1. FFT and IFFT in MATLAB:

Use the Fast Fourier Transform to compute compute the k-th derivative of an appropriate function.

In MATLAB the interface for this function could look like $\mathrm{y}=\mathrm{fft} _\mathrm{diff}_{\mathrm{k}} \mathrm{k}(\mathrm{N}, \mathrm{I}, \mathrm{f}, \mathrm{k})$, with the following input variables:
N : number of grid points
I : interval for the grid
f : the function to differentiate
k : order of differentiation
Test you method and verify the results with an appropriate function, e.g.

$$
f(x)=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right)
$$

on $[0,32 \pi]$.

Possible solution:

```
% Exercise 1
function y=Exercise1(N,I,f,k)
%Gridpoints
x=linspace(I(1),I(2),N+1)'; x=x(1:N);
%Interval length & scaling factor
l=I(2)-I(1); sf=sqrt(l)/N;
%shifted and scaled versions of fft/ifft
myfft=@(x)fftshift(fft(x))*sf;
myifft=@(x)ifft(ifftshift(x))/sf;
u=f(x);
%fft transformed of u_hat
u_hat=myfft(u);
%wave numbers
lambda=(-N/2:N/2-1)'*2*pi/l;
%compute k-derivative in frequency space
y_hat=(1i*lambda).^k.*u_hat;
%transform back
y=(myifft(y_hat));
```

Listing 1: Exercise 1

```
% Exercise 1
N=128;
c=32;
x=linspace(0,c*pi,N+1);x=x(1:N)';
f=@(x)\operatorname{cos}(x/16).*(1+\operatorname{sin}(x/16));
fs=@(x) - 1/16*sin(x/16).*(1+\operatorname{sin}(x/16))+1/16*\operatorname{cos}(x/16).^2;
u=f(x);
subplot(2,2,1), plot(x,u); title('function');
subplot(2,2,2), plot(x,fs(x)); title('first derivative');
%fft transformed of u_hat
v=Exercise1(N,[0,32*pi],f,1);
subplot(2,2,4), plot(x,v); title('first derivative -fft');
subplot(2,2,3), semilogy(x,abs(v-fs(x))); title('absolute error');
norm(v-fs(x))
```

Listing 2: Example use of Exercise 1
2. Computing φ-Functions Via the matrix exponential

Implement a function that computes

$$
y=\sum_{\ell=0}^{p} \tau^{\ell} \varphi_{\ell}(\tau A) v_{\ell}
$$

See the excerpt of Al-Mohy and Higham 2011, Ch. 2] in the appendix. In particular formula (2.11) should be implemented. Be aware of the order of the vectors v_{ℓ}.
Possible solution:

```
function y=phi(tau,A,v)
p=size(v, 2)-1;
J=spdiags(ones(p,1),1,p,p);
W=v(:, end:-1:2);
nw=norm(W,inf);
eta = 2-}-\operatorname{min}(\operatorname{ceil}(\operatorname{log}2(\operatorname{max}(nw,realmin))))
B = [A,eta*W;zeros(p,size(A, 2)),J];
ep=flipud(eye(p,1));
v0=[v(:,1); ep/eta];
y=full([speye(size(A)), sparse(length(A),p)]*expm(tau*B)*v0);
```

Listing 3: Exercise 2

For the following PDEs in one space dimension we use periodic boundary conditions in $[0,2 \pi]$ and as initial value one can use $u_{0}(x)=\mathrm{e}^{-100(x-3)^{2}}$. Discretise the space with N (even) grid points in the same fashion as in the first example. As a first iteration $N=128$ is a fine enough grid. As final time use $T=1$.

3. Linear PDEs

(a) Solve the advection (transport) equation

$$
\partial_{t} u=c_{1} \partial_{x} u
$$

exactly by the formula

$$
u(t)=u_{0}\left(x+t c_{1}\right)
$$

and with the help of the previous exercises by a FFT approach. For the experiments one can use e.g. $c_{1}=\pi$ to move the initial condition for a half turn.
(b) Use the same FFT approach to solve the heat equation

$$
\partial_{t} u=c_{2} \partial_{x}^{2} u
$$

For the experiment one can use $c_{2}=0.4$ as a first test.
(c) Solve the advection-diffusion equation

$$
\partial_{t} u=c_{1} \partial_{x} u+c_{2} \partial_{x}^{2} u
$$

with FFT. Use c_{1}, c_{2} as before.

