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Chapter 1

Variational methods

1.1 Variational formulation of Poisson’s prob-

lem

Let us consider the boundary value problem (Poisson’s equation)
{

−u′′(x) = g(x), x ∈ (0, 1)

u(0) = u(1) = 0
(1.1)

where g ∈ C0([0, 1]). We introduce the following space:

V = {v: v ∈ C1([0, 1]), v(0) = v(1) = 0}

equipped with the scalar product

(u, v) =

∫ 1

0

u(x)v(x)dx

Theorem 1 (Variational formulation). If u(x) is the solution of (1.1), then
u ∈ V and

(u′, v′) = (g, v), ∀v ∈ V (1.2)

Proof. Let u be the solution of (1.1). Then, for any v ∈ V ,
∫ 1

0

−u′′(x)v(x)dx =

∫ 1

0

g(x)v(x)dx = (g, v)

Integrating by parts,
∫ 1

0

−u′′(x)v(x)dx = −u′(x)v(x)
∣

∣

∣

1

0
+

∫ 1

0

u′(x)v′(x)dx = (u′, v′)

since v(0) = v(1) = 0.
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Since problem (1.1) has a unique u ∈ C2 ⊂ V solution, this is clearly also
a solution for (1.2). Why do we introduce then the variational formulation?
Let us consider instead the following problem

{

−u′′(x) = gε(x), x ∈ (0, 1)

u(0) = u(1) = 0
(1.3)

where

gε(x) =











0 0 ≤ x < 1
2
− ε

− 1
2ε

1
2
− ε ≤ x ≤ 1

2
+ ε

0 1
2

+ ε < x ≤ 1

Since gε is the load density, the total load is

∫ 1

0

gε(x)dx = −1

The “solution” of (1.3) is

uε(x) =































−
1

2
x 0 ≤ x ≤

1

2
− ε

1

4ε

(

x −
1

2

)2

+
ε − 1

4

1

2
− ε ≤ x ≤

1

2
+ ε

−
1

2
(1 − x)

1

2
+ ε ≤ x ≤ 1

Since u′′
ε(1/2 ± ε) does not exist, we cannot state that −u′′

ε(x) = gε(x),
x ∈ (0, 1). But it is true that uε ∈ V and

∫ 1

0

u′
ε(x)v′(x)dx =

∫ 1

2
−ε

0

u′
ε(x)v′(x)dx +

∫ 1

2
+ε

1

2
−ε

u′
ε(x)v′(x)dx +

∫ 1

1

2
+ε

u′
ε(x)v′(x)dx =

= −

∫ 1

2
−ε

0

u′′
ε(x)v(x)dx −

∫ 1

2
+ε

1

2
−ε

u′′
ε(x)v(x)dx −

∫ 1

1

2
+ε

u′′
ε(x)v(x)dx =

= −

∫ 1

2
+ε

1

2
−ε

1

2ε
v(x)dx =

∫ 1

2
+ε

1

2
−ε

gε(x)v(x)dx =

∫ 1

0

gε(x)v(x)dx

that is uε ∈ V is a solution of the variational formulation.
Coming back to problem (1.1), without any assumption on g, the classical

C2 solution is called strong solution of (1.1), whereas the solution of (1.2)
is the weak solution of (1.1). With the previous theorem and example, we
showed that if the strong solution exists, it is also a weak solution. But the
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other way round is not true: the weak solution may exist, but not the strong
one. Anyhow, if u ∈ V is solution of (1.2) and u ∈ C2([0, 1]) (notice that
C2([0, 1]) ⊂ V ) and g ∈ C0([0, 1]), then 0 = (u′ − g, v) = (−u′′ − g, v) for any
v ∈ V . Since u′′ + g is continuous, we get −u′′(x) = g(x) for 0 < x < 1.
Hence, u is a strong solution, too.

The variational formulation (1.2) of (1.1) is in fact the more “physical”:
coming back to the problem of the beam, it allows to describe the case in
which the load density g(x) is not continuous. What it is necessary is just
the existence of (g, v), v ∈ V . The weak solution, if it exists, is unique: in
fact, if u1 and u2 are two solutions of (1.2), then

(u′
1 − u′

2, v
′) = 0, ∀v ∈ V

and, in particular, for v = u1 − u2. Hence
∫ 1

0

(u′
1(x) − u′

2(x))2dx = 0

and u′
1(x) − u′

2(x) = (u1(x) − u2(x))′ = 0. Hence u1 − u2 is constant and
since u1(0) − u2(0) = 0, then u1(x) − u2(x) = 0.

