Iterative methods for sparse linear systems

Marco Caliari

June 9, 2014

1 Projection methods

Given a Hilbert space H and subspaces M and L, the projection $P x$ of $x \in H$ onto M orthogonally to L is defined by

$$
P x \in M, \quad(x-P x, y)_{H}=0 \quad \forall y \in L
$$

If $L=M$, than P is called orthogonal projection and in this case the following is true

$$
\arg \min _{y \in M}\|x-y\|=P x
$$

If the projection is not orthogonal, than it is called oblique. Let us consider the linear system

$$
A x=b
$$

whose exact solution is denoted by $\bar{x}=x_{0}+\bar{\delta}$.
Proposition 1. If A is $S P D$ and $\mathcal{L}=\mathcal{K}$, then a vector \tilde{x} if the result of an orthogonal projection method onto \mathcal{K} with the starting vector x_{0}, that is

$$
\begin{array}{ll}
\tilde{x}=x_{0}+\tilde{\delta}, & \tilde{\delta} \in \mathcal{K} \\
(b-A \tilde{x}, v)=0, & \forall v \in \mathcal{L}=\mathcal{K}
\end{array}
$$

in and only if

$$
\tilde{x}=\arg \min _{x \in x_{0}+\mathcal{K}} E(x)
$$

where, given $x=x_{0}+\delta$,

$$
E(x)=(A(\bar{x}-x), \bar{x}-x)^{1 / 2}=(A(\bar{\delta}-\delta), \bar{\delta}-\delta)^{1 / 2}
$$

Proof. First of all, A can be written as $A=R^{T} R$ (Choleski). We have

$$
\begin{aligned}
E(\tilde{x}) & =\min _{x \in x_{0}+\mathcal{K}} E(x)=\min _{\delta \in \mathcal{K}}(A(\bar{\delta}-\delta), \bar{\delta}-\delta)^{1 / 2}=\min _{\delta \in \mathcal{K}}(R(\bar{\delta}-\delta), R(\bar{\delta}-\delta))^{1 / 2}= \\
& =\min _{\delta \in \mathcal{K}}\|R(\bar{\delta}-\delta)\|_{2}=\min _{\delta \in \mathcal{K}}\|R \bar{\delta}-R \delta\|_{2}
\end{aligned}
$$

which is taken by $\tilde{\delta}$, where $\tilde{x}=x_{0}+\tilde{\delta}$. But the minimum in $R \mathcal{K}$ is taken by the orthogonal projection of $R \bar{\delta}$ onto $R \mathcal{K}$, too. Therefore $R \tilde{\delta}$ is such a projection and satisfies, for any $w=R v, v \in \mathcal{K}$,

$$
(R \bar{\delta}-R \tilde{\delta}, w)=0=(R(\bar{\delta}-\tilde{\delta}), w)=(A(\bar{\delta}-\tilde{\delta}), v)=(A(\bar{x}-\tilde{x}), v)=(b-A \tilde{x}, v)
$$

Proposition 2. If A is non-singular and $\mathcal{L}=A \mathcal{K}$, then a vector \tilde{x} if the result of an oblique projection method onto \mathcal{K} orthogonally to \mathcal{L} with the starting vector x_{0}, that is

$$
\begin{array}{ll}
\tilde{x}=x_{0}+\tilde{\delta}, & \tilde{\delta} \in \mathcal{K} \\
(b-A \tilde{x}, w)=0, & \forall w \in \mathcal{L}=A \mathcal{K}
\end{array}
$$

in and only if

$$
\tilde{x}=\arg \min _{x \in x_{0}+\mathcal{K}} R(x)
$$

where, given $x=x_{0}+\delta$,
$R(x)=\|b-A x\|_{2}=(b-A x, b-A x)^{1 / 2}=(A(\bar{x}-x), A(\bar{x}-x))^{1 / 2}=(A(\bar{\delta}-\delta), A(\bar{\delta}-\delta))^{1 / 2}$
Proof. We have

$$
\begin{aligned}
R(\tilde{x}) & =\min _{x \in x_{0}+\mathcal{K}} R(x)=\min _{\delta \in \mathcal{K}}(A(\bar{\delta}-\delta), A(\bar{\delta}-\delta))^{1 / 2}= \\
& =\min _{\delta \in \mathcal{K}}\|A(\bar{\delta}-\delta)\|_{2}=\min _{\delta \in \mathcal{K}}\|A \bar{\delta}-A \delta\|_{2}
\end{aligned}
$$

which is taken by $\tilde{\delta}$, where $\tilde{x}=x_{0}+\tilde{\delta}$. But the minimum in $A \mathcal{K}=\mathcal{L}$ is taken by the orthogonal projection of $A \bar{\delta}$ onto \mathcal{L}, too. Therefore $A \tilde{\delta}$ is such a projection and satisfies, for any $w \in \mathcal{L}$,

$$
(A \bar{\delta}-A \tilde{\delta}, w)=0=(A(\bar{\delta}-\tilde{\delta}), w)=(A(\bar{x}-\tilde{x}), w)=(b-A \tilde{x}, w)
$$