Possible solution:

```
%Configuration
N=256; I=[0,2*pi];
x=linspace(I(1),I(2),N+1)'; x=x(1:N);
%Interval length & scaling factor
l=I (2)-I (1); sf=sqrt(1)/N;
%shifted and scaled versions of fft/ifft
myfft=@(x)fftshift(fft(x))*sf;
myifft=@(x)real(ifft(ifftshift(x)))/sf;
%Parameters
c=[0.9,0.1]; T=10;
u0=@(x) exp(-100*(x-3).^2);
%timestep for animation
h=(I (2)-I (1))/N/4;
%%% Animated compuation %%%%%%%%%%
%%% advection exact
%disp('advection exact');
%for t=0:h:T
% v=u0(mod}(\textrm{x}+\textrm{c}(1)*t,2*\textrm{pi}))
% plot(x,v), ylim([0,1]); pause(0.01);
%end
%%% advection fft
disp('advection fft');
%pause
v=u0(x);
lambda=(-N/2:N/2-1)'*2*pi/l;
L}=\operatorname{exp(c(1)*h*1i*lambda);%+c(2)*h*(1i*k). - 2);
for t=0:h:T
    v=myifft(L.*myfft(v));
    plot(x,v); ylim([-0.1,1]); pause(0.01);
end
%%% diffusion fft
disp('diffusion fft');
%pause
v=u0(x);
L=exp(c(2)*h*(1i*lambda). - 2);
for t=0:h:T
    v=myifft(L.*myfft(v));
    plot(x,v); ylim([0,1]); pause(0.01);
end
%%% advection-diffusion fft
disp('advection-diffusion fft');
pause
v=u0(x);
L}=\operatorname{exp}(c(1)*h*1i*lambda+c(2)*h*(1i*lambda).^2)
for t=0:h:T
    v=myifft(L.*myfft(v));
    plot(x,v); ylim([0,1]); pause(0.01);
end
```

Listing 4: Exercise 3

4. Lie and Strang splitting

Implement a method for the Lie splitting

$$
u_{1}=\mathrm{e}^{\tau B} \mathrm{e}^{\tau A} u_{0}
$$

and Strang splitting

$$
u_{1}=\mathrm{e}^{\frac{1}{2} \tau A} \mathrm{e}^{\tau B} \mathrm{e}^{\frac{1}{2} \tau A} u_{0} .
$$

Assume that no dense output is required and optimise Strang splitting accordingly.
Use these implementations and test them for the phenomenon splitting of the advection-
diffusion equation

$$
\partial_{t} u=\underbrace{c_{1} \partial_{x}}_{=: B} u+\underbrace{c_{2} \partial_{x}^{2}}_{=: A} u .
$$

As a second example test your implementation for the advection-diffusion-reaction equation

$$
\partial_{t} u=\underbrace{\left(c_{1} \partial_{x}+c_{2} \partial_{x}^{2}\right)}_{=: A} u+\underbrace{g(u)}_{=: B}
$$

where for the nonlinearity can be with the exact flow or by a Runge-Kutta method like (ode45). Use $g(u)=b$ the constant function and $g(u)=(1-u) u$ for your experiments.
Possible solution:

```
function y=lie(h,A,B,u0,T)
step=@ (v)B(h,A(h,v));
y=u0;
for t=h:h:T
    y=step (y)
end
```

Listing 5: Lie

```
function y=strang_naive(h,A,B,u0,T)
step=@(v)A(h/2,B(h,A(h/2,v)));
y=u0;
for t=h:h:T
    y=step (y)
end
```

Listing 6: Strang naive

```
function y=strang(h,A,B,u0,T)
step=@(v)B(h,A(h,v));
y=B(h,A(h/2,u0));
for t=h:h:(T-h)
    y=step (y);
end
y=A(h/2,y);
```

Listing 7: Strang

5. Exponential Euler

Implement an exponential Euler method

$$
u_{1}=\mathrm{e}^{\tau A} u_{0}+\tau \varphi_{1}(\tau A) g\left(u_{0}\right)
$$

with the help of Exercise 2 where we implemented a function to compute linear combinations of φ-functions. As a test example use

$$
\partial_{t} u=\underbrace{\left(c_{1} \partial_{x}+c_{1} \partial_{x}^{2}\right)}_{=: A} u+g(u)
$$

for g as in the previous example i.e. $g(u)=b$ and $g(u)=(1-u) u$.