In the general case, that is for more general problems than (1.1), the
space V is not good for the variational formulation, essentially because it
is not complete with respect to the above scalar product. With respect to
problem (1.3), clearly the solution, for ε → 0 converges to

u(x) =











−
1

2
x 0 ≤ x ≤

1

2

−
1

2
(1 − x)

1

2
≤ x ≤ 1

which is not in V . We require that the integrals of u′v′ e gv exist. Therefore,
we set

V = H1
0 (0, 1) = {v ∈ L2(0, 1), v′ ∈ L2(0, 1), v(0) = v(1) = 0}

equipped with the scalar product

〈u, v〉H1 =

∫ 1

0

u(x)v(x)dx +

∫ 1

0

u′(x)v′(x)dx

where the derivatives are distributional. Such a space is complete, and it is
exactly the closure with respect to the scalar product of the space introduced
above. Moreover it contains also not differentiable (in the classical sense)
continuous functions, such as piecewise linear continuous functions. Now, if
we assume g ∈ L2(0, 1), than the variational formulation writes

find u ∈ H1
0 (0, 1) :

∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

g(x)v(x)dx, ∀v ∈ H1
0 (0, 1)



6 CHAPTER 1. VARIATIONAL METHODS

1.1.1 Two-dimensional Poisson’s problem

The problem, with homogeneous Dirichlet boundary conditions, is
{

−∆u(x, y) = g(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ Γ = ∂Ω

We proceed as in the one-dimensional case, and using Green’s formula, we
end up with

−

∫

Ω

∆uvdΩ =

∫

Ω

∇u · ∇vdΩ −

∫

Γ

∂u

∂n
vdΓ =

∫

Ω

gvdΩ

Since the test functions v are zero at the boundary, the integral on Γ disap-
pears. The variational formulation then writes:

find u ∈ H1
0 (Ω) :

∫

Ω

∇u · ∇vdΩ =

∫

Ω

gvdΩ, ∀v ∈ H1
0 (Ω)

1.2 Equivalence

We have seen that we further assumptions on u (essentially, u ∈ C2) the weak
and the strong formulation are equivalent. Without that assumption, they
still are equivalent in the sense of distributions. In fact, if we restrict the test
functions to D(Ω) (infinitely differentiable functions with compact support,
D(Ω) ⊂ H1

0 (Ω)), we have
∫

Ω

∇u · ∇ϕ =

∫

Ω

gϕdΩ, ∀ϕ ∈ D(Ω)

Then we apply Green’s formula

−

∫

Ω

∆uϕdΩ +

∫

Γ

∂u

∂n
ϕdΓ =

∫

Ω

gϕdΩ, ∀ϕ ∈ D(Ω)

where we mean

−

∫

Ω

∆uϕ = 〈−∆u, ϕ〉
∫

Γ

∂u

∂n
ϕdΓ = 〈

∂u

∂n
, ϕ〉

∫

Ω

gϕ = 〈g, ϕ〉

Since ϕ ∈ D(Ω), the boundary integral vanishes and

〈−∆u − g, ϕ〉 = 0
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that is −∆u − g is the null distribution in D′(Ω).
In this context, taking the limit for ε → 0 for problem (1.3), one gets the

distribution
−∆u + δ1/2

where δ1/2 is Dirac’s delta distribution. This is the model for a load concen-
trated in a single point on the beam.

1.3 Existence of a weak solution

Theorem 2 (Lax–Milgram’s lemma plus corollary). Let V be a Hilbert space,
a(·, ·) : V × V → R a bilinear continuous and coercive form, F (·) : V → R a
linear and continuous functional. Then, there exists a unique solution to the
problem

find u ∈ V : a(u, v) = F (v), ∀v ∈ V

Moreover

‖u‖V ≤
1

α
‖F‖V ′

where α is the coercitivity constant.