1.1 Conjugate Gradient (CG) method

Given a SPD matrix A of dimension n, the idea is to solve

$$
A \bar{x}=b
$$

by minimizing the quadratic functional

$$
J(x)=x^{T} A x-2 b^{T} x
$$

whose gradient is $\nabla J(x)=2 A x-2 b=-2 r(x)$. If we introduce the error

$$
e(x)=x-\bar{x}
$$

we have $r(x)=-A e(x)$. Moreover, if we consider the functional

$$
E(x)=e(x)^{T} A e(x)=r(x)^{T} A^{-1} r(x)
$$

we have $\nabla E(x)=\nabla J(x)$ and $E(x) \geq 0$ and $E(\bar{x})=0$. So, the minimization of $J(x)$ is equivalent to the minimization of $E(x)$. Starting from an initial vector x_{0}, we can use a descent method to find a sequence

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} p_{k} \tag{1}
\end{equation*}
$$

in such a way that $E\left(x_{k+1}\right)<E\left(x_{k}\right)$. Given p_{k}, we can compute an optimal α_{k} in such a way that

$$
\alpha_{k}=\arg \min _{\alpha} E\left(x_{k}+\alpha p_{k}\right)
$$

It is

$$
E\left(x_{k}+\alpha p_{k}\right)=E\left(x_{k}\right)-2 \alpha p_{k}^{T} r_{k}+\alpha^{2} p_{k}^{T} A p_{k}
$$

and therefore the minimum of the parabola $E\left(x_{k}+\alpha p_{k}\right)$ is taken at

$$
\alpha_{k}=\frac{p_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}
$$

Proposition 3. If α_{k} is optimal, then

$$
\begin{equation*}
r_{k+1}^{T} p_{k}=p_{k}^{T} r_{k+1}=0 \tag{2}
\end{equation*}
$$

Proof. First of all, we have

$$
\begin{equation*}
r_{k+1}=b-A x_{k+1}=b-A\left(x_{k}+\alpha_{k} p_{k}\right)=r_{k}-\alpha_{k} A p_{k} \tag{3}
\end{equation*}
$$

and then

$$
r_{k+1}^{T} p_{k}=r_{k}^{T} p_{k}-\alpha_{k} p_{k}^{T} A p_{k}=r_{k}^{T} p_{k}-p_{k}^{T} r_{k}=0
$$

The equation $E(x)=E\left(x_{k}\right)$ is that of an ellipsoid passing through x_{k}, with r_{k} a vector orthogonal to the surface and pointing inside.

Now we would like to have (we will see later why) a sequence of directions satisfying

$$
\begin{aligned}
& p_{0}=r_{0} \\
& p_{k+1}^{T} A p_{k}=0, \quad k \geq 0
\end{aligned}
$$

In particular, it is possible to compute p_{k+1} as

$$
\begin{equation*}
p_{k+1}=r_{k+1}+\beta_{k+1} p_{k} \tag{4}
\end{equation*}
$$

by taking

$$
\beta_{k+1}=-\frac{r_{k+1}^{T} A p_{k}}{p_{k}^{T} A p_{k}}
$$

Now we observe that using (2) we get

$$
p_{k}^{T} r_{k}=r_{k}^{T} r_{k}+\beta_{k} p_{k-1}^{T} r_{k}=r_{k}^{T} r_{k}
$$

and therefore

$$
\alpha_{k}=\frac{p_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}=\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}}
$$

Finally, from definition (4) of p_{k} we have

$$
A p_{k}=A r_{k}+\beta_{k} A p_{k-1}
$$

and therefore

$$
p_{k}^{T} A p_{k}=p_{k}^{T} A r_{k}=r_{k}^{T} A p_{k}
$$

Taking expression (3) for r_{k+1}, if we multiply by r_{k}^{T} we get

$$
r_{k+1}^{T} r_{k}=r_{k}^{T} r_{k+1}=r_{k}^{T} r_{k}-\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}} r_{k}^{T} A p_{k}=0
$$

and if we multiply by r_{k+1}^{T} we get

$$
r_{k+1}^{T} r_{k+1}=r_{k+1}^{T} r_{k}-\frac{r_{k}^{T} r_{k}}{p_{k}^{T} A p_{k}} r_{k+1}^{T} A p_{k}=-r_{k}^{T} r_{k} \frac{r_{k+1}^{T} A p_{k}}{p_{k}^{T} A p_{k}}=r_{k}^{T} r_{k} \beta_{k+1}
$$

from which

$$
\beta_{k+1}=\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}}
$$

We have therefore the following implementation of the method, knowns as Hestenes-Stiefel

