An (incomplete) introduction to FEniCS

Mauro Bonafini

Verona, June 6, 2014

An overview

- The FEniCS Project is a collection of free software with an extensive list of features for automated, efficient solution of differential equations
- Initiated 2003 in Chicago
- C++/Python library (\#include <dolfin.h>/form dolfin import *)
- Part of Debian and Ubuntu, licensed under the GNU LGPL
- Automatic and efficient evaluation of variational forms (1D, 2D, 3D) and assembly of linear systems for Finite Elements Method
- General families of finite elements, including arbitrary order continuous and discontinuous Lagrange elements
- Arbitrary mixed elements and built-in plotting
- Good documentation and examples

Mesh generation

Meshes for rectangular, circular and ellipsoidal domains are available as build-in components. The same can be done for domains based on these geometries (e.g. a rectangle with a circular hole).

Mesh for polygonal domains: first define a vector of points representing the vertices and then generate the mesh

```
vertices = [Point(x_1,y_1), ... ,Point(x_n,y_n),Point(x_1,y_1)]
Th = mesh()
PolygonalMeshGenerator.generate(Th, vertices, cell_size)
```

For more general meshes we need to build them using an external software (Triangle, Gmsh, TetGen, ...), convert the resulting file (.ele/.node, .msh/.gmsh, .mesh, ...) into the FEniCS mesh format .xml using dolfin-convert fileID.* fileID.xml
and then load the mesh
Th = Mesh("fileID.xml")
Note: for P1 elements it is not in general true that the i-th coefficient is the value of the function at the i-th node.

An example using Python interface

We want to solve the simple problem

$$
\left\{\begin{aligned}
-\Delta u(x, y) & =f(x, y) & & \text { in } \Omega=[0,1]^{2} \\
u(x, y) & =u_{B}(x, y) & & \text { on } \Gamma_{D} \\
-\frac{\partial u}{\partial \mathbf{n}} & =g(x, y) & & \text { on } \Gamma_{N}
\end{aligned}\right.
$$

where $\Gamma_{D}=\{(x, y) \in \Omega: x \in\{0,1\}\}, \Gamma_{N}=\{(x, y) \in \Omega: y \in\{0,1\}\}$, $f(x, y)=-6, u_{B}(x, y)=1+x+2 y^{2}$ and $g(x, y)=-4 y$. The exact solution is given by

$$
u(x, y)=1+x^{2}+2 y^{2}
$$

and the associated bilinear and linear form are

$$
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x} \quad L(v)=\int_{\Omega} f v d \mathbf{x}-\int_{\Gamma_{N}} g v d s
$$

Python code

The previous problem can be solved using FEniCS as follow:

```
from dolfin import *
set_log_level(PROGRESS)
# Create mesh and define function space
Th = UnitSquareMesh(15,15) # regular mesh over [0,1]^2
Vh = FunctionSpace(Th, "CG", 1) # piecewise linear basis functions
# Define variational problem
g = Expression("-4*x[1]") # Neumann boundary condition (x[1] is y)
f = Constant(-6)
u = TrialFunction(Vh)
v = TestFunction(Vh)
a = inner(grad(u), grad(v))*dx
L}=\textrm{f}*\textrm{v}*\textrm{dx}-\textrm{g}*\textrm{v}*\textrm{d
# import the software library
# suppress some outputs
    # find u s.t.
# for all v
# bilinear form
# right-hand side
# linear form
```

```
# Define boundary conditions
def boundary(x, on_boundary): # python function: identify boundary
    tol = 1E-14
    return on_boundary and (abs(x[0]) < tol or abs(x[0] - 1) < tol)
uB = Expression("1 + x[0] + 2*x[1]*x[1]") # Dirichlet boundary condition
bc = DirichletBC(Vh, uB, boundary) # set a DirichletBC object
# Compute solution
u = Function(Vh) # the solution is a function
problem = LinearVariationalProblem(a, L, u, bc) # set problem
solver = LinearVariationalSolver(problem)
solver.parameters["linear_solver"] = "gmres" # set solver
solver.parameters["preconditioner"] = "ilu" # set preconditioner
gmres_prm = solver.parameters["krylov_solver"] # set some parameters
gmres_prm["absolute_tolerance"] = 1e-7
gmres_prm["relative_tolerance"] = 1e-4
gmres_prm["maximum_iterations"] = 1000
solver.solve() # solve
# Here ends the main part of our code.
```

```
# L2 error and H1 error
uexact = Expression("1+x[0]*x[0]+2*x[1]*x[1]")
L2 = errornorm(uexact, u, norm_type="L2")
H1 = L2 + errornorm(uexact, u, norm_type="H10")
print "\nL2 error:", L2
print "\nH1 error:", H1, "\n"
# Plot solution and gradient
grad_u = project(grad(u), VectorFunctionSpace(Th, "CG", 1))
plot(u, axes=True)
plot(grad_u)
# Dump solution to file in VTK format (or XML format)
file = File("mixedPoisson.pvd")
file << u
file = File("mixedPoisson.xml")
file << u
# Hold plot
interactive()
```

Run in a terminal window "python mixedPoisson2d.py" for the results.