Proof. The classical Lax–Milgram theorem (Riesz’s representation and Ba-
nach’s close image) and (F is bounded)

α‖u‖2
V ≤ a(u, u) = F (u) ≤ |F (u)| ≤ ‖F‖V ′‖u‖V

As an exercise, we check that Poisson’s problem falls in this case. We
have V = H1

0 (Ω) with scalar product

〈u, v〉H1 =

∫

Ω

uvdΩ +

∫

Ω

∇u · ∇vdΩ

and g ∈ L2

• a(u, v) =
∫

Ω
∇u · ∇vdΩ is bilinear (obvious), continuous

|a(u, v)| ≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖∇u‖H1‖∇v‖H1

(Cauchy–Schwarz’s inequality), coercive

‖u‖2
H1 = ‖u‖2

L2 + ‖∇u‖2
L2 ≤ (C + 1)‖∇u‖2

L2 ⇒ a(u, u) ≥
1

C + 1
‖u‖2

H1

(Poincaré’s inequality)
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• F (v) =
∫

Ω
gvdΩ is linear (obvious) and bounded

|F (v)| ≤ ‖g‖L2‖v‖L2 ≤ ‖g‖L2‖v‖H1 ⇒ ‖F‖ = sup
v 6=0

|F (v)|

‖v‖H1

≤ ‖g‖L2

and hence continuous.

1.4 Variational approximation method

Let us take a finite dimensional subspace Vm of V . We then look for û ∈ Vm

such that
a(û, v) = F (v), ∀v ∈ Vm (1.4)

(Galerkin’s method).

Theorem 3. Problem (1.4) has a unique solution.

Proof. It is still a consequence of Lax–Milgram theorem. For the case

a(u, v) =

∫ 1

0

u′(x)v′(x)dx = (u′, v′) +homogeneous Dirichlet b.c.,

it is possible to directly prove the theorem and some more. Let {φj}
m
j=1 be a

basis of Vm. Then

û(x) =
m

∑

j=1

ûjφj(x)

and (1.4) rewrites, for i = 1, 2, . . . ,m,

∫ 1

0

û′(x)φ′
i(x)dx =

((

m
∑

j=1

ûjφj

)′

, φ′
i

)

=
m

∑

j=1

(φ′
j, φ

′
i)ûj = Au = (g, φi)

where A = (aij) = (φ′
j, φ

′
i) e u = [û1, . . . , ûm]T. Let us compute w

TAw for
w = [w1, . . . , wm]T. We have (since A is symmetric)

w
TAw =

m
∑

i=1

wi

(

m
∑

j=1

(φ′
i, φ

′
j)wj

)

and then, due to the per linearity of the scalar product

w
TAw =

(

m
∑

i=1

wiφ
′
i(x),

m
∑

j=1

wjφ
′
j(x)

)

=

∫ 1

0

(

m
∑

j=1

wjφ
′
j(x)

)2

dx ≥ 0

and the result is 0 only if
∑

wjφj(x) is constant (and, hence, null, because
of the boundary conditions) Then, A is positive definite.
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The proof above can be done also in the case a(·, ·) symmetric. The co-
ercivity of a(·, ·) gives the positive definiteness of the matrix A = (a(φj, φi)).
Matrix A is called (stiffness matrix) and (g, φi) is the (load vector).

Galerkin’s method is strongly consistent, since

a(u, v) = F (v), ∀v ∈ Vm ⇒ a(û − u, v) = 0, ∀v ∈ Vm

If a(·, ·) is symmetric, there is the following interpretation: a(·, ·) is a scalar

Vm

û

u − û

u

Figure 1.1: û as a projection onto Vm.

product in V and û is the orthogonal projection onto Vm of u. Then it is the
best approximation in Vm of u. In fact, for v ∈ Vm

a(û − u, û − u) = a(û − u, û − v + v − u) = a(û − u, û − v) + a(û − u, v − u) =

= a(û − u, v − u)

due to strong consistence. Using the coercivity and the continuity of a(·, ·)

α‖û − u‖2
V ≤ a(û − u, û − u) = |a(û − u, v − u)| ≤ M‖û − u‖V ‖v − u‖V

Hence

‖û − u‖V ≤
M

α
‖v − u‖V ⇒ ‖û − u‖V ≤ inf

v∈Vm

M

α
‖v − u‖V

Now, we have to choose a subspace Vm ⊂ V such that

lim
m→∞

inf
v∈Vm

‖v − u‖V = 0

or, more in general,

lim
m→∞

inf
v∈Vm

‖v − w‖V = 0, ∀w ∈ V

In that case, it will be
lim

m→∞
‖û − u‖V = 0



10 CHAPTER 1. VARIATIONAL METHODS

x1 x2 xj−1 xmxj xj+1xjxj−2

hj hm−1

φj φj+1φj−1φ1

hj−1h1

Figure 1.2: Hat functions

1.4.1 Finite Elements Method (FEM)

Let us introduce a discretization of the interval [0, 1] with variable step, as
in Figure 1.2. The space Vm is generated by the basis functions {φj}