- x_{0} given, $p_{0}=r_{0}=b-A x_{0}$
- FOR $k=0,1, \ldots$ UNTIL $\left\|r_{k}\right\|_{2} \leq$ tol $\cdot\|b\|_{2}$

$$
\begin{aligned}
& w_{k}=A p_{k} \\
& \alpha_{k}=\frac{r_{k}^{T} r_{k}}{p_{k}^{T} w_{k}} \\
& x_{k+1}=x_{k}+\alpha_{k} p_{k} \\
& r_{k+1}=r_{k}-\alpha_{k} w_{k} \\
& \beta_{k+1}=\frac{r_{k+1}^{T} r_{k+1}}{r_{k}^{T} r_{k}} \\
& p_{k+1}=r_{k+1}+\beta_{k+1} p_{k}
\end{aligned}
$$

End

1.1.1 Some properties of the CG method

It is possible to prove the following thorem
Theorem. For $k \geq 1$, if $r_{i} \neq 0$ for $0 \leq i \leq k$, then

$$
\begin{array}{ll}
p_{i}^{T} r_{k}=0 & i \leq k-1 \\
p_{i}^{T} A p_{k}=0 & i \leq k-1 \\
r_{i}^{T} r_{k}=0 & i \leq k-1 \\
\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k}\right\}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\} & \\
\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k}\right\}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\} &
\end{array}
$$

Sketch of the proof. First of all, we observe that if for a certain i it is $r_{i}=0$, then x_{i} is the exact solution.

The proof of all properties is by induction. The basic step of each statement is easy since $p_{0}=r_{0}$. Then, it is important to assume all the statemets true for k and prove them for $k+1$.

Definition. The space $\mathcal{K}_{k}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$ is called Krylov space.
The set $\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}$ is an orthogonal basis for the Krylov space. Since A is SPD, the property $p_{i}^{T} A p_{k}=0, i \leq k-1$ means $p_{i}^{T} A p_{h}=0$ for $i, h \leq k, i \neq h$.

Definition. A set of vectors different from 0 and satisfying

$$
v_{i}^{T} A v_{h}=0, \quad \text { for } i, h \leq k, i \neq h
$$

is called a set of conjugate (with respect to A) vectors.

By construction, the approximate solution x_{k} produced by the algorithm is in the space $x_{0}+\mathcal{K}_{k}$.
Theorem. The approximate solution x_{k} produced by the algorithm satisfies

$$
E\left(x_{k}\right)=\inf _{x \in x_{0}+\mathcal{K}_{k}} E(x)
$$

Proof. Let us take a vector $x \in x_{0}+\mathcal{K}_{k}$. It is of the form

$$
x_{0}+\sum_{i=0}^{k-1} \lambda_{i} p_{i}
$$

and therefore, taking into account that $p_{i}, i=0,1, \ldots, k-1$ are conjugate vectors

$$
E(x)=E\left(x_{0}+\sum_{i=0}^{k-1} \lambda_{i} p_{i}\right)=E\left(x_{0}\right)-2 \sum_{i=0}^{k-1} \lambda_{i} p_{i}^{T} r_{0}+\sum_{i=0}^{k-1} \lambda_{i}^{2} p_{i}^{T} A p_{i}
$$

Now, we observe that

$$
p_{i}^{T} r_{0}=p_{i}^{T}\left(r_{1}+\alpha_{0} A p_{0}\right)=p_{i}^{T} r_{1}=p_{i}^{T}\left(r_{2}+\alpha_{1} A p_{1}\right)=p_{i}^{T} r_{2}=\ldots=p_{i}^{T} r_{i}
$$

