Higher order basis functions for FEM

Marco Caliari

June 9, 2014

Abstract

We consider, for semplicity, the homogeneous Dirichlet problem.

1 One-dimensional case

In the one dimensional case Ω is an open interval and $X=H_{0}^{1}(\Omega)$. We just consider the space $X_{h}^{2}=\left\{v_{h} \in X:\left.v_{h}\right|_{T_{h}} \in \mathbb{P}_{2}\left(T_{h}\right)\right\}$. A polynomial of degree two on a interval is defined by three points, usually the two extreme points and the middle point. Therefore, given an original set of nodes $\left\{y_{j}\right\}_{j=1}^{m} \subset \Omega$, we have to consider the new set of nodes $\left\{x_{i}\right\}_{i=1}^{2 m-1} \subset \Omega$ given by

$$
\begin{cases}x_{i}=y_{(i+1) / 2}, & i \text { odd } \\ x_{i}=\frac{y_{i / 2}+y_{i / 2+1}}{2}, & i \text { even }\end{cases}
$$

and the set of basis functions

$$
\varphi_{i}(x) \in X_{h}^{2}, \varphi_{i}\left(x_{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq 2 m-1
$$

On the element ℓ_{j}, with endpoints $\ell_{j, 1}$ and $\ell_{j, 3}$ and middle point $\ell_{j, 2}$, the form of $\varphi_{\ell_{j, k}}$ is

$$
\begin{aligned}
& \varphi_{\ell_{j, 1}}(x)=\frac{\left|\begin{array}{cc}
1 & 1 \\
x & x_{\ell_{j, 2}}
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x & x_{\ell_{j, 3}}
\end{array}\right|}{\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x_{\ell_{j, 2}}
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x_{\ell_{j, 3}}
\end{array}\right|} \\
& \varphi_{\ell_{j, 2}}(x)=\frac{\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x & x_{\ell_{j, 3}}
\end{array}\right|}{\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x_{\ell_{j, 2}}
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 2}} & x_{\ell_{j, 3}}
\end{array}\right|} \\
& \varphi_{\ell_{j, 3}}(x)=\frac{\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 2}} & x
\end{array}\right|}{\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 1}} & x_{\ell_{j, 3}}
\end{array}\right| \cdot\left|\begin{array}{cc}
1 & 1 \\
x_{\ell_{j, 2}} & x_{\ell_{j, 3}}
\end{array}\right|}
\end{aligned}
$$

Clearly now the basis function φ_{i} shares its support with $\varphi_{i-2}, \varphi_{i-1}, \varphi_{i+1}, \varphi_{i+2}$ and therefore the stiffness matrix, for instance, is a pentadiagonal matrix.

1.1 Error estimates

The weak formulation is

$$
\text { find } u \in H^{1}(\Omega) \text { such that } a(u, v)=\ell(v), \forall v \in H^{1}(\Omega)
$$

with $a \mathrm{SPD}$, bilinear, coercive, continuos and ℓ linear bounded. Therefore we assume that $u \in H^{1}(\Omega)$. Let us denote the generic triangle (edge) by K and its length by h_{K}. The maximum length of the triangles is h.

1.1.1 H^{1} norm, X_{h}^{r} space

Let be $u_{h} \in X_{h}^{r}$. Then:

- if $u \in H^{p+1}\left(\Omega, \mathcal{T}_{h}\right)(u$ "piecewise regular") and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{H^{1}(\Omega)} \leq C \sum_{K \in \mathcal{T}_{h}}\left(h_{K}^{2 s}|u|_{H^{s+1}(K)}^{2}\right)^{1 / 2} \leq C h^{s}|u|_{H^{s+1}\left(\Omega, \mathcal{T}_{h}\right)}
$$

- if $u \in H^{p+1}(\Omega)(u$ "regular" and therefore "piecewise regular") and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{H^{1}(\Omega)} \leq C \sum_{K \in \mathcal{T}_{h}}\left(h_{K}^{2 s}|u|_{H^{s+1}(K)}^{2}\right)^{1 / 2} \leq C h^{s}|u|_{H^{s+1}(\Omega)}
$$

Of course, the seminorms on the right end sides can be overestimated by the corresponding norms.

