
Advanced methods for ODEs - Lab exercises Verona, 20-30 May 2015

1. FFT and IFFT in MATLAB:
Use the Fast Fourier Transform to compute compute the k-th derivative of an appropriate
function.

In MATLAB the interface for this function could look like
y=fft_diff_k(N,I,f,k), with the following input variables:

N : number of grid points

I: interval for the grid

f : the function to differentiate

k: order of differentiation

Test you method and verify the results with an appropriate function, e.g.

f(x) = cos
(x
16

)(
1 + sin

(x
16

))

on [0, 32π].

Possible solution:
1 % Exercise 1
2 function y=Exercise1(N,I,f,k)
3 %Gridpoints
4 x=linspace(I(1),I(2),N+1) ’; x=x(1:N);
5 %Interval length & scaling factor
6 l=I(2)-I(1); sf=sqrt(l)/N;
7 %shifted and scaled versions of fft/ifft
8 myfft=@(x)fftshift(fft(x))*sf;
9 myifft=@(x)ifft(ifftshift(x))/sf;

10 u=f(x);
11 %fft transformed of u_hat
12 u_hat=myfft(u);
13 %wave numbers
14 lambda=(-N/2:N/2-1) ’*2*pi/l;
15 %compute k-derivative in frequency space
16 y_hat =(1i*lambda).^k.*u_hat;
17 %transform back
18 y=(myifft(y_hat));

Listing 1: Exercise 1

1 % Exercise 1
2 N=128;
3 c=32;
4 x=linspace(0,c*pi,N+1);x=x(1:N) ’;
5 f=@(x)cos(x/16) .*(1+ sin(x/16));
6 fs=@(x) -1/16*sin(x/16) .*(1+ sin(x/16))+1/16* cos(x/16) .^2;
7 u=f(x);
8 subplot (2,2,1), plot(x,u); title(’function ’);
9 subplot (2,2,2), plot(x,fs(x)); title(’first derivative ’);

10 %fft transformed of u_hat
11 v=Exercise1(N,[0 ,32*pi],f,1);
12 subplot (2,2,4), plot(x,v); title(’first derivative -fft’);
13 subplot (2,2,3), semilogy(x,abs(v-fs(x))); title(’absolute error ’);
14 norm(v-fs(x))

Listing 2: Example use of Exercise 1

1

2. Computing ϕ-functions via the matrix exponential

Implement a function that computes

y =

p∑

`=0

τ `ϕ`(τA)v`.

See the excerpt of [Al-Mohy and Higham 2011, Ch. 2] in the appendix. In particular
formula (2.11) should be implemented. Be aware of the order of the vectors v`.

Possible solution:
1 function y=phi(tau ,A,v)

3 p=size(v,2) -1;
4 J=spdiags(ones(p,1) ,1,p,p);
5 W=v(:,end :-1:2);
6 nw=norm(W,inf);
7 eta = 2^-min(ceil(log2(max(nw,realmin))));
8 B = [A,eta*W;zeros(p,size(A,2)),J];
9 ep=flipud(eye(p,1));

10 v0=[v(:,1); ep/eta];
11 y=full([speye(size(A)),sparse(length(A),p)]*expm(tau*B)*v0);

Listing 3: Exercise 2

For the following PDEs in one space dimension we use periodic boundary conditions in [0, 2π]
and as initial value one can use u0(x) = e−100(x−3)2 . Discretise the space with N (even) grid
points in the same fashion as in the first example. As a first iteration N = 128 is a fine enough
grid. As final time use T = 1.

3. Linear PDEs

(a) Solve the advection (transport) equation

∂tu = c1∂xu

exactly by the formula

u(t) = u0(x+ tc1)

and with the help of the previous exercises by a FFT approach. For the experiments
one can use e.g. c1 = π to move the initial condition for a half turn.

(b) Use the same FFT approach to solve the heat equation

∂tu = c2∂
2
xu.

For the experiment one can use c2 = 0.4 as a first test.

(c) Solve the advection-diffusion equation

∂tu = c1∂xu+ c2∂
2
xu

with FFT. Use c1, c2 as before.