Possible solution:

```
function y=expEuler(h,A,g,u0,T)
y=u0;
for t=h:h:T
    y=phi(h,A,[y,g(y)]);
end
```

Listing 8: Exponential Euler

6. Exponential Runge-Kutta

Implement the exponential Runge-Kutta method of order two given by the Butcher tableau

or a single step as

$$
\begin{aligned}
& u_{1}=\mathrm{e}^{\tau A} u_{0}+\tau \varphi_{1}(\tau A) g\left(u_{0}\right)+\tau^{2} \varphi_{2}(\tau A)\left(\frac{g\left(U_{1}\right)-g\left(u_{0}\right)}{\tau}\right) \\
& U_{1}=\mathrm{e}^{\tau A} u_{0}+\tau \varphi_{1}(\tau A) g\left(u_{0}\right)
\end{aligned}
$$

As a test equation use the same equations as in the previous exercise.
Possible solution:

```
function y=exprk2(h,A,g,u0,T)
y=u0;
for t=h:h:T
    y=step (h,A,g,y);
end
    function y=step(h,A,g,u0)
        gu=g(u0);
        U1=phi(h,A,[u0,gu]);
        y=phi(h,A,[u0,gu,(g(U1)-gu)/h]);
        end
end
```

Listing 9: Exponential Runge-Kutta of order 2

Possible solution:

```
%Configuration
N=128; I=[0,2*pi];
x=linspace(I (1),I(2),N+1)'; x=x (1:N);
%Interval length & scaling factor
l=I(2)-I(1); sf=sqrt(l)/N;
%shifted and scaled versions of fft/ifft
myfft=@(x)fftshift(fft(x))*sf;
myifft=@(x)real(ifft(ifftshift(x)))/sf;
lambda=(-N/2:N/2-1)'*2*pi/l;
%Parameters
c=[0.9,0.1,0.1]; T=1;
u0=@(x) exp (-100* (x-3). -2);
%timestep for animation
h=T/round (T/((I (2)-I (1))/N/4));
v=u0(x);
g=@ (v)c(3)*(v.*(1-v));
g_ei=@(v)myfft(c(3)*(myifft(v).*(1-myifft(v))));
A_op=@(h,v)myifft(exp(c(1)*h*1i*lambda+c(2)*h*(1i*lambda). - 2).*myfft(v));
A=spdiags((c(2)*(1i*lambda). - 2+c(1)*(1i*lambda)),0,N,N);
```

```
options = odeset('RelTol',1e-13,'AbsTol',1e-15);
B_op=@(h,v)deval(ode45(@(t,x)g(x),[0 h],v,options),h);
odefun=@(t,y)myifft((c(2)*(1i*lambda).^2+c(1)*(1i*lambda)).*myfft(y)) +g(y);
yode=deval(ode45(odefun, [0,T/2,T],v,options),T);
H=2. - (-1*(0:1:10));
e=zeros(length(H),4);
for i=1:length(H);
    h=H(i);
    e(i,1)=norm(yode-lie(h,A_op,B_op,v,T),inf);
    e(i,2) =norm(yode-strang(h,A_op, B_op,v,T),inf);
    e(i,3)=norm(yode-myifft(expEuler(h,A,g_ei,myfft(v),T)),inf);
    e(i,4)=norm(yode-myifft(exprk2(h,A,g_ei,myfft(v),T)),inf);
end
loglog(H,e)
legend('lie','strang','expEuler','exprk2')
```

Listing 10: Order plot for Lie, Strang, expEuler, exprk2

7. Solve the Kuramoto-Sivashinsky equation - Exercise

On $[0,32 \pi]$ solve the Kuramoto-Sivashinsky equation

$$
\partial_{t} u=-\partial_{x}^{4} u-\partial_{x}^{2} u-u \partial_{x} u
$$

for the initial value

$$
u_{0}=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right) .
$$

with a splitting and exponential integrator approach on the interval $[0,32 \pi]$ for final time $T=150$ and an appropriate step size τ.

For the splitting select appropriate splitting operators with the Strang splitting and use the exponential Runge-Kutta method as exponential integrator.
Hint: The nonlinearity can be solved exactly by the method of characteristicss.

References

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33 (2), 488-511.

A Appendix

2. Exponential integrators: avoiding the φ functions. Exponential integrators are a class of time integration methods for solving initial value problems written in the form

$$
\begin{equation*}
u^{\prime}(t)=A u(t)+g(t, u(t)), \quad u\left(t_{0}\right)=u_{0}, \quad t \geq t_{0} \tag{2.1}
\end{equation*}
$$

where $u(t) \in \mathbb{C}^{n}, A \in \mathbb{C}^{n \times n}$, and g is a nonlinear function. Spatial semidiscretization of partial differential equations (PDEs) leads to systems in this form. The matrix A usually represents the Jacobian of a certain function or an approximation of it, and it is usually large and sparse. The solution of (2.1) satisfies the nonlinear integral equation

$$
\begin{equation*}
u(t)=e^{\left(t-t_{0}\right) A} u_{0}+\int_{t_{0}}^{t} e^{(t-\tau) A} g(\tau, u(\tau)) d \tau \tag{2.2}
\end{equation*}
$$

