Sobolev spaces

M. Caliari

June 9, 2014

I collect in these notes some facts about Sobolev spaces (see [2]). Some very nice examples are in [1].

$1 \Omega \subseteq \mathbb{R}$

$1.1 \quad H^{1}(\Omega)$

We can define $H^{1}(\Omega)$ in the following way: it is the subspace of $L^{2}(\Omega)$ of functions u for which there exists $g \in L^{2}(\Omega)$ such that

$$
\int_{\Omega} u \varphi^{\prime}=-\int_{\Omega} g \varphi \quad \forall \varphi \in C_{\mathrm{c}}^{\infty}(\Omega)
$$

We will denote g by u^{\prime}. This definition is equivalent to the definition with distributional derivatives.

Theorem 1. If $u \in H^{1}(\Omega)$, there exists (unique) $\tilde{u} \in C(\bar{\Omega})$ such that

$$
u=\tilde{u} \text { almost everywhere }
$$

and

$$
\tilde{u}(x)-\tilde{u}(y)=\int_{y}^{x} u^{\prime}(t) \mathrm{d} t
$$

We will call \tilde{u} the continuous representative of the class of equivalence of u. We will often indicate it simply by u when necessary. For instance, if we want to write $u\left(x_{0}\right), x_{0} \in \Omega$. The scalar product in $H^{1}(\Omega)$ is

$$
(u, v)=\int_{\Omega} u v+\int_{\Omega} u^{\prime} v^{\prime}
$$

with the inducted norm.

$1.2 \quad H^{m}(\Omega)$

We can define $H^{m}(\Omega)$ in the following way: it is the subspace of $L^{2}(\Omega)$ of functions u for which there exists $g 1, g_{2}, \ldots, g_{m} \in L^{2}(\Omega)$ such that

$$
\int_{\Omega} u \varphi^{(j)}=(-1)^{j} \int_{\Omega} g_{j} \varphi \quad \forall \varphi \in C_{\mathrm{c}}^{\infty}(\Omega)
$$

We will denote g_{j} by $u^{(j)}\left(u^{\prime}, u^{\prime \prime}, \ldots, u^{(m)}\right)$.

$1.3 \quad H_{0}^{1}(\Omega)$

$H_{0}^{1}(\Omega)$ is the closure of $C_{\mathrm{c}}^{1}(\Omega)$ in $H^{1}(\Omega)$. If $\Omega=\mathbb{R}$, then $H_{0}^{1}(\mathbb{R})=H^{1}(\mathbb{R})$. Since $C_{\mathrm{c}}^{\infty}(\Omega)$ is dense in $H_{0}^{1}(\Omega)$, its closure is $H_{0}^{1}(\Omega)$ itself.

Theorem 2. If $u \in H^{1}(\Omega)$, then $u \in H_{0}^{1}(\Omega)$ if and only if $u=0$ on $\partial \Omega$.
If $\Omega=(a, b)$, this is precisely a case in which the function u such that $u(a)=u(b)=0$ is the continuous representative (of the class of equivalence) of u. Another way to characterize $H_{0}^{1}(\Omega)$ is the following: $u \in H_{0}^{1}(\Omega)$ if and only if $\bar{u} \in H^{1}(\mathbb{R})$, where $\bar{u}(x)=u(x)$ if $x \in \Omega$ and $\bar{u}(x)=0$ if $x \in \mathbb{R} \backslash \Omega$.

$2 \Omega \subseteq \mathbb{R}^{N}, N>1$

$2.1 \quad H^{1}(\Omega)$

The definition is analogous, we have to replace the derivative with all the partial derivatives. One main difference with the one-dimensional case is that there are functions, like the following

$$
u(x, y)=\left(\log \frac{1}{\sqrt{x^{2}+y^{2}}}\right)^{k}, \quad 0<k<1 / 2
$$

that belongs to $H^{1}(\Omega), \Omega=B(0,1) \subset \mathbb{R}^{2}$, but it is noway possible to find a continuous representative \tilde{u} for it. So, Theorem 1 does not hold.