m−1
j=2 ,

defined by

φj(x) =























x − xj−1

hj−1

, xj−1 ≤ x ≤ xj

xj+1 − x

hj

, xj ≤ x ≤ xj+1

0, elsewhere

ans

φ′
j(x) =



























1

hj−1

, xj−1 < x < xj

−
1

hj

, xj < x < xj+1

0, elsewhere

However, in order to allow to deal with problems with different boundary
conditions, we also consider

φ1(x) =







x2 − x

h1

, x1 ≤ x ≤ x2

0, elsewhere

and

φ′
1(x) =







−
1

h1

, x1 < x < x2

0, elsewhere

ans

φm(x) =







x − xm−1

hm−1

, xm−1 ≤ x ≤ xm

0, elsewhere
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and

φ′
m(x) =







1

hm−1

, xm−1 < x < xm

0, elsewhere

Hence, in the approximation

û(x) =
m

∑

j=1

ûjφj(x)

the coefficients ûj are the values of û in the points xj. Problem (1.4) rewrites

∫ 1

0

û′(x)φ′
i(x)dx =

m
∑

j=1

ûj

∫ 1

0

φ′
j(x)φ′

i(x)dx =
m

∑

j=1

ûj

∫ xi+hi

xi−hi−1

φ′
j(x)φ′

i(x)dx =

=
m

∑

j=1

ûjaij =

∫ xi+hi

xi−hi−1

g(x)φi(x)dx

In case of Neumann’s conditions (for instance in u′(0) = u′
0), the weak

formulation of the problem is

−û′(x)φi(x)
∣

∣

∣

1

0
+

∫ 1

0

û′(x)φ′
i(x)dx =

∫ 1

0

g(x)φi(x)dx, 1 ≤ i ≤ m

For i = 1 we have

û′(0) +

∫ 1

0

û′(x)φ′
1(x)dx =

∫ 1

0

g(x)φ1(x)dx

Hence, the first row of the linear system is

∫ 1

0

û′(x)φ′
1(x)dx = −u′

0 +

∫ 1

0

g(x)φ1(x)dx

Notice that the problem with two Neumann’s conditions is not well-defined,
since if u(x) is a solution, then such is u(x) + k.

The space Vm can be made of much more regular functions (such as
polynomials of higher degree).

Let us see a general implementation strategy for FEM. Suppose we have
l elements {ℓj}

l
j=1 (in the one-dimensional case, the intervals) with the asso-

ciate points. With respect to Figure 1.3, where m = l + 1, we have

ℓj,1 = j, ℓj,2 = j + 1, 1 ≤ j ≤ l
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ℓ2ℓ1 ℓj−1 ℓj ℓl

x1 x2 xj−1 xj xj+1 xm

Figure 1.3: Points (bottom) and elements (top).

which means that points xj and xj+1 are associate to element ℓj. The basis
function which has value 1 on node ℓj,k and 0 on node ℓj,3−k has the form
(on ℓj)