Possible solution:

2

1 %Configuration
2 N=256; I=[0,2*pi];
3 x=linspace(I(1),I(2),N+1) ’; x=x(1:N);
4 %Interval length & scaling factor
5 l=I(2)-I(1); sf=sqrt(l)/N;
6 %shifted and scaled versions of fft/ifft
7 myfft=@(x)fftshift(fft(x))*sf;
8 myifft=@(x)real(ifft(ifftshift(x)))/sf;
9 %Parameters

10 c=[0.9 ,0.1]; T=10;
11 u0=@(x)exp (-100*(x-3) .^2);
12 %timestep for animation
13 h=(I(2)-I(1))/N/4;

15 %%% Animated compuation %%%%%%%%%
16 %%% advection exact
17 %disp(’advection exact ’);
18 %for t=0:h:T
19 % v=u0(mod(x+c(1)*t,2*pi));
20 % plot(x,v), ylim ([0 ,1]); pause (0.01);
21 %end
22 %%% advection fft
23 disp(’advection fft’);
24 %pause
25 v=u0(x);
26 lambda=(-N/2:N/2-1) ’*2*pi/l;
27 L=exp(c(1)*h*1i*lambda);%+c(2)*h*(1i*k).^2);
28 for t=0:h:T
29 v=myifft(L.*myfft(v));
30 plot(x,v); ylim ([-0.1 ,1]); pause (0.01);
31 end
32 %%% diffusion fft
33 disp(’diffusion fft’);
34 %pause
35 v=u0(x);
36 L=exp(c(2)*h*(1i*lambda).^2);
37 for t=0:h:T
38 v=myifft(L.*myfft(v));
39 plot(x,v); ylim ([0 ,1]); pause (0.01);
40 end
41 %%% advection -diffusion fft
42 disp(’advection -diffusion fft’);
43 pause
44 v=u0(x);
45 L=exp(c(1)*h*1i*lambda+c(2)*h*(1i*lambda).^2);
46 for t=0:h:T
47 v=myifft(L.*myfft(v));
48 plot(x,v); ylim ([0 ,1]); pause (0.01);
49 end

Listing 4: Exercise 3

4. Lie and Strang splitting

Implement a method for the Lie splitting

u1 = eτBeτAu0

and Strang splitting

u1 = e
1
2 τAeτBe

1
2 τAu0.

Assume that no dense output is required and optimise Strang splitting accordingly.

Use these implementations and test them for the phenomenon splitting of the advection-

3

diffusion equation

∂tu = c1∂x︸︷︷︸
=:B

u+ c2∂
2
x︸︷︷︸

=:A

u.

As a second example test your implementation for the advection-diffusion-reaction equa-
tion

∂tu =
(
c1∂x + c2∂

2
x

)
︸ ︷︷ ︸

=:A

u+ g(u)︸︷︷︸
=:B

where for the nonlinearity can be with the exact flow or by a Runge–Kutta method like
(ode45). Use g(u) = b the constant function and g(u) = (1− u)u for your experiments.

Possible solution:
1 function y=lie(h,A,B,u0,T)
2 step=@(v)B(h,A(h,v));
3 y=u0;
4 for t=h:h:T
5 y=step(y);
6 end

Listing 5: Lie

1 function y=strang_naive(h,A,B,u0 ,T)
2 step=@(v)A(h/2,B(h,A(h/2,v)));
3 y=u0;
4 for t=h:h:T
5 y=step(y);
6 end

Listing 6: Strang naive

1 function y=strang(h,A,B,u0,T)
2 step=@(v)B(h,A(h,v));
3 y=B(h,A(h/2,u0));
4 for t=h:h:(T-h)
5 y=step(y);
6 end
7 y=A(h/2,y);

Listing 7: Strang

5. Exponential Euler

Implement an exponential Euler method

u1 = eτAu0 + τϕ1(τA)g(u0)

with the help of Exercise 2 where we implemented a function to compute linear combi-
nations of ϕ-functions. As a test example use

