ifft (ifftshift(x))/sf;
u=f(x);

%fft transformed of u_hat
u_hat=myfft (u);

%wave numbers

lambda=(-N/2:N/2-1) >*2%pi/1;

%compute k-derivative in frequency space
y_hat=(1i*lambda) . k.*u_hat;

%transform back

y=(myifft(y_hat));

Listing 1: Exercise 1

% Exercise 1

N=128;

c=32;

x=linspace (0,c*pi ,N+1) ;x=x(1:N)’;

f=0@(x)cos(x/16) .*(1+sin(x/16));

fs=0@(x) -1/16*sin(x/16) .*(1+sin(x/16))+1/16*cos(x/16) .~ 2;
u=f(x);

subplot(2,2,1), plot(x,u); title(’function’);

subplot (2,2,2), plot(x,fs(x)); title(’first derivative’);
%fft transformed of u_hat

v=Exercisel (N, [0,32*pil],f,1);

subplot(2,2,4), plot(x,v); title(’first derivative -fft?’);
subplot(2,2,3), semilogy(x,abs(v-fs(x))); title(’absolute error’);
norm(v-fs(x))

Listing 2: Example use of Exercise 1

© 0 N O U W

10

COMPUTING @-FUNCTIONS VIA THE MATRIX EXPONENTIAL

Implement a function that computes
P
y=>_ thour A
=0

See the excerpt of [Al-Mohy and Higham| [2011, Ch. 2| in the appendix. In particular
formula (2.11) should be implemented. Be aware of the order of the vectors vy.

Possible solution:

function y=phi(tau,A,v)

p=size(v,2)-1;

J=spdiags (ones(p,1) ,1,p,p);

W=v(:,end:-1:2);

nw=norm(W,inf) ;

eta = 2" -min(ceil(log2(max(nw,realmin))));

B = [A,eta*W;zeros(p,size(A,2)),J];

ep=flipud(eye(p,1));

vO=[v(:,1); ep/etal;
y=full([speye(size(A)),sparse(length(A),p)l*expm(tau*B)*v0);

Listing 3: Exercise 2

For the following PDEs in one space dimension we use periodic boundary conditions in [0, 27]

and as initial value one can use ug(z

) = e~ 100=3)* Dijscretise the space with N (even) grid

points in the same fashion as in the first example. As a first iteration NV = 128 is a fine enough
grid. As final time use T' = 1.

3. LINEAR PDEs

(a) Solve the advection (transport) equation
Ou = ¢10u
exactly by the formula
u(t) = up(z + tey)

and with the help of the previous exercises by a FFT approach. For the experiments
one can use e.g. ¢; = 7 to move the initial condition for a half turn.

(b) Use the same FFT approach to solve the heat equation
oiu = 025{2u.

For the experiment one can use ca = 0.4 as a first test.

(c) Solve the advection-diffusion equation
Oiu = c10zu + czﬁgu
with FFT. Use cq, co as before.

Possible solution:

© 0 N O U W N

e e
w N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

%Configuration

N=256; I=[0,2*pil;
x=linspace(I(1),I(2),N+1)°’; x=x(1:N);
%Interval length & scaling factor
1=I(2)-I(1); sf=sqrt(l)/N;

%shifted and scaled versions of fft/ifft
myfft=0(x)fftshift (fft(x))*sf;
myifft=0(x)real (ifft(ifftshift(x)))/sf;
%Parameters

c=[0.9,0.11; T=10;
u0=0(x)exp(-100%(x-3).72);

%timestep for animation
h=(I(2)-I(1))/N/4;

%h% Animated compuation %h%hh%hhhh
%%% advection exact

%disp (’advection exact’);

%for t=0:h:T

% v=u0 (mod (x+c (1) ¥t ,2%pi));
% plot(x,v), ylim([0,1]); pause(0.01);
Y%end

%%h% advection fft
disp(’advection fft’);
%pause
v=u0(x) ;
lambda=(-N/2:N/2-1) **2xpi/1;
L=exp(c (1) *h*lixlambda);%+c(2)*h*x(1ixk) ."~2);
for t=0:h:T
v=myifft (L.*myfft(v));
plot(x,v); ylim([-0.1,1]1); pause(0.01);
end
%%% diffusion fft
disp(’diffusion fft’);
hpause
v=u0(x);
L=exp(c(2)*h*x(li*lambda) .~2);
for t=0:h:T
v=myifft (L.*myfft(v));
plot(x,v); ylim([0,1]); pause(0.01);
end
%%% advection-diffusion fft
disp(’advection-diffusion fft’);
pause
v=u0(x);
L=exp(c (1) *h*1i*xlambda+c (2) *h*(li*lambda) .~2);
for t=0:h:T
v=myifft (L.*myfft(v));
plot(x,v); ylim([0,1]); pause(0.01);
end