φℓj,1
=

aℓj,1
+ bℓj,1

x

∆j

=

∣

∣

∣

∣

1 1
x xℓj,2

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
xℓj,1

xℓj,2

∣

∣

∣

∣

=
xℓj,2

− x

xℓj,2
− xℓj,1

=
xℓj,2

− x

hj

φℓj,2
=

aℓj,2
+ bℓj,2

x

∆j

=

∣

∣

∣

∣

1 1
xℓj,1

x

∣

∣

∣

∣

/

∣

∣

∣

∣

1 1
xℓj,1

xℓj,2

∣

∣

∣

∣

=
−xℓj,1

+ x

xℓj,2
− xℓj,1

=
−xℓj,1

+ x

hj

and will contribute to the elements aℓj,kℓj,k
and aℓj,kℓj,3−k

(and its symmetric)
of the stiffness matrix

aℓj,kℓj,k
=

∫ 1

0

φ′
ℓj,k

(x)φ′
ℓj,k

(x)dx

aℓj,kℓj,3−k
=

∫ 1

0

φ′
ℓj,k

(x)φ′
ℓj,3−k

(x)dx

and to the element gℓj,k
of the right hand side

gℓj,k
=

∫ 1

0

g(x)φℓj,k
(x)dx
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Hence

aℓj−1,2ℓj−1,2
= aℓj,1ℓj,1

=

∫

ℓj−1

φ′
ℓj−1,2

(x)φ′
ℓj−1,2

(x)dx +

∫

ℓj

φ′
ℓj,1

(x)φ′
ℓj,1

(x)dx =

=

∫

ℓj−1

(

bℓj−1,2

∆j−1

)2

dx +

∫

ℓj

(

−
bℓj,1

∆j

)2

dx =

=

∫

ℓj−1

(

1

hj−1

)2

dx +

∫

ℓj

(

−1

hj

)2

dx =
1

hj−1

+
1

hj

= ajj

aℓj,2ℓj,2
= aℓj+1,1ℓj+1,1

=

∫

ℓj

φ′
ℓj,2

(x)φ′
ℓj,2

(x)dx +

∫

ℓj+1

φ′
ℓj+1,1

(x)φ′
ℓj+1,1

(x)dx =

=

∫

ℓj

(

bℓj,2

∆j

)2

dx +

∫

ℓj+1

(

−
bℓj+1,1

∆j+1

)2

dx =

=

∫

ℓj

(

1

hj

)2

dx +

∫

ℓj+1

(

−1

hj+1

)2

dx =
1

hj

+
1

hj+1

= aj+1 j+1

aℓj,1ℓj,2
= aℓj,2ℓj,1

=

∫

ℓj

φ′
ℓj,1

(x)φ′
ℓj,2

(x)dx =

∫

ℓj

bℓj,1

∆j

bℓj,2

∆j

dx =

∫

ℓj

−
1

hj

1

hj

dx =

= −
1

hj

= aj j+1 = aj+1 j

gℓj−1,2
= gℓj,1

=

∫

ℓj−1

g(x)φℓj−1,2
(x)dx +

∫

ℓj

g(x)φℓj,1
(x)dx = gℓj−1

hj−1

2
+ gℓj

hj

2

gℓj,2
= gℓj+1,1

=

∫

ℓj

g(x)φℓj,2
(x)dx +

∫

ℓj+1

g(x)φℓj+1,1
(x)dx = gℓj

hj

2
+ gℓj+1

hj+1

2

where we used the “barycentric” approximation

∫

ℓj

g(x)φℓj,k
(x)dx ≈

g(xj) + g(xj+1)

2

∫

ℓj

φℓj,k
(x)dx = gℓj

hj

2
(1.5)

This type of approximation is also used in the nonlinear case

∫

ℓj

g(û(x))φℓj,k
(x)dx ≈

g(uj) + g(uj+1)

2

hj

2

Hence, the assembly is done by



14 CHAPTER 1. VARIATIONAL METHODS

quadrature.m

10
-9
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-7

10
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order 3/2
trapezoidal
barycentric

Figure 1.4: Maximum error over i = 2, 3, . . . ,m − 1 between
∫ 1

0
g(x)φi(x)dx

and the trapezoidal and the barycentric formula, for g(x) = |x−1/2|5/2 (left)
and g(x) = |x − 1/2|1/2 (right).

• aij = 0, 1 ≤ i, j ≤ m, gi = 0, 1 ≤ i ≤ m

• for j = 1, . . . , l

for k = 1, 2

aℓj,kℓj,k
= aℓj,kℓj,k

+ 1
hj

, gℓj,k
= gℓj,k

+ gℓj

hj

2

for i = k + 1, 2

aℓj,kℓj,i
= aℓj,kℓj,i

− 1
hj

aℓj,iℓj,k
= aℓj,kℓj,i

end

end

end

The i-th row of the linear system turns out to be

[

0 . . . 0 − 1
hi−1

(

1
hi−1

+ 1
hi

)

− 1
hi

0 . . . 0
]















...
ûi−1

ûi

ûi+1
...