1.1.2 L^{2} norm, X_{h}^{r} space

Let be $u_{h} \in X_{h}^{r}$. If from $\ell(v)=\ell_{f}(v)=\int_{\Omega} f v$ (therefore $\left.f \in L^{2}(\Omega)\right)$ it follows that $u \in H^{2}(\Omega)$ (it is called elliptic regularity, for instance, Poisson problem), then

- if $u \in H^{p+1}\left(\Omega, \mathcal{T}_{h}\right)$ and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{L^{2}(\Omega)} \leq C h^{s+1}|u|_{H^{s+1}\left(\Omega, \mathcal{T}_{h}\right)}
$$

- if $u \in H^{p+1}(\Omega)$ and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{L^{2}(\Omega)} \leq C h^{s+1}|u|_{H^{s+1}(\Omega)}
$$

Of course, the seminorms on the right end sides can be overestimated by the corresponding norms.

2 Two-dimensional case

In the two-dimensional case Ω is a polygon and $X=H_{0}^{1}(\Omega)$. We just consider the space $X_{h}^{2}=\left\{v_{h} \in X \cap \mathcal{C}^{0}(\bar{\Omega}):\left.v_{h}\right|_{T_{h}} \in \mathbb{P}_{2}\left(T_{h}\right)\right\}$. A polynomial of degree two on a triangle is defined by six points in general position. Usually the three vertices and the three middle points of the edges are taken. We introduce the barycentric coordinates: any point x in a triangle ℓ_{j} with vertices $\left\{x_{1}, x_{2}, x_{3}\right\} \in \Omega$ can be written in a unique way as

$$
x=\lambda_{1}(x) x_{1}+\lambda_{2}(x) x_{2}+\lambda_{3}(x) x_{3}, \quad \lambda_{1}(x)+\lambda_{2}(x)+\lambda_{3}(x) \equiv 1
$$

We have that $\lambda_{k}(x)$ coincides, on the triangle, with the piecewise linear function $\varphi_{\ell_{j, k}}(x)$.

Proposition. Given three non-collinear points $x_{1}, x_{2}, x_{3} \in \Omega$ and the corresponding middle points x_{12}, x_{13}, x_{23}, a polynomial $p(x)$ of total degree two is well defined by the values of $p(x)$ at the six points.

Proof. It is enough to prove that if $p\left(x_{1}\right)=p\left(x_{2}\right)=p\left(x_{3}\right)=p\left(x_{12}\right)=$ $p\left(x_{13}\right)=p\left(x_{23}\right)=0$, than $p \equiv 0$. Along the edge $x_{2} x_{3} p$ is a quadratic polynomial in one variable which is zero at three points. Therefore it is zero on the whole edge and we can write $p(x)=\lambda_{1}(x) w_{1}(x)$ with $w_{1}(x) \in$
\mathbb{P}_{1}. In the same way p is zero along the edge $x_{1} x_{3}$ and therefore $p(x)=$ $\lambda_{1}(x) \lambda_{2}(x) w_{0}(x)$ with $w_{0}(x)=\gamma \in \mathbb{P}_{0}$. If we now take the point x_{12}, we have

$$
0=p\left(x_{12}\right)=\lambda_{1}\left(x_{12}\right) \lambda_{2}\left(x_{12}\right) \gamma=\frac{1}{2} \frac{1}{2} \gamma
$$

and therefore $\gamma=0$.

Figure 1: $m=5, n=3$ (right) and $m=4, n=3$ (left).
Given the number m of original nodes and the number n of triangles, by Euler's formula we have that the number of edges is $m+(n+1)-2=m+n-1$ (in Euler's formula it has to be counted also the unbounded region outside the triangularion). Therefore, the dimension of X_{h}^{2} is $m+(m+n-1)=2 m+n-1$.