Listing 4: Exercise 3

LIE AND STRANG SPLITTING

Implement a method for the Lie splitting
Uy = e7'Be7'AuO

and Strang splitting

1 1
up = e2TAeTBGQTA’U,0.

Assume that no dense output is required and optimise Strang splitting accordingly.

Use these implementations and test them for the phenomenon splitting of the advection-

W N =

S G W N = o«

N o U W=

diffusion equation

Oiu = 10, u + 628{% u.
N~~~ N~~~
=B :;A

As a second example test your implementation for the advection-diffusion-reaction equa-
tion

Ou = (€10, + c202) u+ g(u)
— ‘\;;
= A =:

where for the nonlinearity can be with the exact flow or by a Runge-Kutta method like
(ode45). Use g(u) = b the constant function and g(u) = (1 — uw)u for your experiments.

Possible solution:

function y=lie(h,A,B,u0,T)
step=Q@(v)B(h,A(h,v));
y=u0;
for t=h:h:T

y=step(y);
end

Listing 5: Lie

function y=strang_naive(h,A,B,u0,T)
step=0@(v)A(h/2,B(h,A(h/2,v)));
y=u0;
for t=h:h:T

y=step(y);
end

Listing 6: Strang naive

function y=strang(h,A,B,u0,T)
step=Q@(v)B(h,ACh,v));
y=B(h,A(h/2,u0));
for t=h:h:(T-h)

y=step(y);
end
y=A(h/2,y);

Listing 7: Strang

EXPONENTIAL EULER
Implement an exponential Euler method
uy = e g + 101 (1A)g(uo)

with the help of Exercise 2 where we implemented a function to compute linear combi-
nations of ¢-functions. As a test example use

Oyu = (Clax + clag) u+ g(u)
=A

for g as in the previous example i.e. g(u) = b and g(u) = (1 — u)u.

Possible solution:

LA R S

W N =

ot

10
11
12

© 0 N O U W N

e e
B W N~ O

16
17
18
19
20

function y=expEuler(h,A,g,u0,T)

y=u0;

for t=h:h:T
y=phi(h,A,[y,g(y)]1);

end

Listing 8: Exponential Euler

EXPONENTIAL RUNGE-KUTTA

Implement the exponential Runge-Kutta method of order two given by the Butcher
tableau

0
1 Y1
‘ 1 — P2 $2

or a single step as

T

up = e g + To1(TA)g(ug) + T2 (TA) (g(Ul) — g(u0)>

Uy = g 4 11 (1A)g(uo)

As a test equation use the same equations as in the previous exercise.

Possible solution:

function y=exprk2(h,A,g,u0,T)
y=u0;
for t=h:h:T
y=step(h,A,g,y);
end

function y=step(h,A,g,u0)
gu=g(u0);
Ul=phi(h,A, [u0,gul);
y=phi(h,A,[u0,gu,(g(Ul)-gu)/hl);
end
end

Listing 9: Exponential Runge-Kutta of order 2

Possible solution:

%Configuration

N=128; I=[0,2%pil;
x=linspace(I(1),I(2),N+1)°’; x=x(1:N);
sInterval length & scaling factor
1=I(2)-I(1); sf=sqrt(l)/N;

%shifted and scaled versions of fft/ifft
myfft=0(x)fftshift (fft(x))*sf;
myifft=@(x)real (ifft (ifftshift(x)))/sf;
lambda=(-N/2:N/2-1) >*2%pi/1;
%Parameters

c=[0.9,0.1,0.1]; T=1;

u0=0(x)exp (-100%(x-3) .72);