By expanding g in a Taylor series about t_{0}, the solution can be written as [17, Lem. 5.1]

$$
\begin{equation*}
u(t)=e^{\left(t-t_{0}\right) A} u_{0}+\sum_{k=1}^{\infty} \varphi_{k}\left(\left(t-t_{0}\right) A\right)\left(t-t_{0}\right)^{k} u_{k} \tag{2.3}
\end{equation*}
$$

where

$$
u_{k}=\left.\frac{d^{k-1}}{d t^{k-1}} g(t, u(t))\right|_{t=t_{0}}, \quad \varphi_{k}(z)=\frac{1}{(k-1)!} \int_{0}^{1} e^{(1-\theta) z} \theta^{k-1} d \theta, \quad k \geq 1
$$

By suitably truncating the series in (2.3), we obtain the approximation

$$
\begin{equation*}
u(t) \approx \widehat{u}(t)=e^{\left(t-t_{0}\right) A} u_{0}+\sum_{k=1}^{p} \varphi_{k}\left(\left(t-t_{0}\right) A\right)\left(t-t_{0}\right)^{k} u_{k} \tag{2.4}
\end{equation*}
$$

The functions $\varphi_{\ell}(z)$ satisfy the recurrence relation

$$
\varphi_{\ell}(z)=z \varphi_{\ell+1}(z)+\frac{1}{\ell!}, \quad \varphi_{0}(z)=e^{z}
$$

and have the Taylor expansion

$$
\begin{equation*}
\varphi_{\ell}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+\ell)!} \tag{2.5}
\end{equation*}
$$

A wide class of exponential integrator methods is obtained by employing suitable approximations to the vectors u_{k} in (2.4), and further methods can be obtained by the use of different approximations to g in (2.2). See Hochbruck and Ostermann [15] for a survey of the state of the art in exponential integrators.

We will show that the right-hand side of (2.4) can be represented in terms of the single exponential of an $(n+p) \times(n+p)$ matrix, with no need to explicitly evaluate φ functions. The following theorem is our key result. In fact we will only need the special case of the theorem with $\ell=0$.

Theorem 2.1. Let $A \in \mathbb{C}^{n \times n}, W=\left[w_{1}, w_{2}, \ldots, w_{p}\right] \in \mathbb{C}^{n \times p}, \tau \in \mathbb{C}$, and

$$
\widetilde{A}=\left[\begin{array}{cc}
A & W \tag{2.6}\\
0 & J
\end{array}\right] \in \mathbb{C}^{(n+p) \times(n+p)}, \quad J=\left[\begin{array}{cc}
0 & I_{p-1} \\
0 & 0
\end{array}\right] \in \mathbb{C}^{p \times p} .
$$

Then for $X=\varphi_{\ell}(\tau \widetilde{A})$ with $\ell \geq 0$ we have

$$
\begin{equation*}
X(1: n, n+j)=\sum_{k=1}^{j} \tau^{k} \varphi_{\ell+k}(\tau A) w_{j-k+1}, \quad j=1: p \tag{2.7}
\end{equation*}
$$

Proof. It is easy to show that, for $k \geq 0$,

$$
\widetilde{A}^{k}=\left[\begin{array}{cc}
A^{k} & M_{k} \tag{2.8}\\
0 & J^{k}
\end{array}\right]
$$

where $M_{k}=A^{k-1} W+M_{k-1} J$ and $M_{1}=W, M_{0}=0$. For $1 \leq j \leq p$ we have $W J(:, j)=w_{j-1}$ and $J J(:, j)=J(:, j-1)$, where we define both right-hand sides to

$$
\begin{aligned}
X(1: n, n+j) & =\sum_{k=1}^{\infty} \frac{\tau^{k} M_{k}(:, j)}{(k+\ell)!}=\sum_{k=1}^{\infty} \frac{1}{(k+\ell)!}\left(\sum_{i=1}^{j} \tau^{i}(\tau A)^{k-i} w_{j-i+1}\right) \\
& =\sum_{i=1}^{j} \tau^{i}\left(\sum_{k=1}^{\infty} \frac{(\tau A)^{k-i}}{(k+\ell)!}\right) w_{j-i+1} \\
& =\sum_{i=1}^{j} \tau^{i}\left(\sum_{k=0}^{\infty} \frac{(\tau A)^{k}}{(\ell+k+i)!}\right) w_{j-i+1}=\sum_{i=1}^{j} \tau^{i} \varphi_{\ell+i}(\tau A) w_{j-i+1} .
\end{aligned}
$$