$2.2 H_{0}^{1}(\Omega)$

$H_{0}^{1}(\Omega)$ is the closure of $C_{\mathrm{c}}^{1}(\Omega)$ in $H^{1}(\Omega)$. If $\Omega=\mathbb{R}^{N}$, then $H_{0}^{1}\left(\mathbb{R}^{N}\right)=H^{1}\left(\mathbb{R}^{N}\right)$. Since $C_{\mathrm{c}}^{\infty}(\Omega)$ is dense in $H_{0}^{1}(\Omega)$, its closure is $H_{0}^{1}(\Omega)$ itself.

Now, Theorem 2 cannot be stated in the same way: in general, there is no continuous representative which is zero at $\partial \Omega$. Still, it is correct to think to functions in $H_{0}^{1}(\Omega)$ as to the functions in $H^{1}(\Omega)$ which "are zero at $\partial \Omega$ ". Let us see in which sense.

Theorem 3. If Ω is sufficiently regular and $u \in H^{1}(\Omega) \cap C(\bar{\Omega})$, then $u \in$ $H_{0}^{1}(\Omega)$ if and only if $u=0$ on $\partial \Omega$.

Moreover, it is possible to characterize $H_{0}^{1}(\Omega)$ as above: $u \in H_{0}^{1}(\Omega)$ if and only if $\bar{u} \in H^{1}\left(\mathbb{R}^{N}\right)$, where $\bar{u}(x)=u(x)$ if $x \in \Omega$ and $\bar{u}(x)=0$ if $x \in \mathbb{R} \backslash \Omega$.

Theorem 4. If Ω is a bounded open subset of \mathbb{R}^{N} with $\partial \Omega$ sufficiently regular, then there exists a unique linear continuous operator $T: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ such that

$$
\begin{array}{ll}
T u=\left.u\right|_{\partial \Omega} & \text { if } u \in H^{1}(\Omega) \cap C(\bar{\Omega}) \\
\|T u\|_{L(\partial \Omega)} \leq c\|u\|_{H^{1}(\Omega)}
\end{array}
$$

The operator T is called trace operator and the function $T u \in L^{2}(\partial \Omega)$ is called trace of u on $\partial \Omega$.

The operator γ_{0} is not surjective on $L^{2}(\partial \Omega)$. The set of functions in $L^{2}(\partial \Omega)$ which are traces of functions in $H^{1}(\Omega)$ is a subspace of $L^{2}(\partial \Omega)$ denoted by $H^{1 / 2}(\partial \Omega)$. We have $H^{1}(\partial \Omega) \subseteq H^{1 / 2}(\partial \Omega) \subseteq H^{0}(\partial \Omega)=L^{2}(\partial \Omega)$. If u is more regular, so is $\left.u\right|_{\partial \Omega}$ in the sense that

$$
T: H^{k}(\Omega) \rightarrow H^{k-1 / 2}(\partial \Omega) \subseteq H^{k-1}(\partial \Omega)
$$

Given $u \in H^{1}(\Omega)$ and $u^{\mathrm{D}} \in H^{1 / 2}(\partial \Omega)$, if we require that " $u=u^{\mathrm{D}}$ on $\partial \Omega$ " or " $\left.u\right|_{\partial \Omega}=u^{\mathrm{D}}$ ", we really mean that $T u=u^{\mathrm{D}}$ (almost everywhere).

Finally, we can define

$$
H_{0}^{1}(\Omega)=\operatorname{ker}(T)=\left\{u \in H^{1}(\Omega): T u=0\right\}
$$

References

[1] M. Bramanti, Introduzione alla formulazione debole dei problemi ai limiti per EDP, http://www1.mate.polimi.it/~bramanti/corsi/pdf_ metodi/sobolev2.pdf.
[2] H. Brezis, Analisi funzionale, Liguori editore, 1986.

