
Iterative methods for sparse linear systems

Marco Caliari

June 9, 2014

1 Projection methods

Given a Hilbert space H and subspaces M and L, the projection Px of x ∈ H
onto M orthogonally to L is defined by

Px ∈ M, (x − Px, y)H = 0 ∀y ∈ L

If L = M , than P is called orthogonal projection and in this case the following
is true

arg min
y∈M

‖x − y‖ = Px

If the projection is not orthogonal, than it is called oblique. Let us consider
the linear system

Ax = b

whose exact solution is denoted by x̄ = x0 + δ̄.

Proposition 1. If A is SPD and L = K, then a vector x̃ if the result of an
orthogonal projection method onto K with the starting vector x0, that is

x̃ = x0 + δ̃, δ̃ ∈ K
(b − Ax̃, v) = 0, ∀v ∈ L = K

in and only if
x̃ = arg min

x∈x0+K
E(x)

where, given x = x0 + δ,

E(x) = (A(x̄ − x), x̄ − x)1/2 = (A(δ̄ − δ), δ̄ − δ)1/2

1

Proof. First of all, A can be written as A = RT R (Choleski). We have

E(x̃) = min
x∈x0+K

E(x) = min
δ∈K

(A(δ̄ − δ), δ̄ − δ)1/2 = min
δ∈K

(R(δ̄ − δ), R(δ̄ − δ))1/2 =

= min
δ∈K

‖R(δ̄ − δ)‖2 = min
δ∈K

‖Rδ̄ − Rδ‖2

which is taken by δ̃, where x̃ = x0 + δ̃. But the minimum in RK is taken
by the orthogonal projection of Rδ̄ onto RK, too. Therefore Rδ̃ is such a
projection and satisfies, for any w = Rv, v ∈ K,

(Rδ̄−Rδ̃, w) = 0 = (R(δ̄− δ̃), w) = (A(δ̄− δ̃), v) = (A(x̄− x̃), v) = (b−Ax̃, v)

Proposition 2. If A is non-singular and L = AK, then a vector x̃ if the
result of an oblique projection method onto K orthogonally to L with the
starting vector x0, that is

x̃ = x0 + δ̃, δ̃ ∈ K
(b − Ax̃, w) = 0, ∀w ∈ L = AK

in and only if
x̃ = arg min

x∈x0+K
R(x)

where, given x = x0 + δ,

R(x) = ‖b−Ax‖2 = (b−Ax, b−Ax)1/2 = (A(x̄−x), A(x̄−x))1/2 = (A(δ̄−δ), A(δ̄−δ))1/2

Proof. We have

R(x̃) = min
x∈x0+K

R(x) = min
δ∈K

(A(δ̄ − δ), A(δ̄ − δ))1/2 =

= min
δ∈K

‖A(δ̄ − δ)‖2 = min
δ∈K

‖Aδ̄ − Aδ‖2

which is taken by δ̃, where x̃ = x0 + δ̃. But the minimum in AK = L is
taken by the orthogonal projection of Aδ̄ onto L, too. Therefore Aδ̃ is such
a projection and satisfies, for any w ∈ L,

(Aδ̄ − Aδ̃, w) = 0 = (A(δ̄ − δ̃), w) = (A(x̄ − x̃), w) = (b − Ax̃, w)

2

1.1 Conjugate Gradient (CG) method

Given a SPD matrix A of dimension n, the idea is to solve

Ax̄ = b

by minimizing the quadratic functional

J(x) = xT Ax − 2bT x

whose gradient is ∇J(x) = 2Ax − 2b = −2r(x). If we introduce the error

e(x) = x − x̄

we have r(x) = −Ae(x). Moreover, if we consider the functional

E(x) = e(x)T Ae(x) = r(x)T A−1r(x)

we have ∇E(x) = ∇J(x) and E(x) ≥ 0 and E(x̄) = 0. So, the minimization
of J(x) is equivalent to the minimization of E(x). Starting from an initial
vector x0, we can use a descent method to find a sequence

xk+1 = xk + αkpk (1)

in such a way that E(xk+1) < E(xk). Given pk, we can compute an optimal
αk in such a way that

αk = arg min
α

E(xk + αpk)

It is
E(xk + αpk) = E(xk) − 2αpT

k rk + α2pT
k Apk

and therefore the minimum of the parabola E(xk + αpk) is taken at

αk =
pT

k rk

pT
k Apk

Proposition 3. If αk is optimal, then

rT
k+1pk = pT

k rk+1 = 0 (2)

Proof. First of all, we have

rk+1 = b − Axk+1 = b − A(xk + αkpk) = rk − αkApk (3)

and then
rT
k+1pk = rT

k pk − αkp
T
k Apk = rT

k pk − pT
k rk = 0

3

The equation E(x) = E(xk) is that of an ellipsoid passing through xk,
with rk a vector orthogonal to the surface and pointing inside.