Order of convergence

We check the right order of convergence of our implementation by solving a simpler Poisson equation $-\Delta u=f$ on $\Omega=[-1,1]^{2}$, where f and the boundary conditions are chosen s.t.

$$
u(x, y)=\left(\sqrt{x^{2}+y^{2}}\right)^{2 n+1} \in H^{2 n+1}(\Omega)
$$

turns out to be the exact solution (FEniCS version of order.edp).

The FreeFem code

```
cout << "number of sites: " << Th.nv << endl;
cout << "number of triangles: " << Th.nt << endl;
cout << "degree of freedom: " << Vh.ndof << endl;
is substituted by
```

```
print "number of sites: ", Th.num_vertices()
```

print "number of sites: ", Th.num_vertices()
print "number of triangles: ", Th.num_cells()
print "number of triangles: ", Th.num_cells()
print "degree of freedom: ", u.vector().array().size

```
print "degree of freedom: ", u.vector().array().size
```

Run in a terminal window "python orderPoisson2d.py $n r$ " for the results.

Assembly of the linear system and its resolution

There are several ways for generating the stiffness matrix A, the load vector b and solve the corresponding linear system, for example

```
problem = LinearVariationalProblem(a, L, u, bc)
solver = LinearVariationalSolver(problem)
solver.solve()
# or
solve(a == L, u, bc)
# or
A = assemble(a)
b = assemble(L)
bc.apply(A, b)
solve(A, u.vector(), b)
# or
A, b = assemble_system(a, L, bc)
solve(A, u.vector(), b)
```

In every case we can control the resolution process as we have seen in the previous code. For a complete list of parameters affecting the solution of a linear system run in a terminal window
python LinearAlgebra.py

C ++ code

First of all we have to define the variational problem in an external file mixed.ufl

```
# The bilinear form a(u,v) and linear form L(v) for our example
element = FiniteElement("CG", triangle, 1)
u = TrialFunction(element)
v = TestFunction(element)
f = Coefficient(element)
g = Coefficient(element)
a = inner(grad(u), grad(v))*dx
L = f*v*dx - g*v*ds
```

and then compile this file
ffc -l dolfin mixed.ufl
to get a C++ header file, mixed.h, which we will include in our main.cpp file, which reads as follows:

```
#include <dolfin.h>
#include "mixed.h"
using namespace dolfin;
// boundary value
class functionUB : public Expression {
    void eval(Array<double>& values, const Array<double>& x) const {
        values[0] = 1 + x[0] + 2*x[1]*x[1];
    }
};
// Neumann condition
class functionG : public Expression {
    void eval(Array<double>& values, const Array<double>& x) const {
        values[0] = -4*x[1];
    }
};
// Dirichlet boundary
class OurDirichletBoundary : public SubDomain {
    bool inside(const Array<double>& x, bool on_boundary) const {
        return on_boundary && (x[0] < DOLFIN_EPS || x[0] > 1-DOLFIN_EPS);
    }
};
```

```
int main(void) {
    // Create mesh and function space
    UnitSquareMesh Th(32, 32); // regular mesh over [0,1]`2
    mixed::FunctionSpace Vh(Th); // function space defined in mixed.h
    // Define boundary conditions
    functionUB uB;
    OurDirichletBoundary boundary;
    DirichletBC bc(Vh, uB, boundary);
    // Dirichlet boundary condition
// identify boundary
// set a DirichletBC object
```

// Define variational forms
Constant $f(-6)$; functionG g;
mixed::BilinearForm a(Vh, Vh); // the bilinear form from mixed.h
mixed::LinearForm L(Vh); // the linear form from mixed.h
L.f = f; L.g = g; // initialize parameters of L
// Compute solution
Function $u(V h)$;
solve(a==L, u, bc);
/* ... */
return 0;
\}

FEniCS vs FreeFem++

The same problem can be solved using FreeFem++

```
/* Create mesh and define function space */
mesh Th = square(32,32);
fespace Vh(Th, P1);
/* Define the various functions */
func uB = 1+x+2*y^2;
func f = -6;
func g = -4*y;
/* Define the problem and compute solution */
Vh u, v;
solve mixed(u,v) =
    int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))
    - int2d(Th)(f*v)
    - int1d(Th,1,3)(-g*v)
    + on(2,4,u=uB);
```

It seems that for this particular example FreeFem++ outperforms FEniCS in both cases ($\mathrm{C}++$ and Python implementation).

