
VTK format for FreeFem++ output data

Gregorio Pellegrini

June 26, 2014

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 1 / 20

Aim

We would like to use VTK format to save the solution of a given
problem, solved in FreeFem++.
Let’s consider the standard Poisson problem{

−∆u = f Ω
u = 0 ∂Ω

If we want to work with the data related with this problem, immediately
we understand that we need to save:

data related to mesh, namely vertexes of the triangle and triangle
itself
the value of the solution on the point of the mesh

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 2 / 20

General structure of VTK file

We are going to focus our attention on the simple legacy format, that is
a style of this file format.
Let’s see the general structure of such a file:

vtk DataFile Version 3.0 \\ header
output.vtk, Created by Freefem++ \\ title
ASCII \\ data type
DATASET Type \\ dataset structure
. . .
CELL DATA \\ dataset attribute
. . .
POINT DATA
. . .

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 3 / 20

General structure of vtk files

HEADER: It describes file version and the identifier of the file:
vtk DataFile Version 2.0

where:
#, vtk, and DataFile are fixed keywords
Version 2.0 indicates the version of vtk format we are using, the
current one is 3.0, but the Version 1.0 and Version 2.0 are compatible
with this latest release

TITLE
it is a character string terminated by the end-of-line character \n.
Is a short description of the data, that are going to be stored.
at most 256 characters

DATA TYPE
is a single line containing either the keyword ASCII or BINARY

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 4 / 20

General structure of vtk files

DATASET STRUCTURE is the section of our file where we can describe
the topology(Points and cells) and geometry(points coordinates) of our
dataset.
Type is replace by the following keywords, that encode the structure of the
dataset

STRUCTURED POINTS
STRUCTURED GRID
RECTILINEAR GRID
POLYDATA
UNSTRUCTURED GRID
FIELD

each of this type, encode a particular topology of our dataset, thus it
depends on the problem to choose the suitable one:

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 5 / 20

Some detail

Once we have defined the geometry and topology, let’s save data linked
with this structure.
There are two possibilities:

with the keyword POINT DATA we are attaching to the points the
some values, it fits for saving the solution at the nodes of our mesh
with the keyword CELL DATA we are linking the data, specified
after this keyword, to the cells, that are defined in the dataset section

It’s not important if POINT DATA or CELL DATA comes first.

Remark
These keywords allow the vtk-reader to link the data either with CELLS
and or with POINTS.
Later we will see actually how to save such data

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 6 / 20

About DATASET type
The choice of the dataset type is determine by the geometry of the
problem. In particular in our situation it’s strictly related to the mesh.
if we focus our attention on the dataset type

STRUCTURED GRID: regular topology and irregular geometry
RECTILINEAR GRID: regular topology but geometry only partially
regular
POLYDATA: irregular in both topology and geometry

All these dataset can be use for our purpose, but require a very strict
structure of the mesh on which we are working:

feasible with meshes characterize by ”rectangular” elements
we need a very regular domain Ω
more flexible than the previous but it has few possibilities to represent
geometric objects

We can point out these consideration just looking at the code-line to
define such structure.

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 7 / 20

RECTILINEAR GRID

RECTILINEAR GRID, this file support 1D, 2D, 3D structured datasets.
The dataset format is followed by:

DATASET RECTILINEAR GRID
DIMESIONS nx ny nz
X COORDINATES nx dataType
x0x01...x(nx −1)
Y COORDINATES ny dataType
y0y1...y(ny −1)
Z COORDINATES ny dataType
z0z1...z(nz −1)

where
DIMENSIONS: they has to be grater or equal than 1, and nx , ny , nz are
the number of points in x-y-z direction
{X,Y,Z}-COORDINATES: are x − y − z coordinates of the points

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 8 / 20

UNSTRUCTURED GRID
For our purposes we need a different dataset type:

UNSTRUCTURED GRID

It is an arbitrary combination of cell type, thus is more flexible. Let’s see
how define such a dataset type

DATASET UNSTRUCTURED GRID
POINTS n dataType
. . .
CELL n size
. . .
CELL TYPE n

Here we can see the flexibility of this approach:
define the points POINTS
how to connect them CELL
and how to put together these connections CELL TYPES

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 9 / 20

UNSTRUCTURED GRID

Let’s see in detail what these keywords require:

POINTS n dataType
p0x p0y p0z
. . .
p(n−1)x p(n−1)y p(n−1)z

where
n is the number of points
dataType is the type of data: float, int, etc.
pi = (pix piy piz) are the coordinates of the i-th points.

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 10 / 20

UNSTRUCTURED GRID

Let’s see in detail what these keywords require:

CELL n size
numPoints0 i0 j0 k0
numPoints1 i1 j1 k1
. . .
numPointsn−1 in−1 jn−1 kn−1

where
n is the number of cells
size is the cell list size, i.e the total number of integer values
required to represent the list
numPointsm is the number of point required to define this polygon
im jm km are the pointer identifies the points of the geometry section.

