Sobolev spaces

M. Caliari

June 9, 2014

I collect in these notes some facts about Sobolev spaces (see [2]). Some very nice examples are in [1].

1 $\Omega \subseteq \mathbb{R}$

1.1 $H^1(\Omega)$

We can define $H^1(\Omega)$ in the following way: it is the subspace of $L^2(\Omega)$ of functions u for which there exists $g \in L^2(\Omega)$ such that

$$\int_{\Omega} u\varphi' = -\int_{\Omega} g\varphi \quad \forall \varphi \in C^{\infty}_{c}(\Omega)$$

We will denote g by u'. This definition is equivalent to the definition with distributional derivatives.

Theorem 1. If $u \in H^1(\Omega)$, there exists (unique) $\tilde{u} \in C(\overline{\Omega})$ such that

 $u = \tilde{u}$ almost everywhere

and

$$\tilde{u}(x) - \tilde{u}(y) = \int_{y}^{x} u'(t) \mathrm{d}t$$

We will call \tilde{u} the continuous representative of the class of equivalence of u. We will often indicate it simply by u when necessary. For instance, if we want to write $u(x_0), x_0 \in \Omega$. The scalar product in $H^1(\Omega)$ is

$$(u,v) = \int_{\Omega} uv + \int_{\Omega} u'v'$$

with the inducted norm.

1.2 $H^m(\Omega)$

We can define $H^m(\Omega)$ in the following way: it is the subspace of $L^2(\Omega)$ of functions u for which there exists $g_1, g_2, \ldots, g_m \in L^2(\Omega)$ such that

$$\int_{\Omega} u\varphi^{(j)} = (-1)^j \int_{\Omega} g_j \varphi \quad \forall \varphi \in C^{\infty}_{\mathbf{c}}(\Omega)$$

We will denote g_j by $u^{(j)}$ $(u', u'', \ldots, u^{(m)})$.

1.3 $H_0^1(\Omega)$

 $H_0^1(\Omega)$ is the closure of $C_c^1(\Omega)$ in $H^1(\Omega)$. If $\Omega = \mathbb{R}$, then $H_0^1(\mathbb{R}) = H^1(\mathbb{R})$. Since $C_c^{\infty}(\Omega)$ is dense in $H_0^1(\Omega)$, its closure is $H_0^1(\Omega)$ itself.

Theorem 2. If $u \in H^1(\Omega)$, then $u \in H^1_0(\Omega)$ if and only if u = 0 on $\partial\Omega$.

If $\Omega = (a, b)$, this is precisely a case in which the function u such that u(a) = u(b) = 0 is the continuous representative (of the class of equivalence) of u. Another way to characterize $H_0^1(\Omega)$ is the following: $u \in H_0^1(\Omega)$ if and only if $\bar{u} \in H^1(\mathbb{R})$, where $\bar{u}(x) = u(x)$ if $x \in \Omega$ and $\bar{u}(x) = 0$ if $x \in \mathbb{R} \setminus \Omega$.

$\mathbf{2} \quad \Omega \subseteq \mathbb{R}^N, \ N > 1$

2.1 $H^1(\Omega)$

The definition is analogous, we have to replace the derivative with all the partial derivatives. One main difference with the one-dimensional case is that there are functions, like the following

$$u(x,y) = \left(\log \frac{1}{\sqrt{x^2 + y^2}}\right)^k, \quad 0 < k < 1/2$$

that belongs to $H^1(\Omega)$, $\Omega = B(0,1) \subset \mathbb{R}^2$, but it is noway possible to find a continuous representative \tilde{u} for it. So, Theorem 1 does not hold.

2.2 $H_0^1(\Omega)$

 $H_0^1(\Omega)$ is the closure of $C_c^1(\Omega)$ in $H^1(\Omega)$. If $\Omega = \mathbb{R}^N$, then $H_0^1(\mathbb{R}^N) = H^1(\mathbb{R}^N)$. Since $C_c^{\infty}(\Omega)$ is dense in $H_0^1(\Omega)$, its closure is $H_0^1(\Omega)$ itself.

Now, Theorem 2 cannot be stated in the same way: in general, there is no continuous representative which is zero at $\partial\Omega$. Still, it is correct to think to functions in $H_0^1(\Omega)$ as to the functions in $H^1(\Omega)$ which "are zero at $\partial\Omega$ ". Let us see in which sense. **Theorem 3.** If Ω is sufficiently regular and $u \in H^1(\Omega) \cap C(\overline{\Omega})$, then $u \in$ $H_0^1(\Omega)$ if and only if u = 0 on $\partial \Omega$.

Moreover, it is possible to characterize $H_0^1(\Omega)$ as above: $u \in H_0^1(\Omega)$ if and only if $\bar{u} \in H^1(\mathbb{R}^N)$, where $\bar{u}(x) = u(x)$ if $x \in \Omega$ and $\bar{u}(x) = 0$ if $x \in \mathbb{R} \setminus \Omega$.

Theorem 4. If Ω is a bounded open subset of \mathbb{R}^N with $\partial \Omega$ sufficiently regular, then there exists a unique linear continuous operator $T: H^1(\Omega) \to L^2(\partial\Omega)$ such that

$$Tu = u|_{\partial\Omega} \qquad \text{if } u \in H^1(\Omega) \cap C(\bar{\Omega})$$
$$\|Tu\|_{L(\partial\Omega)} \le c \|u\|_{H^1(\Omega)}$$

The operator T is called trace operator and the function $Tu \in L^2(\partial\Omega)$ is called trace of u on $\partial \Omega$.

The operator γ_0 is not surjective on $L^2(\partial\Omega)$. The set of functions in $L^2(\partial\Omega)$ which are traces of functions in $H^1(\Omega)$ is a subspace of $L^2(\partial\Omega)$ denoted by $H^{1/2}(\partial\Omega)$. We have $H^1(\partial\Omega) \subseteq H^{1/2}(\partial\Omega) \subseteq H^0(\partial\Omega) = L^2(\partial\Omega)$. If u is more regular, so is $u|_{\partial\Omega}$ in the sense that

$$T: H^k(\Omega) \to H^{k-1/2}(\partial\Omega) \subseteq H^{k-1}(\partial\Omega)$$

Given $u \in H^1(\Omega)$ and $u^{\mathrm{D}} \in H^{1/2}(\partial \Omega)$, if we require that " $u = u^{\mathrm{D}}$ on $\partial \Omega$ " or " $u|_{\partial\Omega} = u^{\mathrm{D}}$ ", we really mean that $Tu = u^{\mathrm{D}}$ (almost everywhere).

Finally, we can define

$$H_0^1(\Omega) = \ker(T) = \{ u \in H^1(\Omega) \colon Tu = 0 \}$$

References

- [1] M. Bramanti, Introduzione alla formulazione debole dei problemi ai limiti per EDP, http://www1.mate.polimi.it/~bramanti/corsi/pdf_ metodi/sobolev2.pdf.
- [2] H. Brezis, Analisi funzionale, Liguori editore, 1986.