∂tu =
(
c1∂x + c1∂

2
x

)
︸ ︷︷ ︸

=:A

u+ g(u)

for g as in the previous example i.e. g(u) = b and g(u) = (1− u)u.
Possible solution:

4

1 function y=expEuler(h,A,g,u0 ,T)
2 y=u0;
3 for t=h:h:T
4 y=phi(h,A,[y,g(y)]);
5 end

Listing 8: Exponential Euler

6. Exponential Runge–Kutta

Implement the exponential Runge–Kutta method of order two given by the Butcher
tableau

0
1 ϕ1

ϕ1 − ϕ2 ϕ2

or a single step as

u1 = eτAu0 + τϕ1(τA)g(u0) + τ2ϕ2(τA)

(
g(U1)− g(u0)

τ

)

U1 = eτAu0 + τϕ1(τA)g(u0)

As a test equation use the same equations as in the previous exercise.

Possible solution:
1 function y=exprk2(h,A,g,u0,T)
2 y=u0;
3 for t=h:h:T
4 y=step(h,A,g,y);
5 end

7 function y=step(h,A,g,u0)
8 gu=g(u0);
9 U1=phi(h,A,[u0 ,gu]);

10 y=phi(h,A,[u0,gu ,(g(U1)-gu)/h]);
11 end
12 end

Listing 9: Exponential Runge–Kutta of order 2

Possible solution:
1 %Configuration
2 N=128; I=[0,2*pi];
3 x=linspace(I(1),I(2),N+1) ’; x=x(1:N);
4 %Interval length & scaling factor
5 l=I(2)-I(1); sf=sqrt(l)/N;
6 %shifted and scaled versions of fft/ifft
7 myfft=@(x)fftshift(fft(x))*sf;
8 myifft=@(x)real(ifft(ifftshift(x)))/sf;
9 lambda=(-N/2:N/2-1) ’*2*pi/l;

10 %Parameters
11 c=[0.9 ,0.1 ,0.1]; T=1;
12 u0=@(x)exp (-100*(x-3) .^2);
13 %timestep for animation
14 h=T/round(T/((I(2)-I(1))/N/4));

16 v=u0(x);
17 g=@(v)c(3)*(v.*(1-v));
18 g_ei=@(v)myfft(c(3)*(myifft(v).*(1- myifft(v))));
19 A_op=@(h,v)myifft(exp(c(1)*h*1i*lambda+c(2)*h*(1i*lambda).^2).*myfft(v));
20 A=spdiags ((c(2)*(1i*lambda).^2+c(1)*(1i*lambda)),0,N,N);

5

21 options = odeset(’RelTol ’,1e-13,’AbsTol ’,1e-15);
22 B_op=@(h,v)deval(ode45(@(t,x)g(x) ,[0 h],v,options),h);
23 odefun=@(t,y)myifft ((c(2) *(1i*lambda).^2+c(1) *(1i*lambda)).*myfft(y))+g(y);
24 yode=deval(ode45(odefun ,[0,T/2,T],v,options),T);
25 H=2.^(-1*(0:1:10));
26 e=zeros(length(H) ,4);
27 for i=1: length(H);
28 h=H(i);
29 e(i,1)=norm(yode -lie(h,A_op ,B_op ,v,T),inf);
30 e(i,2)=norm(yode -strang(h,A_op ,B_op ,v,T),inf);
31 e(i,3)=norm(yode -myifft(expEuler(h,A,g_ei ,myfft(v),T)),inf);
32 e(i,4)=norm(yode -myifft(exprk2(h,A,g_ei ,myfft(v),T)),inf);
33 end
34 loglog(H,e)
35 legend(’lie’,’strang ’,’expEuler ’,’exprk2 ’)

Listing 10: Order plot for Lie, Strang, expEuler, exprk2

7. Solve the Kuramoto-Sivashinsky equation - Exercise

On [0, 32π] solve the Kuramoto-Sivashinsky equation

∂tu = −∂4xu− ∂2xu− u∂xu

for the initial value

u0 = cos
(x
16

)(
1 + sin

(x
16

))
.

with a splitting and exponential integrator approach on the interval [0, 32π] for final time
T = 150 and an appropriate step size τ .