%timestep for animation

h=T/round (T/((I(2)-I(1))/N/4));

v=u0(x);

g=0(v)c(3)*(v.*x(1-v));

g_ei=0(v)myfft(c(3)*(myifft(v) . .*(1-myifft(v))));

A_op=@(h,v)myifft (exp(c(1l)*h*li*xlambda+c(2)*h*(li*lambda)."~2) .*myfft(v));
A=spdiags ((c(2) *(li*lambda) .~ 2+c(1)*(1i*lambda)) ,0,N,N);

21
22
23
24
25
26
27
28
29
30
31
32
33
34

options = odeset(’RelTol’,le-13,’AbsTol’,le-15);
B_op=@(h,v)deval (ode45(@(t,x)g(x),[0 h]l,v,options) ,h);
odefun=0(t,y)myifft ((c(2)*(li*lambda) . 2+c(1)*(li*lambda)) .*myfft(y))+g(y);
yode=deval (ode45(odefun, [0,T/2,T],v,options) ,T);
H=2."(-1%(0:1:10));
e=zeros (length (H) ,4);
for i=1:length(H);
h=H(i);
e(i,1)=norm(yode-lie(h,A_op,B_op,v,T),inf);
e(i,2)=norm(yode-strang(h,A_op,B_op,v,T),inf);
e(i,3)=norm(yode-myifft (expEuler(h,A,g _ei,myfft(v),T)) ,inf);
e(i,4)=norm(yode-myifft (exprk2(h,A,g_ei,myfft(v),T)),inf);
end
loglog(H,e)
legend(’lie’,’strang’,’expEuler’,’exprk2’)

Listing 10: Order plot for Lie, Strang, expEuler, exprk2

SOLVE THE KURAMOTO-SIVASHINSKY EQUATION - Exercise

On [0, 327] solve the Kuramoto-Sivashinsky equation
Opu = —0u — 9*u — udyu

for the initial value

= () (1n(5))

with a splitting and exponential integrator approach on the interval [0, 327] for final time
T = 150 and an appropriate step size 7.

For the splitting select appropriate splitting operators with the Strang splitting and use
the exponential Runge-Kutta method as exponential integrator.

HinT: The nonlinearity can be solved exactly by the method of characteristicss.

References

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an
application to exponential integrators. SIAM J. Sci. Comput. 33 (2), 488-511.

A

Appendix

2. Exponential integrators: avoiding the ¢ functions. Exponential in-
tegrators are a class of time integration methods for solving initial value problems
written in the form

(2.1) u'(t) = Au(t) + g(t, u(t)), ulto) =uo, t=to,

where u(t) € C", A € C"*", and g is a nonlinear function. Spatial semidiscretization
of partial differential equations (PDEs) leads to systems in this form. The matrix A
usually represents the Jacobian of a certain function or an approximation of it, and
it is usually large and sparse. The solution of (2.1) satisfies the nonlinear integral
equation

t
(2.2) u(t) = et Ay 4 / A (r, u(r)) dr.
to
By expanding g in a Taylor series about tg, the solution can be written as [17, Lem. 5.1]
oo
(2.3) u(t) = "0 + Y " or ((E — to) A) (t — to)* s,
k=1
where

dr1 1 L 1-6)s ko1
uk = S 96 u() =, or(2) = (k—l)!/oe 07 dd, k=1

By suitably truncating the series in (2.3), we obtain the approximation

(2.4) u(t) = a(t) = e + Y pp (- to) A) (t — to)* .
k=1

The functions ¢g(z) satisfy the recurrence relation

z

1
wo(2) = zpe11(2) + ik wo(2) = €7,

and have the Taylor expansion

k=0

A wide class of exponential integrator methods is obtained by employing suitable
approximations to the vectors uy in (2.4), and further methods can be obtained by
the use of different approximations to ¢ in (2.2). See Hochbruck and Ostermann [15]
for a survey of the state of the art in exponential integrators.

We will show that the right-hand side of (2.4) can be represented in terms of the
single exponential of an (n + p) x (n + p) matrix, with no need to explicitly evaluate
@ functions. The following theorem is our key result. In fact we will only need the
special case of the theorem with ¢ = 0.