Therefore

$$
E(x)=E\left(x_{0}\right)-2 \sum_{i=0}^{k-1} \lambda_{i} p_{i}^{T} r_{i}+\sum_{i=0}^{k-1} \lambda_{i}^{2} p_{i}^{T} A p_{i}
$$

and the minimum is taken for $\lambda_{i}=\alpha_{i}, i \leq k-1$.
Therefore, the solution x_{k} of the CG method is the result of an orthogonal projection method onto \mathcal{K}_{k} (see Proposition 1). This is clear also from the properties of the method, since

$$
0=r_{k}^{T} r_{i}=\left(b-A x_{k}, r_{i}\right), \quad 0 \leq i \leq k-1
$$

and $\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}$ is a basis for \mathcal{K}_{k}.
Proposition 4. A set of conjugate vectors is a set of linear independent vectors.
Proof. Let us suppose that

$$
\sum_{i=1}^{k} c_{i} v_{i}=0
$$

with $c_{j} \neq 0$. Then

$$
\left(\sum_{i=1}^{k} c_{i} v_{i}\right)^{T} A v_{j}=0=\sum_{i=1}^{k} c_{i}\left(v_{i}^{T} A v_{j}\right)=c_{j} v_{j} A^{T} v_{j}
$$

Since A is SPD, the result cannot be 0 , unless $v_{j}=0$ (absurd).

Proposition 5. The $C G$ algorithm converges in n iterations at maximum.
Proof. The Krylov space $\mathcal{K}_{k}=\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}$ has dimension n at maximum.

In practice, since it is not possible to compute truly conjugate directions in machine arithmetic, usually the CG algorithm is used as an iterative method (and it is sometimes called semititerative method).

It is possible to prove the following convergence estimate

$$
\left|\left|\left|E_{k}\right|\left\|\left.=\sqrt{E\left(x_{k}\right)} \leq 2\left(\frac{\sqrt{\operatorname{cond}_{2}(A)}-1}{\sqrt{\operatorname{cond}_{2}(A)}+1}\right)^{k} \right\rvert\,\right\| E_{0}\| \|\right.\right.
$$

Here $\operatorname{cond}_{2}(A)$ is the condition number in the 2-norm, that is

$$
\operatorname{cond}_{2}(A)=\|A\|_{2} \cdot\left\|A^{-1}\right\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \cdot \sqrt{\rho\left(A^{-T} A^{-1}\right)}=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

There exists a slightly better estimate

$$
\|\mid\| E_{k}\| \| \leq 2\left(\frac{c^{k}}{1+c^{2 k}}\right)\left\|E_{0}\right\| \|
$$

where $c=\frac{\sqrt{\operatorname{cond}_{2}(A)}-1}{\sqrt{\operatorname{cond}_{2}(A)}+1}($ see $[1])$.

1.1.2 Computational costs

If we want to reduce the initial error E_{0} by a quantity ε, we have to take

$$
2\left(\frac{\sqrt{\operatorname{cond}_{2}(A)}-1}{\sqrt{\operatorname{cond}_{2}(A)}+1}\right)^{k}=\varepsilon
$$

from which
$k=\frac{\ln \frac{\varepsilon}{2}}{\ln \left(\frac{\sqrt{\operatorname{cond}_{2}(A)}-1}{\sqrt{\operatorname{cond}_{2}(A)}+1}\right)}=\frac{\ln \frac{\varepsilon}{2}}{\ln \left(1-\frac{2}{\sqrt{\operatorname{cond}_{2}(A)}+1}\right)} \approx \frac{\ln \frac{\varepsilon}{2}}{-\frac{2}{\sqrt{\operatorname{cond}_{2}(A)+1}}} \approx \frac{1}{2} \ln \frac{2}{\varepsilon} \sqrt{\operatorname{cond}_{2}(A)}$
For a matrix with $\operatorname{cond}_{2}(A) \approx h^{-2}$ the number of expected iterations is therefore $\mathcal{O}(1 / h)$. The cost of a single iteration is $\mathcal{O}(n)$ if A is sparse. The algorithm does not explicitely require A, but only the "action" of A to a vector p_{k}.

2 Preconditioning

The idea is to change

$$
A \bar{x}=b
$$

into

$$
P^{-1} A \bar{x}=P^{-1} b
$$

in such a way that $P^{-1} A$ is better conditioned than A. The main problem for the CG algorthm is that even if P is SPD, $P^{-1} A$ is not SPD. We can therefore factorize P into $P=R^{T} R$ and consider the linear system

$$
P^{-1} A R^{-1} \bar{y}=P^{-1} b \Leftrightarrow R^{-T} A R^{-1} \bar{y}=R^{-T} b, \quad R^{-1} \bar{y}=\bar{x}
$$

