Molenkamp-Crowley test

M. Caliari

June 9, 2014

1 Pure advection

Let us consider the pure advection equation

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x, y)+\boldsymbol{b}(x, y) \cdot \nabla u(t, x, y)=0, \quad(t, x, y) \in(0, T) \times \Omega, \quad \Omega \subset \mathbb{R}^{2} \\
u(0, x, y)=u_{0}(t, x, y)
\end{array}\right.
$$

where $\boldsymbol{b}(x, y)=\left[b_{1}(x, y), b_{2}(x, y)\right]=[y,-x]$. The exact solution at time t and point $\left(x_{t}, y_{t}\right)$ is given by

$$
u\left(t, x_{t}, y_{t}\right)=u_{0}(\bar{x}, \bar{y})
$$

where $x_{t}=x_{t}(t)$ and $y_{t}=y_{t}(t)$ with

$$
\left\{\begin{array}{l}
x_{t}^{\prime}(s)=b_{1}\left(x_{t}(s), y_{t}(s)\right) \tag{1}\\
y_{t}^{\prime}(s)=b_{2}\left(x_{t}(s), y_{t}(s)\right) \\
x_{t}(0)=\bar{x} \\
y_{t}(0)=\bar{y}
\end{array}\right.
$$

In fact, $u\left(0, x_{t}(0), y_{t}(0)\right)=u_{0}(\bar{x}, \bar{y})$ and

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t} u_{0}(\bar{x}, \bar{y})=\frac{\mathrm{d}}{\mathrm{~d} t} u\left(t, x_{t}, y_{t}\right)=\partial_{t} u\left(t, x_{t}, y_{t}\right)+\boldsymbol{b}\left(x_{t}, y_{t}\right) \cdot \nabla u\left(t, x_{t}, y_{t}\right)
$$

This method to solve the pure advection equation is called forward characteristics. The drawback is that if we select a mesh point (\bar{x}, \bar{y}) and solve equation (1) up to time t, the point $\left(x_{t}, y_{t}\right)$ may not be a mesh point. We can consider then a new variable r and a new couple $\left(x_{-t}(r), y_{-t}(r)\right)$ defined by

$$
r=t-s, \quad x_{-t}(r)=x_{t}(s), \quad y_{-t}(r)=y_{t}(s)
$$

It is clear that $\left(x_{-t}(0), y_{-t}(0)\right)=\left(x_{t}(t), y_{t}(t)\right),\left(x_{-t}(t), y_{-t}(t)\right)=\left(x_{t}(0), y_{t}(0)\right)$ and moreover

$$
\left\{\begin{array}{l}
x_{-t}^{\prime}(r)=-b_{1}\left(x_{-t}(r), y_{-t}(r)\right) \\
y_{-t}^{\prime}(r)=-b_{2}\left(x_{-t}(r), y_{-t}(r)\right)
\end{array}\right.
$$

and therefore if we consider

$$
\left\{\begin{array}{l}
x_{-t}^{\prime}(r)=-b_{1}\left(x_{-t}(r), y_{-t}(r)\right) \tag{2}\\
y_{-t}^{\prime}(r)=-b_{2}\left(x_{-t}(r), y_{-t}(r)\right) \\
x_{-t}(0)=x \\
y_{-t}(0)=y
\end{array}\right.
$$

we have

$$
u(t, x, y)=u\left(t, x_{t}, y_{t}\right)=u_{0}\left(x_{t}(0), y_{t}(0)\right)=u_{0}\left(x_{-t}(t), y_{-t}(t)\right)
$$

If we denote by X_{t} the operator

$$
X_{t}: \Omega \rightarrow \Omega, \quad(x, y) \mapsto\left(x_{-t}(t), y_{-t}(t)\right)
$$

we can write

$$
u(t, x, y)=u_{0} \circ X_{t}(x, y)
$$

Therefore, given a mesh point (x, y), if we solve equation (2) up to time t we have the solution u at time t at a mesh point. This method is called backward characteristics, since solving forward (from 0 to t) equation (2) is equivalent to solve backward (from t to 0) equation (1).

For our particular choice of $\boldsymbol{b}(x, y)$, equation (2) is trivial and its solution is

$$
\left[\begin{array}{l}
x_{-t}(t) \\
y_{-t}(t)
\end{array}\right]=\exp \left(t\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Therefore, the solution $u(t, x, y)$ is the clockwise rotation of angle t of the initial solution $u_{0}(x, y)$. This particular pure advection equation is called Molenkamp-Crowley test.

1.1 A Discontinuous Galerkin formulation

It is possible to consider the following DG formulation

$$
\int_{\Omega}\left(\frac{u^{n+1}-u^{n}}{k}+\boldsymbol{b} \cdot u^{n+1}\right) v \mathrm{~d} \Omega-2 \int_{\mathcal{E}}\left(\frac{1}{2}|\boldsymbol{n} \cdot \boldsymbol{b}|-\frac{1}{2} \boldsymbol{n} \cdot \boldsymbol{b}\right)\left[u^{n}\right] v \mathrm{~d} \Omega=0
$$