Now we would like to have (we will see later why) a sequence of directions
satisfying

p0 = r0

pT
k+1Apk = 0, k ≥ 0

In particular, it is possible to compute pk+1 as

pk+1 = rk+1 + βk+1pk (4)

by taking

βk+1 = −rT
k+1Apk

pT
k Apk

Now we observe that using (2) we get

pT
k rk = rT

k rk + βkp
T
k−1rk = rT

k rk

and therefore

αk =
pT

k rk

pT
k Apk

=
rT
k rk

pT
k Apk

Finally, from definition (4) of pk we have

Apk = Ark + βkApk−1

and therefore
pT

k Apk = pT
k Ark = rT

k Apk

Taking expression (3) for rk+1, if we multiply by rT
k we get

rT
k+1rk = rT

k rk+1 = rT
k rk −

rT
k rk

pT
k Apk

rT
k Apk = 0

and if we multiply by rT
k+1 we get

rT
k+1rk+1 = rT

k+1rk −
rT
k rk

pT
k Apk

rT
k+1Apk = −rT

k rk

rT
k+1Apk

pT
k Apk

= rT
k rkβk+1

from which

βk+1 =
rT
k+1rk+1

rT
k rk

We have therefore the following implementation of the method, knowns as
Hestenes–Stiefel

4

• x0 given, p0 = r0 = b − Ax0

• for k = 0, 1, . . . until ‖rk‖2 ≤ tol · ‖b‖2

wk = Apk

αk =
rT
k rk

pT
k wk

xk+1 = xk + αkpk

rk+1 = rk − αkwk

βk+1 =
rT
k+1rk+1

rT
k rk

pk+1 = rk+1 + βk+1pk

end

1.1.1 Some properties of the CG method

It is possible to prove the following thorem

Theorem. For k ≥ 1, if ri 6= 0 for 0 ≤ i ≤ k, then

pT
i rk = 0 i ≤ k − 1 (5)

pT
i Apk = 0 i ≤ k − 1 (6)

rT
i rk = 0 i ≤ k − 1 (7)

span{r0, r1, . . . , rk} = span{r0, Ar0, . . . , A
kr0} (8)

span{p0, p1, . . . , pk} = span{r0, Ar0, . . . , A
kr0} (9)

Sketch of the proof. First of all, we observe that if for a certain i it is ri = 0,
then xi is the exact solution.

The proof of all properties is by induction. The basic step of each state-
ment is easy since p0 = r0. Then, it is important to assume all the statemets
true for k and prove them for k + 1.

Definition. The space Kk = span{r0, Ar0, . . . , A
k−1r0} is called Krylov space.

The set {r0, r1, . . . , rk−1} is an orthogonal basis for the Krylov space.
Since A is SPD, the property pT

i Apk = 0, i ≤ k − 1 means pT
i Aph = 0 for

i, h ≤ k, i 6= h.

Definition. A set of vectors different from 0 and satisfying

vT
i Avh = 0, for i, h ≤ k, i 6= h

is called a set of conjugate (with respect to A) vectors.

5

By construction, the approximate solution xk produced by the algorithm
is in the space x0 + Kk.

Theorem. The approximate solution xk produced by the algorithm satisfies

E(xk) = inf
x∈x0+Kk

E(x)

Proof. Let us take a vector x ∈ x0 + Kk. It is of the form

x0 +
k−1
∑

i=0

λipi

and therefore, taking into account that pi, i = 0, 1, . . . , k − 1 are conjugate
vectors

E(x) = E

(

x0 +
k−1
∑

i=0

λipi

)

= E(x0) − 2
k−1
∑

i=0

λip
T
i r0 +

k−1
∑

i=0

λ2
i p

T
i Api

Now, we observe that

pT
i r0 = pT

i (r1 + α0Ap0) = pT
i r1 = pT

i (r2 + α1Ap1) = pT
i r2 = . . . = pT

i ri

Therefore

E(x) = E(x0) − 2
k−1
∑

i=0

λip
T
i ri +

k−1
∑

i=0

λ2
i p

T
i Api

and the minimum is taken for λi = αi, i ≤ k − 1.

Therefore, the solution xk of the CG method is the result of an orthogonal
projection method onto Kk (see Proposition 1). This is clear also from the
properties of the method, since

0 = rT
k ri = (b − Axk, ri), 0 ≤ i ≤ k − 1

and {r0, r1, . . . , rk−1} is a basis for Kk.

Proposition 4. A set of conjugate vectors is a set of linear independent
vectors.

Proof. Let us suppose that
k

∑

i=1

civi = 0

with cj 6= 0. Then
(

k
∑

i=1

civi

)T

Avj = 0 =
k

∑

i=1

ci(v
T
i Avj) = cjvjA

T vj

Since A is SPD, the result cannot be 0, unless vj = 0 (absurd).

6

Proposition 5. The CG algorithm converges in n iterations at maximum.

Proof. The Krylov space Kk = {p0, p1, . . . , pk−1} has dimension n at maxi-
mum.