Nonlinear problems in FEniCS

Let us consider the advection-reaction nonlinear problem

$$
-\mu \Delta u(x, y)+\rho u^{2}(x, y)=1 \quad(x, y) \in[0,1]^{2}
$$

with homogeneous Dirichlet boundary conditions. The weak formulation requires us to find $u \in H_{0}^{1}$ such that

$$
F(u)=\mu \int \nabla u \cdot \nabla v+\rho \int u^{2} v-\int v=0 \quad \forall v \in H_{0}^{1}
$$

FEniCS has the capability to treat directly this kind of problems. Note: we have already seen during our lectures the FreeFem++ code for solving this problem.

```
from dolfin import *
Th = UnitSquareMesh(20,20)
Vh = FunctionSpace(Th, "CG", 1)
mu = Constant(0.01)
rho = Constant(1.0)
# Define boundary conditions
def Boundary(x, on_boundary):
    return on_boundary
bc = DirichletBC(Vh, Constant("0.0"), on_boundary)
# Define variational problem
du = TrialFunction(Vh)
v = TestFunction(Vh)
u = Function(Vh)
F = (mu*inner(grad(u), grad(v))+rho*(u*u*v)-v)*dx
J = derivative(F, u, du) # automatic computation of the Jacobian
# Compute solution
problem = NonlinearVariationalProblem(F, u, bc, J) # set nonlinear problem
solver = NonlinearVariationalSolver(problem) # set nonlinear solver
solver.solve()
```


Discontinuous Galerkin approach in FEniCS

For the Poisson problem it is possible to derive the following DG-N formulation: find $u_{\delta} \in W_{\delta}$ such that

$$
\begin{aligned}
& \sum_{m=1}^{M}\left(\nabla u_{\delta}, \nabla v_{\delta}\right) K_{m}-\sum_{e \in \mathcal{E}_{\delta}} \int_{e}\left[v_{\delta}\right] \cdot\left\{\left\{\nabla u_{\delta}\right\}\right\}-\tau \sum_{e \in \mathcal{E}_{\delta}} \int_{e}\left[u_{\delta}\right] \cdot\left\{\left\{\nabla v_{\delta}\right\}\right\} \\
& +\sum_{e \in \mathcal{E}_{\delta}} \frac{\gamma}{|e|} \int_{e}\left[u_{\delta}\right] \cdot\left[v_{\delta}\right]-\sum_{e \subset \partial \Omega} \int_{e} v_{\delta} \frac{\partial u_{\delta}}{\partial \mathbf{n}}-\tau \sum_{e \subset \partial \Omega} \int_{e} u_{\delta} \frac{\partial v_{\delta}}{\partial \mathbf{n}} \\
& +\sum_{e \subset \partial \Omega} \frac{\gamma}{|e|} \int_{e} u_{\delta} v_{\delta}=\sum_{m=1}^{M}\left(f, v_{\delta}\right)_{K_{m}}-\tau \sum_{e \subset \partial \Omega} \int_{e} g_{\delta} \frac{\partial v_{\delta}}{\partial \mathbf{n}}+\sum_{e \subset \partial \Omega} \frac{\gamma}{|e|} \int_{e} g_{\delta} v_{\delta}
\end{aligned}
$$

$\forall v_{\delta} \in W_{\delta}$. We solve $-\Delta u=f$ with homogeneous Dirichlet b.c. and f chosen s.t. the exact solution is $u(x, y)=\left(x-x^{2}\right) \exp (3 x) \sin (2 \pi y)$ (section 11.1.1 in Quarteroni's book).
Note: $|e|$ should be replaced with something closer to it.

```
from dolfin import *
r = 1
tau = 1.0
gamma = 10.0*r*r
f = Expression("-exp(3*x[0])*(-9*pow(x[0],2)-3*x[0]+4)*sin(2*pi*x[1])
    +(x[0]-pow (x[0], 2))*exp(3*x[0])*4*\operatorname{pow}(\textrm{pi},2)*\operatorname{sin}(2*\textrm{pi}*\textrm{x}[1])
g = Constant(0.0)
Th = UnitSquareMesh(30,30)
Vh = FunctionSpace(Th, "DG", r)
u = TrialFunction(Vh)
v = TestFunction(Vh)
n = FacetNormal(Th)
h = CellSize(Th)
a = dot(grad(u), grad(v))*dx - dot(jump(v, n), avg(grad(u)))*dS \
    - tau*dot(jump(u, n), avg(grad(v)))*dS \
    + gamma/avg(h)*dot(jump(u, n), jump(v, n))*dS \
    - v*dot(grad(u), n)*ds - tau*u*dot(grad(v), n)*ds + gamma/h*u*v*ds
L = f*v*dx - tau*g*v*ds + gamma/h*g*v*ds
u = Function(Vh)
solve(a==L, u)
```