For the splitting select appropriate splitting operators with the Strang splitting and use
the exponential Runge–Kutta method as exponential integrator.

Hint: The nonlinearity can be solved exactly by the method of characteristicss.

References

Al-Mohy, A.H., Higham, N.J., 2011. Computing the action of the matrix exponential, with an
application to exponential integrators. SIAM J. Sci. Comput. 33 (2), 488–511.

A Appendix

6

the computational cost.
(2) Shifting, and optional balancing, to reduce the norm of A.
(3) Premature termination of the truncated Taylor series evaluations.

This basic approach is equivalent to applying a Runge–Kutta or Taylor series method
with fixed stepsize to the underlying ODE y′(t) = Ay(t), y(0) = B, for which y(t) =
etAB, which is the sixth of Moler and Van Loan’s “19 dubious ways” [18, sec. 4],
[27]. However, in (1)–(3) we are fully exploiting the linear nature of the problem in
a way that a general purpose ODE integrator cannot. We also adapt our method to
compute approximations of etkAB, for tk equally spaced on an interval [t0, tq], in such
a way that overscaling is avoided no matter how small the stepsize.

Our second contribution concerns the numerical solution of systems of n nonlinear
ODEs by exponential integrators. These methods integrate the linear part of the
system exactly and approximate the nonlinear part, making use of a set of ϕ functions
closely related to the exponential, evaluated at an n× n matrix. We show that these
methods can be implemented by evaluating a single exponential of an augmented
matrix of order n+p, where p−1 is the degree of the polynomial used to approximate
the nonlinear part of the system, thus avoiding the need to compute any ϕ functions.
In fact, on each integration step the integrator is shown to produce the exact solution
of an augmented linear system of ODEs of dimension n + p. The replacement of ϕ
functions with the exponential is important because algorithms for the ϕ functions
are much less well developed (though see [16], [23], for example) than those for the
exponential itself.

The organization of the paper is as follows. In the next section we derive a theorem
that shows how to rewrite linear combinations of ϕ functions of the form required in
exponential integrators in terms of a single exponential of a slightly larger matrix.
In Section 3 we derive our algorithm for computing eAB and discuss preprocessing
to increase its efficiency. Analysis of the behavior of the algorithm in floating point
arithmetic is given in Section 4, where a condition number for the eAB problem is
derived. We extend the algorithm in Section 5 to compute etAB on an equally spaced
grid of t values, in such a way that the phenomenon of overscaling that has previously
afflicted the scaling and squaring method is avoided. Detailed numerical experiments
are given in Section 6, including comparison with two Krylov-based codes. We finish
with a discussion in Section 7 that weighs the pros and cons of the new method against
Krylov methods.

2. Exponential integrators: avoiding the ϕ functions. Exponential in-
tegrators are a class of time integration methods for solving initial value problems
written in the form

u ′(t) = Au(t) + g(t, u(t)), u(t0) = u0, t ≥ t0,(2.1)

where u(t) ∈ Cn, A ∈ Cn×n, and g is a nonlinear function. Spatial semidiscretization
of partial differential equations (PDEs) leads to systems in this form. The matrix A
usually represents the Jacobian of a certain function or an approximation of it, and
it is usually large and sparse. The solution of (2.1) satisfies the nonlinear integral
equation

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−τ)Ag(τ, u(τ)) dτ.(2.2)

2

By expanding g in a Taylor series about t0, the solution can be written as [17, Lem. 5.1]

u(t) = e(t−t0)Au0 +

∞∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk,(2.3)

where

uk =
dk−1

dtk−1
g(t, u(t)) |t=t0 , ϕk(z) =

1

(k − 1)!

∫ 1

0

e(1−θ)zθk−1 dθ, k ≥ 1.

By suitably truncating the series in (2.3), we obtain the approximation

u(t) ≈ û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk.(2.4)

The functions ϕℓ(z) satisfy the recurrence relation

ϕℓ(z) = zϕℓ+1(z) +
1

ℓ!
, ϕ0(z) = ez,

and have the Taylor expansion

ϕℓ(z) =

∞∑

k=0

zk

(k + ℓ)!
.(2.5)

A wide class of exponential integrator methods is obtained by employing suitable
approximations to the vectors uk in (2.4), and further methods can be obtained by
the use of different approximations to g in (2.2). See Hochbruck and Ostermann [15]
for a survey of the state of the art in exponential integrators.