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 11 / 20

UNSTRUCTURED GRID

Let’s see the parameter for the keyword CELL TYPES

CELL TYPES n
type0
type1
. . .
typen−1

in this contest:
n is the number of cells
typem is a natural number chosen from a preset table

Remark
Here is encode the flexibility of this approach. You can customize every
feature of the data: you specify the points, how to collect them, and what
is the geometrical object you’re building up

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 12 / 20

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 13 / 20

Dataset attribute

Once we have defined the geometry and topology of our data, let’s attach
to them the values of quantity of interest.
In our case they are the values of the solution, and we require to save
scalar fields, vector fields. These kind of data appears in vtk-format:

SCALAR
VECTOR

but actually what we are going to use is a more general dataset attribute:

FIELD DATA

it doesn’t introduce any difference with respect to vector or scalar dataset
attribute, but it allows to write in the same environment, data that are
either scalar or vectors.

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 14 / 20

Field data
It’s essentially an array of data arrays. Defining a field data means giving a name
to the field and specifying the number of arrays it contains. Let’s see the code
line, to define it

FIELD dataName numArray
arrayName0 numComponents numTuple dataType
f0,0 f0,1 . . . f0,numComponents−1
f0,0 f0,1 . . . f1,numComponents−1
...
f(numTuple−1),0 f(numTuple−1),1 . . . f(numTuple−1),(numComponents−1)

...
arrayName(numArray-1) numComponents numTuple dataType
f0,0 f0,1 . . . f0,numComponents−1
f0,0 f0,1 . . . f1,numComponents−1
...
f(numTuple−1),0 f(numTuple−1),1 . . . f(numTuple−1),(numComponents−1)

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 15 / 20

Implementation in Freefem++

We need to save all required data on file, and the Output stream class to
operate on files is ofstream:
{
ofstream file(”fileName.vtk”);
file � ”Hello! I’m saving this string on file” � endl;
}

In order to visualize the solution in a vtk-reader we need to save:
geometry are the points on which the solution is defined
topology of the problem is completely encode in the mesh Th
the solution of the problem, namely its values on the nodes.

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 16 / 20

Header
Let’s consider our standard Poisson problem, already solved in Freefem++:{

∆u = 0 Ω
u = f ∂Ω

Due to our implementation is not require to know a priori the underlying
finite element space Xh.
Before starting let’s save the values of the nodes:

Xh[int] xh(2); xh[0] = x ; xh[1] = y ;

Let’s set the header and the basic information about our vtk file.

file � "# vtk DataFile Version 2.0 "� endl;
file � "vtk format, created via Freefem++"�"\n ";
file � "ASCII" � endl;
file � "DATASET UNSTRUCTURED GRID " � endl;

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 17 / 20

”Assembly of the file: POINTS”

I use the UNSTRUCTURED GRID type of dataset, since is the most general.
After the keyword POINTS I save all points on which the solution is known.

file �"POINTS " � Xh.ndof � " float" � endl ;
for (int i = 0 ; i < Xh.ndof ; i++)
{
file�xh[0][][i]�" "�xh[1][][i]�" "� " 0 " � endl;

}
file � endl;

If we are dealing with 3D problem we have to save also the z-component
of the nodes

Xh[int] xh(3); xh[0] = x ; xh[1] = y ; xh[2] = z ;

instead setting the third component to ” 0 ” we write xh[2][][i].

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 18 / 20

”Assembly of the file: CELLS & CELL TYPE”

file �"CELLS "� Th.nt �" "� 4*Th.nt� endl;
for (int i = 0 ; i < Th.nt ; i++) {

file � " 3 " � " "; \\ since we have 3 vertices
for (int j = 0 ; j < 3 ; j++) {

file � Xh(i,j) � " ";
}
file � endl;

}
file � "CELL TYPES " � Th.nt � endl;
for (int i = 0 ; i < Th.nt ; i++) {

file � "5 ";
}

file � endl;

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 19 / 20

’Assembly of the file”
Let’s suppose that the problem that we are going to solve is the usual
2-dimensional possion problem −∆u = f . Thus we have only one function
to keep u(x , y). We save this value using a FIELD data attribure

file � "POINT DATA" � Xh.ndof � endl;
file << "FIELD"; << " fieldata "; << " 1 "; << endl;
file � "solution " � " 1 " � Xh.ndof �" float" � endl;
for (int i =0 ; i < Xh.ndof ; i++)
{

real Thx,Thy; Thx =xh[0][][i]; Thy = xh[1][][i];
file � u(Thx,Thy) � endl;

}

if we are in 3D setting, we add the z-component:

real Thz; Thy = xh[2][][i];
u(Thx,Thy,Thz);

Gregorio Pellegrini VTK format for FreeFem++ output data June 26, 2014 20 / 20