=









...
gℓi−1

hi−1+gℓi
hi

2
...









very similar to the discretization with finite differences with constant step
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size. Moreover, if we consider the trapezoidal rule with three points
∫ 1

0

g(x)φi(x)dx =

∫ xi+1

xi−1

g(x)φi(x)dx ≈

≈
hi−1

2
g(xi)φi(xi) +

hi

2
g(xi)φi(xi) =

hi−1 + hi

2
g(xi)

then the two formulations are equivalent. The stiffness matrix is symmetric,
but imposing Dirichlet boundary conditions destroys its symmetry. An alter-
native (numerical) method (called penalty method) is to put a large number
on the diagonal elements of the rows corresponding to Dirichlet nodes and
modifying consequently the right hand side. For Poisson’s problem, there is
an interesting interpolation property:

Theorem 4. If

û(x) =
m

∑

j=1

ûjφj(x), u = [û1, . . . , ûm]T

is the weak solution of
∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

g(x)v(x)dx

where {φj(x)}j are the hat functions, then

û(xi) = ûi = u(xi)

Proof. The i-th (inner) row of Au is

m
∑

j=1

ûj

∫ xi+1

xi−1

φ′
j(x)φ′

i(x)dx = −
ûi−1

hi−1

+

(

ûi

hi−1

+
ûi

hi

)

−
ûi+1

hi

and it equals
∫ 1

0

g(x)φi(x)dx

On the other hand,
∫ 1

0

g(x)φi(x)dx =

∫ 1

0

u′(x)φ′
i(x)dx

and
∫ 1

0

u′(x)φ′
i(x)dx =

∫ xi

xi−1

u′(x)
1

hi−1

dx −

∫ xi+1

xi

u′(x)
1

hi

dx =

=
u(xi) − u(xi−1)

hi−1

−
u(xi+1) − u(xi)

hi
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that is, u and [u(x1), . . . , u(xm)]T satisfy the same (positive definite) linear
system.

ℓj

ℓj,1 ℓj,2

ℓj,3

Figure 1.5: Two-dimensional mesh.

The construction in the two-dimensional case is not much different.
First of all, we consider the basis function φℓj,k

which has value 1 on node
ℓj,k and 0 on nodes ℓj,h, h ∈ {1, 2, 3}, h 6= k of the triangle ℓj. It has the
form

k

φℓj,k
(x, y) =

aℓj,k
+ bℓj,k

x + cℓj,k
y

2∆j

=

∣

∣

∣

∣

∣

∣

1 1 1
xℓj,1

x xℓj,3

yℓj,1
y yℓj,3

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

1 1 1
xℓj,1

xℓj,2
xℓj,3

yℓj,1
yℓj,2

yℓj,3

∣

∣

∣

∣

∣

∣

where ∆j is the area (with sign) of triangle ℓj. We need to compute
∫

ℓj

(

∂φℓj,k
(x, y)

∂x

∂φℓj,h
(x, y)

∂x
+

∂φℓj,k
(x, y)

∂y

∂φℓj,h
(x, y)

∂y

)

dxdy, h, k = 1, 2, 3

for the stiffness matrix (and also derivatives with respect to y) and
∫

ℓj

g(x, y)φℓj,k
(x, y)dxdy

for the right hand side. We have
∫

ℓj

∂φℓj,k
(x, y)

∂x

∂φℓj,h
(x, y)

∂x
dxdy =

∫

ℓj

bℓj,k

2∆j

bℓj,h

2∆j

dxdy =
bℓj,k

bℓj,h

4|∆j|
∫

ℓj

∂φℓj,k
(x, y)

∂y

∂φℓj,h
(x, y)

∂y
dxdy =

∫

ℓj

cℓj,k

2∆j

cℓj,h

2∆j

dxdy =
cℓj,k

cℓj,h

4|∆j|
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and

∫

ℓj

g(x, y)φℓj,k
(x, y)dxdy ≈

1

3

3
∑

k=1

g(xℓj,k
, yℓj,k

)

∫

ℓj

φℓj,k
(x, y)dxdy =

= gℓj

|∆j|

3

The algorithm for the assembly is

• aij = 0, 1 ≤ i, j ≤ m, gi = 0, 1 ≤ i ≤ m

• for j = 1, . . . , l

for k = 1, . . . , 3

aℓj,kℓj,k
= aℓj,kℓj,k

+
bℓj,k

bℓj,k

4|∆j |
+

cℓj,k
cℓj,k

4|∆j |
, gℓj,k

= gℓj,k
+ gℓj

|∆j |

3

for i = k + 1, . . . , 3

aℓj,kℓj,i
= aℓj,kℓj,i

+
bℓj,k

bℓj,i

4|∆j |
+

cℓj,k
cℓj,i

4|∆j |

aℓj,iℓj,k
= aℓj,kℓj,i

end

end

end

Theorem 5. Let be given the variational problem

a(u, v) = F (v), ∀v ∈ V

where u : Ω → R, Ω polygonal, is the solution and û its approximation by
finite elements of degree r > 0. Then, under weak assumptions on the regu-
larity of the mesh,