It is not possible, as well, to know a priori the structure of the stiffness matrix.

2.1 Bandwidth reduction

Even in the simplest case of piecewise linear basis function, an ordering of the nodes as in Figure 2 (left) would yield a sparsity pattern as in Figure 2 (right). The degree of a node is the number of adjacent to it. We can consider the following heuristic algorithm, called Cuthill-McKee reordering

- Select a node i and set the first element of the array R to i.
- Put the adjacent nodes of i in the increasing order of their degree in the array Q.
- DO until Q is empty

Take the first node in Q : if it is already in R, delete it, otherwise add it to R, delete it from Q and add to Q the adjacent nodes of it which are not already in R, in the increasing order of their degree,

Figure 2: Unordered mesh and corresponding sparsity pattern.

The new label of node $R(j)$ is j. A variant is the so called reverse CuthillMcKee ordering, in which the final ordering produced by the previous algorithm is reversed. The ordering produced by the reverse Cuthill-McKee algorithm with initial node 1 (a node with smallest degree) is shown in Figure 3 .

2.2 Error estimates

The weak formulation is

$$
\text { find } u \in H^{1}(\Omega) \text { such that } a(u, v)=\ell(v), \forall v \in H^{1}(\Omega)
$$

with a SPD, bilinear, coercive, continuos and ℓ linear bounded. Therefore we assume that $u \in H^{1}(\Omega)$. Let us denote the generic triangle by K and its diameter by h_{K}. The maximum diameter of the triangles is h.

2.2.1 H^{1} norm, X_{h}^{r} space

Let be $\left\{\mathcal{I}_{h}\right\}_{h}$ a family of regular triangulations and $u_{h} \in X_{h}^{r}$. Then Let be $u_{h} \in X_{h}^{r}$. Then:

Figure 3: Reverse Cuthill-McKee ordered mesh and corresponding sparsity pattern.

- if $u \in H^{p+1}\left(\Omega, \mathcal{T}_{h}\right)(u$ "piecewise regular") and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{H^{1}(\Omega)} \leq C \sum_{K \in \mathcal{T}_{h}}\left(h_{K}^{2 s}|u|_{H^{s+1}(K)}^{2}\right)^{1 / 2} \leq C h^{s}|u|_{H^{s+1}\left(\Omega, \mathcal{T}_{h}\right)}
$$

- if $u \in H^{p+1}(\Omega)$ (u "regular" and therefore "piecewise regular") and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{H^{1}(\Omega)} \leq C \sum_{K \in \mathcal{T}_{h}}\left(h_{K}^{2 s}|u|_{H^{s+1}(K)}^{2}\right)^{1 / 2} \leq C h^{s}|u|_{H^{s+1}(\Omega)}
$$

Of course, the seminorms on the right end sides can be overestimated by the corresponding norms.

2.2.2 L^{2} norm, X_{h}^{r} space

Let be $\left\{\mathcal{T}_{h}\right\}_{h}$ a family of regular triangulations and $u_{h} \in X_{h}^{r}$. If from $\ell(v)=$ $\ell_{f}(v)=\int_{\Omega} f v$ (therefore $\left.f \in L^{2}(\Omega)\right)$ and Ω convex it follows that $u \in H^{2}(\Omega)$ (it is called elliptic regularity, for instance, Poisson problem), then

- if $u \in H^{p+1}\left(\Omega, \mathcal{T}_{h}\right)$ and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{L^{2}(\Omega)} \leq C h^{s+1}|u|_{H^{s+1}\left(\Omega, \mathcal{T}_{h}\right)}
$$

- if $u \in H^{p+1}(\Omega)$ and $s=\min \{p, r\}$

$$
\left\|u_{h}-u\right\|_{L^{2}(\Omega)} \leq C h^{s+1}|u|_{H^{s+1}(\Omega)}
$$

Of course, the seminorms on the right end sides can be overestimated by the corresponding norms.