With $\tau=1, j=p$, and $\ell=0$, Theorem 2.1 shows that, for arbitrary vectors w_{k}, the sum of matrix-vector products $\sum_{k=1}^{p} \varphi_{k}(A) w_{j-k+1}$ can be obtained from the last column of the exponential of a matrix of dimension $n+p$. A special case of the theorem is worth noting. On taking $\ell=0$ and $W=[c 0] \in \mathbb{C}^{n \times p}$, where $c \in \mathbb{C}^{n}$, we obtain $X(1: n, n+j)=\tau^{j} \varphi_{j}(\tau A) c$, which is a relation useful for Krylov methods that was derived by Sidje [22, Thm. 1]. This in turn generalizes the expression

$$
\exp \left(\left[\begin{array}{cc}
A & c \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
e^{A} & \varphi_{1}(A) c \\
0 & I
\end{array}\right]
$$

obtained by Saad [21, Prop. 1].
We now use the theorem to obtain an expression for (2.4) involving only the matrix exponential. Let $W(:, p-k+1)=u_{k}, k=1: p$, form the matrix \widetilde{A} in (2.6), and set $\ell=0$ and $\tau=t-t_{0}$. Then

$$
X=\varphi_{0}\left(\left(t-t_{0}\right) \widetilde{A}\right)=e^{\left(t-t_{0}\right) \widetilde{A}}=\left[\begin{array}{cc}
e^{\left(t-t_{0}\right) A} & X_{12} \tag{2.9}\\
0 & e^{\left(t-t_{0}\right) J}
\end{array}\right]
$$

where the columns of X_{12} are given by (2.7), and, in particular, the last column of X_{12} is

$$
X(1: n, n+p)=\sum_{k=1}^{p} \varphi_{k}\left(\left(t-t_{0}\right) A\right)\left(t-t_{0}\right)^{k} u_{k}
$$

$$
\begin{align*}
\widehat{u}(t) & =e^{\left(t-t_{0}\right) A} u_{0}+\sum_{k=1}^{p} \varphi_{k}\left(\left(t-t_{0}\right) A\right)\left(t-t_{0}\right)^{k} u_{k} \\
& =e^{\left(t-t_{0}\right) A} u_{0}+X(1: n, n+p) \\
& =\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right] e^{\left(t-t_{0}\right) \tilde{A}}\left[\begin{array}{l}
u_{0} \\
e_{p}
\end{array}\right] \tag{2.10}
\end{align*}
$$

Thus we are approximating the nonlinear system (2.1) by a subspace of a slightly larger linear system

$$
y^{\prime}(t)=\widetilde{A} y(t), \quad y\left(t_{0}\right)=\left[\begin{array}{l}
u_{0} \\
e_{p}
\end{array}\right] .
$$

To evaluate (2.10) we need to compute the action of the matrix exponential on a vector. We focus on this problem in the rest of the paper.

An important practical matter concerns the scaling of \widetilde{A}. If we replace W by ηW we see from (2.7) that the only effect on $X=e^{\widetilde{A}}$ is to replace $X(1: n, n+1: n+p)$ by $\eta X(1: n, n+1: n+p)$. This linear relationship can also be seen using properties of the Fréchet derivative [11, Thm. 4.12]. For methods employing a scaling and squaring strategy a large $\|W\|$ can cause overscaling, resulting in numerical instability. To avoid overscaling a suitable normalization of W is necessary. In the 1-norm we have

$$
\|A\|_{1} \leq\|\widetilde{A}\|_{1} \leq \max \left(\|A\|_{1}, \eta\|W\|_{1}+1\right)
$$

since $\|J\|_{1}=1$. We choose $\eta=2^{-\left\lceil\log _{2}\left(\|W\|_{1}\right)\right\rceil}$, which is defined as a power of 2 to avoid the introduction of rounding errors. The variant of the expression (2.10) that we should evaluate is

$$
\widehat{u}(t)=\left[\begin{array}{ll}
I_{n} & 0
\end{array}\right] \exp \left(\left(t-t_{0}\right)\left[\begin{array}{cc}
A & \eta W \tag{2.11}\\
0 & J
\end{array}\right]\right)\left[\begin{array}{c}
u_{0} \\
\eta^{-1} e_{p}
\end{array}\right] .
$$

Experiment 8 in Section 6 illustrates the importance of normalizing W.