We will show that the right-hand side of (2.4) can be represented in terms of the
single exponential of an (n+ p)× (n+ p) matrix, with no need to explicitly evaluate
ϕ functions. The following theorem is our key result. In fact we will only need the
special case of the theorem with ℓ = 0.

Theorem 2.1. Let A ∈ Cn×n, W = [w1, w2, . . . , wp] ∈ Cn×p, τ ∈ C, and

Ã =

[
A W
0 J

]
∈ C(n+p)×(n+p), J =

[
0 Ip−1

0 0

]
∈ Cp×p.(2.6)

Then for X = ϕℓ(τÃ) with ℓ ≥ 0 we have

X(1 : n, n+ j) =

j∑

k=1

τkϕℓ+k(τA)wj−k+1, j = 1: p.(2.7)

Proof. It is easy to show that, for k ≥ 0,

Ãk =

[
Ak Mk

0 Jk

]
,(2.8)

where Mk = Ak−1W + Mk−1J and M1 = W , M0 = 0. For 1 ≤ j ≤ p we have
WJ(:, j) = wj−1 and JJ(:, j) = J(:, j − 1), where we define both right-hand sides to

3

A
l-M

oh
y,

A
.H

.,
H
ig
ha

m
,N

.J
.,
20

11
.
C
om

pu
ti
ng

th
e
ac
ti
on

of
th
e
m
at
ri
x
ex
po

ne
nt
ia
l,
w
it
h
an

ap
pl
ic
at
io
n
to

ex
po

ne
nt
ia
li
nt
eg
ra
to
rs
.
SI
A
M

J.
Sc

i.
C
om

pu
t.

33
(2
),

48
8–
51
1.

be zero when j = 1. Thus

Mk(:, j) = Ak−1wj + (Ak−2W +Mk−2J)J(:, j)

= Ak−1wj +Ak−2wj−1 +Mk−2J(:, j − 1)

= · · · =
min(k,j)∑

i=1

Ak−iwj−i+1.

We will write Mk(:, j) =
∑j

i=1 A
k−iwj−i+1 on the understanding that when k < j we

set to zero the terms in the summation where i > k (i.e., those terms with a negative

power of A). From (2.5) and (2.8) we see that the (1,2) block of X = ϕℓ(τÃ) is

X(1 : n, n+ 1 : n+ p) =
∞∑

k=1

τkMk

(k + ℓ)!
.

Therefore, the (n+ j)th column of X is given by

X(1 : n, n+ j) =

∞∑

k=1

τkMk(:, j)

(k + ℓ)!
=

∞∑

k=1

1

(k + ℓ)!

(
j∑

i=1

τ i(τA)k−iwj−i+1

)

=

j∑

i=1

τ i

(∞∑

k=1

(τA)k−i

(k + ℓ)!

)
wj−i+1

=

j∑

i=1

τ i

(∞∑

k=0

(τA)k

(ℓ+ k + i)!

)
wj−i+1 =

j∑

i=1

τ iϕℓ+i(τA)wj−i+1.

With τ = 1, j = p, and ℓ = 0, Theorem 2.1 shows that, for arbitrary vectors
wk, the sum of matrix–vector products

∑p
k=1 ϕk(A)wj−k+1 can be obtained from the

last column of the exponential of a matrix of dimension n+ p. A special case of the
theorem is worth noting. On taking ℓ = 0 and W = [c 0] ∈ Cn×p, where c ∈ Cn, we
obtain X(1:n, n+ j) = τ jϕj(τA)c, which is a relation useful for Krylov methods that
was derived by Sidje [22, Thm. 1]. This in turn generalizes the expression

exp

([
A c
0 0

])
=

[
eA ϕ1(A)c
0 I

]

obtained by Saad [21, Prop. 1].
We now use the theorem to obtain an expression for (2.4) involving only the

matrix exponential. Let W (:, p − k + 1) = uk, k = 1: p, form the matrix Ã in (2.6),
and set ℓ = 0 and τ = t− t0. Then

X = ϕ0

(
(t− t0)Ã

)
= e(t−t0)Ã =

[
e(t−t0)A X12

0 e(t−t0)J

]
,(2.9)

where the columns of X12 are given by (2.7), and, in particular, the last column of
X12 is

X(1 : n, n+ p) =

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk.