THEOREM 2.1. Let A € C"*", W = [wq, wa,...,wy] € C"*P, 7 € C, and
4w (n+p) X (n+p) _ |0 I PXPp
(2.6) A_[O J]G(C , J= 0 0 e CP*P,
Then for X = @y(TA) with £ > 0 we have
J
(2.7) X(1:inn+j) =Y ronprAwi g1, j=1lp.

k=1

Proof. 1t is easy to show that, for & > 0,

= AR M,
k _ k

where My, = A* ='W + My_1J and My = W, My = 0. For 1 < j < p we have
WJ(:,j) = wj—1 and JJ(:,j) = J(:,j — 1), where we define both right-hand sides to

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an application to exponential integrators. STAM J. Sci. Comput. 33 (2), 488-511.

be zero when j = 1. Thus

My,) = A¥ w4 (AF=2W + My _5J)J(:, j)
= AN+ APy My—2 (5§ — 1)
min(k,j)

ki
E A Z’LUj,iJrl.
=1

We will write My (:, j) = 5:1 AF=tw; ;11 on the understanding that when k < j we
set to zero the terms in the summation where ¢ > k (i.e., those terms with a negative
power of A). From (2.5) and (2.8) we see that the (1,2) block of X = y(TA) is

= kM,
X(l:n,n+1:n+p):z<k+;)'.
k=1 '

Therefore, the (n + j)th column of X is given by

. T My (:, =
X(1:nn+j) = (ZT (TA)* wjl-H)
Pt k‘+€ — (!

< TAk l)ﬂ)
—it1
P (k+0)!

= j
<Z EHH—Z)) Wit = Z T ouri(TA)wj—iyr. 0O

=1

M“ M“

i=1

With 7 = 1, j = p, and £ = 0, Theorem 2.1 shows that, for arbitrary vectors
wy,, the sum of matrix—vector products > 7_, ¢r(A)w;_k41 can be obtained from the
last column of the exponential of a matrix of dimension n + p. A special case of the
theorem is worth noting. On taking £ = 0 and W = [¢ 0] € C"*P, where ¢ € C", we
obtain X (1:n,n+j) = 77¢,(7A)c, which is a relation useful for Krylov methods that
was derived by Sidje [22, Thm. 1]. This in turn generalizes the expression

([i[5 7

obtained by Saad [21, Prop. 1].
We now use the theorem to obtain an expression for (2.4) involving only the

matrix exponential. Let W(:;,p —k + 1) = ug, k = 1:p, form the matrix A in (2.6),
and set £ =0 and 7 =t — t5. Then

~ NF e(t—to)A X
(2.9) X = <p0((t - to)A) — o(t—to)A _ [0 e(t_g)J] ,

where the columns of X5 are given by (2.7), and, in particular, the last column of
Xlg is

X(inn+p) =Y or((t—to)A)(t — to)* us.
k=1

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an application to exponential integrators. STAM J. Sci. Comput. 33 (2), 488-511.

Hence, by (2.4) and (2.9),

u(t) = e Ay, + Z er ((t—to)A) (t — to)" us

k=1
= et Ay + X(l:n,n+p)
_ (t—to)A | U0
(2.10) [I, 0]e {ep].

Thus we are approximating the nonlinear system (2.1) by a subspace of a slightly
larger linear system

V0 =T,)= |]
P
To evaluate (2.10) we need to compute the action of the matrix exponential on a
vector. We focus on this problem in the rest of the paper. _

An important practical matter concerns the scaling of A. If we replace W by nW
we see from (2.7) that the only effect on X = e is to replace X (1 :n,n+1:n+p) by
nX(1:n,n+1:n+p). This linear relationship can also be seen using properties of
the Fréchet derivative [11, Thm. 4.12]. For methods employing a scaling and squaring
strategy a large ||| can cause overscaling, resulting in numerical instability. To
avoid overscaling a suitable normalization of W is necessary. In the 1-norm we have

1Al < Al < max (A1 W] + 1),

since ||J||; = 1. We choose = 2~ Mo82(IWI)T wwhich is defined as a power of 2 to
avoid the introduction of rounding errors. The variant of the expression (2.10) that
we should evaluate is

(2.11) at)=[1I, 0]exp ((t—to) [oy D [o }

€p

Experiment 8 in Section 6 illustrates the importance of normalizing W.

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an application to exponential integrators. STAM J. Sci. Comput. 33 (2), 488-511.

	Appendix