In practice, since it is not possible to compute truly conjugate directions in
machine arithmetic, usually the CG algorithm is used as an iterative method
(and it is sometimes called semiiterative method).

It is possible to prove the following convergence estimate

|||Ek||| =
√

E(xk) ≤ 2

(

√

cond2(A) − 1
√

cond2(A) + 1

)k

|||E0|||

Here cond2(A) is the condition number in the 2-norm, that is

cond2(A) = ‖A‖2 · ‖A−1‖2 =
√

ρ(AT A) ·
√

ρ(A−T A−1) =
λmax

λmin

There exists a slightly better estimate

|||Ek||| ≤ 2

(

ck

1 + c2k

)

|||E0|||

where c =

√
cond2(A)−1√
cond2(A)+1

(see [1]).

1.1.2 Computational costs

If we want to reduce the initial error E0 by a quantity ε, we have to take

2

(

√

cond2(A) − 1
√

cond2(A) + 1

)k

= ε

from which

k =
ln ε

2

ln

(√
cond2(A)−1√
cond2(A)+1

) =
ln ε

2

ln

(

1 − 2√
cond2(A)+1

) ≈ ln ε
2

− 2√
cond2(A)+1

≈ 1

2
ln

2

ε

√

cond2(A)

For a matrix with cond2(A) ≈ h−2 the number of expected iterations is
therefore O(1/h). The cost of a single iteration is O(n) if A is sparse. The
algorithm does not explicitely require A, but only the “action” of A to a
vector pk.

7

2 Preconditioning

The idea is to change
Ax̄ = b

into
P−1Ax̄ = P−1b

in such a way that P−1A is better conditioned than A. The main problem
for the CG algorthm is that even if P is SPD, P−1A is not SPD. We can
therefore factorize P into P = RT R and consider the linear system

P−1AR−1ȳ = P−1b ⇔ R−T AR−1ȳ = R−T b, R−1ȳ = x̄

Now, Ã = R−T AR−1 is SPD and we can solve the system Ãȳ = b̃, b̃ = R−T b,
with the CG method. Setting x̃k = Rxk, we have r̃k = b̃k − Ãx̃k = R−T b −
R−T Axk = R−T rk. It is possible then to arrange the CG algorithm for Ã, x̃0

and b̃ as

• x0 given, r0 = b − Ax0, Pz0 = r0, p0 = z0

• for k = 0, 1, . . . until ‖rk‖2 ≤ tol · ‖b‖2

wk = Apk

αk =
zT

k rk

pT
k wk

xk+1 = xk + αkpk

rk+1 = rk − αkwk

Pzk+1 = rk+1

βk+1 =
zT

k+1rk+1

zT
k rk

pk+1 = zk+1 + βk+1pk

end

The directions pk are still A conjugate directions (with Pp0 = r0). This
algorithm requires the solution of the linear system Pzk+1 = rk+1 at each
iteration. Usually, P (if not diagonal) is factorized once and for all into
P = RT R, R the triangular Choleski factor, in such a way that zk+1 can be
recovered by two simple triangular linear systems.

The algorithm does not explicitely require P , but only the action of P−1

to a vector zk+1.

8

2.1 Differential preconditioners

If u(x) ≈ ū(x) ≈ ũ(x) with

ū(x) =
m

∑

i=1

ūiφi(x)

with ūi ≈ u(xi) and

ũ(x) =
n

∑

j=1

ũjψj(x), n ≤ m

with ũj ≈ u(yj), then it is possbile to evaluate ũ(xi) by

[ũ(x1), . . . , ũ(xm)]T = Rũ, R ∈ R
m×n, Rij = ψj(xi)

and ū(yj) by

[ū(y1), . . . , ū(yn)]T = Qū, Q ∈ R
n×m, Qji = φi(yj)

We also have
[u(x1), . . . , u(xm)]T ≈ ū ≈ Rũ

[u(y1), . . . , u(yn)]T ≈ ũ ≈ Qū

and
[u(x1), . . . , u(xm)]T ≈ RQū

[u(y1), . . . , u(yn)]T ≈ QRũ

Therefore
RQ ≈ Im, QR ≈ In

Thus, in order to solve the “difficult” problem

Āū = b̄

we may want to compute Ã of the “easy” problem

Ãũ = b̃

and then use the approximation

Āū ≈ RÃQū ⇔ Ā ≈ RÃQ

to compute a preconditioner Ā−1 ≈ (RÃQ)−1 ≈ RÃ−1Q.

9

2.2 Algebraic preconditioners

References

[1] J. R. Shewchuk, An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain, 1994, http://www.cs.cmu.edu/

~quake-papers/painless-conjugate-gradient.pdf.

10

http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

	Projection methods
	Conjugate Gradient (CG) method
	Some properties of the CG method
	Computational costs

	Preconditioning
	Differential preconditioners
	Algebraic preconditioners