Now, $\tilde{A}=R^{-T} A R^{-1}$ is SPD and we can solve the system $\tilde{A} \bar{y}=\tilde{b}, \tilde{b}=R^{-T} b$, with the CG method. Setting $\tilde{x}_{k}=R x_{k}$, we have $\tilde{r}_{k}=\tilde{b}_{k}-\tilde{A} \tilde{x}_{k}=R^{-T} b-$ $R^{-T} A x_{k}=R^{-T} r_{k}$. It is possible then to arrange the CG algorithm for \tilde{A}, \tilde{x}_{0} and \tilde{b} as

- x_{0} given, $r_{0}=b-A x_{0}, P z_{0}=r_{0}, p_{0}=z_{0}$
- FOR $k=0,1, \ldots$ UNTIL $\left\|r_{k}\right\|_{2} \leq$ tol $\cdot\|b\|_{2}$

$$
\begin{aligned}
& w_{k}=A p_{k} \\
& \alpha_{k}=\frac{z_{k}^{T} r_{k}}{p_{k}^{T} w_{k}} \\
& x_{k+1}=x_{k}+\alpha_{k} p_{k} \\
& r_{k+1}=r_{k}-\alpha_{k} w_{k} \\
& P z_{k+1}=r_{k+1} \\
& \beta_{k+1}=\frac{z_{k+1}^{T} r_{k+1}}{z_{k}^{T} r_{k}} \\
& p_{k+1}=z_{k+1}+\beta_{k+1} p_{k}
\end{aligned}
$$

END
The directions p_{k} are still A conjugate directions (with $P p_{0}=r_{0}$). This algorithm requires the solution of the linear system $P z_{k+1}=r_{k+1}$ at each iteration. Usually, P (if not diagonal) is factorized once and for all into $P=R^{T} R, R$ the triangular Choleski factor, in such a way that z_{k+1} can be recovered by two simple triangular linear systems.

The algorithm does not explicitely require P, but only the action of P^{-1} to a vector z_{k+1}.

2.1 Differential preconditioners

If $u(x) \approx \bar{u}(x) \approx \tilde{u}(x)$ with

$$
\bar{u}(x)=\sum_{i=1}^{m} \bar{u}_{i} \phi_{i}(x)
$$

with $\bar{u}_{i} \approx u\left(x_{i}\right)$ and

$$
\tilde{u}(x)=\sum_{j=1}^{n} \tilde{u}_{j} \psi_{j}(x), \quad n \leq m
$$

with $\tilde{u}_{j} \approx u\left(y_{j}\right)$, then it is possbile to evaluate $\tilde{u}\left(x_{i}\right)$ by

$$
\left[\tilde{u}\left(x_{1}\right), \ldots, \tilde{u}\left(x_{m}\right)\right]^{T}=R \tilde{u}, \quad R \in \mathbb{R}^{m \times n}, \quad R_{i j}=\psi_{j}\left(x_{i}\right)
$$

and $\bar{u}\left(y_{j}\right)$ by

$$
\left[\bar{u}\left(y_{1}\right), \ldots, \bar{u}\left(y_{n}\right)\right]^{T}=Q \bar{u}, \quad Q \in \mathbb{R}^{n \times m}, Q_{j i}=\phi_{i}\left(y_{j}\right)
$$

We also have

$$
\begin{gathered}
{\left[u\left(x_{1}\right), \ldots, u\left(x_{m}\right)\right]^{T} \approx \bar{u} \approx R \tilde{u}} \\
{\left[u\left(y_{1}\right), \ldots, u\left(y_{n}\right)\right]^{T} \approx \tilde{u} \approx Q \bar{u}}
\end{gathered}
$$

and

$$
\begin{aligned}
{\left[u\left(x_{1}\right), \ldots, u\left(x_{m}\right)\right]^{T} } & \approx R Q \bar{u} \\
{\left[u\left(y_{1}\right), \ldots, u\left(y_{n}\right)\right]^{T} } & \approx Q R \tilde{u}
\end{aligned}
$$

Therefore

$$
R Q \approx I_{m}, \quad Q R \approx I_{n}
$$

Thus, in order to solve the "difficult" problem

$$
\bar{A} \bar{u}=\bar{b}
$$

we may want to compute \tilde{A} of the "easy" problem

$$
\tilde{A} \tilde{u}=\tilde{b}
$$

and then use the approximation

$$
\bar{A} \bar{u} \approx R \tilde{A} Q \bar{u} \Leftrightarrow \bar{A} \approx R \tilde{A} Q
$$

to compute a preconditioner $\bar{A}^{-1} \approx(R \tilde{A} Q)^{-1} \approx R \tilde{A}^{-1} Q$.

2.2 Algebraic preconditioners

References

[1] J. R. Shewchuk, An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, 1994, http://www.cs.cmu.edu/ ~quake-papers/painless-conjugate-gradient.pdf.