4

A
l-M

oh
y,

A
.H

.,
H
ig
ha

m
,N

.J
.,
20

11
.
C
om

pu
ti
ng

th
e
ac
ti
on

of
th
e
m
at
ri
x
ex
po

ne
nt
ia
l,
w
it
h
an

ap
pl
ic
at
io
n
to

ex
po

ne
nt
ia
li
nt
eg
ra
to
rs
.
SI
A
M

J.
Sc

i.
C
om

pu
t.

33
(2
),

48
8–
51
1.

Hence, by (2.4) and (2.9),

û(t) = e(t−t0)Au0 +

p∑

k=1

ϕk

(
(t− t0)A

)
(t− t0)

k uk

= e(t−t0)Au0 +X(1 : n, n+ p)

=
[
In 0

]
e(t−t0)Ã

[
u0

ep

]
.(2.10)

Thus we are approximating the nonlinear system (2.1) by a subspace of a slightly
larger linear system

y′(t) = Ãy(t), y(t0) =

[
u0

ep

]
.

To evaluate (2.10) we need to compute the action of the matrix exponential on a
vector. We focus on this problem in the rest of the paper.

An important practical matter concerns the scaling of Ã. If we replace W by ηW

we see from (2.7) that the only effect on X = eÃ is to replace X(1 : n, n+1 : n+p) by
ηX(1 : n, n+ 1 : n+ p). This linear relationship can also be seen using properties of
the Fréchet derivative [11, Thm. 4.12]. For methods employing a scaling and squaring
strategy a large ‖W‖ can cause overscaling, resulting in numerical instability. To
avoid overscaling a suitable normalization of W is necessary. In the 1-norm we have

‖A‖1 ≤ ‖Ã‖1 ≤ max
(
‖A‖1, η‖W‖1 + 1

)
,

since ‖J‖1 = 1. We choose η = 2−⌈log2(‖W‖1)⌉, which is defined as a power of 2 to
avoid the introduction of rounding errors. The variant of the expression (2.10) that
we should evaluate is

û(t) =
[
In 0

]
exp

(
(t− t0)

[
A ηW
0 J

])[
u0

η−1ep

]
.(2.11)

Experiment 8 in Section 6 illustrates the importance of normalizing W .

3. Computing eAB. Let rm be a rational approximation to the exponential
function, which we assume to be good near the origin, and let A ∈ Cn×n and B ∈
Cn×n0 with n0 ≪ n. Choose an integer s ≥ 1 so that es

−1A is well-approximated by
rm(s−1A). Exploiting the relation

eAB = (es
−1A)sB = es

−1Aes
−1A · · · es−1A

︸ ︷︷ ︸
s times

B,(3.1)

the recurrence

Bi+1 = rm(s−1A)Bi, i = 0: s− 1, B0 = B(3.2)

yields the approximation Bs ≈ eAB. Since A is possibly large and sparse and we wish
to assume only the capability to evaluate matrix products with A, we choose for rm
a truncated Taylor series

Tm(s−1A) =

m∑

j=0

(s−1A)j

j!
.(3.3)

5

A
l-M

oh
y,

A
.H

.,
H
ig
ha

m
,N

.J
.,
20

11
.
C
om

pu
ti
ng

th
e
ac
ti
on

of
th
e
m
at
ri
x
ex
po

ne
nt
ia
l,
w
it
h
an

ap
pl
ic
at
io
n
to

ex
po

ne
nt
ia
li
nt
eg
ra
to
rs
.
SI
A
M

J.
Sc

i.
C
om

pu
t.

33
(2
),

48
8–
51
1.

	Appendix