• if u ∈ Hr+1(Ω)

‖û − u‖H1 ≤
M

α
Chr|u|Hr+1

• if u ∈ Hp+1(Ω) for some p > 0

‖û − u‖L2 ≤ Chs+1|u|Hs+1 , s = min{r, p}

where h is the largest diameter of the elements and

|u|2Hs+1 =
∑

|α|=s+1

∫

Ω

|Dαu|2dΩ
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Observe that for r = p = 1, we have the same order two of central finite
difference. The requested regularity for u is much less (for finite differences
u ∈ C4 is required), but the error estimate is in L2 norm. Moreover, F (v)
(that is the terms

∫

gφℓj,k
) is assumed to be computed exactly or with suffi-

cient accuracy. This may be not the case if g is not regular enough and the
quadrature formula (1.5) is used (see Figure 1.6).

fem1d.m
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Figure 1.6: Error in the solution of (1.1) by FEM (top) and second order
central FD (bottom), with g(x) proportional to |x − 1/2|5/2 (left) and to
|x − 1/2|1/2 (right), respectively.

Mesh generation

Let us consider the two-dimensional domain. Given a set of distinct points,
there exists a “unique” Delaunay triangulation. It means that the disk cir-
cumscribed to each triangle does not properly contain any point. Among all
the triangulations, it maximizes the minimum angle of the triangles (it is
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important for convergence). In fact, the weak assumption for the mesh is

hℓj

ρℓj

≤ δ, ∀ℓj

where ρℓj
is the diameter of the disk inscribed into the triangle. In this case,

the mesh is said regular. Moreover, the parameter δ enters in the constant
C of the theorem above.

Linear systems

Since the arising matrices are sparse, usually Krylov methods (semi-iterative)
are used for the linear systems, like the conjugate gradient method (for the
symmetric positive definite case): given x(1), r(1) = b−Ax(1), and p(1) = r(1),
the algorithm to compute x(l+1) is

αl =
r(l)Tr(l)

p(l)TAp(l)

x(l+1) = x(l) + αlp
(l)

r(l+1) = r(l) − αlAp(l)

βl+1 =
r(l+1)Tr(l+1)

r(l)Tr(l)

p(l+1) = r(l+1) + βl+1p
(l)

(1.6)

The exit criterion is based on the norm of r(l+1). We notice that the algorithm
does not require to know the matrix A, but just how to perform a matrix-
vector product Av. Consider, for instance, the following diffusion-reaction
problem

−∆u + u2 on Ω

with appropriate boundary conditions. The Galerkin method form is

Fi(u) =

∫

Ω

∇u · ∇φidΩ −

∫

Γ

∂u

∂n
φidΓ +

∫

Ω

u2φidΩ = 0

We have to solve F (u) = 0 and Newton’s method can be applied:

JF (u(r))δ(r+1) = −F (u(r))

In order to solve this linear system with the conjugate gradient method it is
enough to be able to compute the i-th component of JF (u(r))v, that is

∫

Ω

∇v · ∇φidΩ −

∫

Γ

∂v

∂n
φidΓ +

∫

Ω

2u(r)vφidΩ
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Instead of solving a linear system

Ax = b

one can try to find a matrix P (symmetric and positive definite) such that

P−1Ax = P−1b

is “easier” to solve (meaning less iterations). Notice that it is not possible
to apply the conjugate gradient method to the problem above, since P−1A
is not symmetric. Instead, one has to consider,

(R−TAR−1)y = R−Tb, y = Rx

where P = RTR. The application (and a rearrangement) of the conjugate
gradient method writes

αl =
z(l)Tr(l)

p(l)TAp(l)

x(l+1) = x(l) + αlp
(l)

r(l+1) = r(l) − αlAp(l)

Pz(l+1) = r(l+1)

βl+1 =
z(l+1)Tr(l+1)

z(l)Tr(l)

p(l+1) = z(l+1) + βl+1p
(l)

(1.7)

where Pz(1) = r(1). The following estimate for the error

‖e(l)‖A ≤
2cl

1 + c2l
‖e(1)‖A

holds, where

c =

√

cond2(P−1A) − 1
√

cond2(P−1A) + 1
, ‖v‖A = vTAv

It is clear that the more c is small (that is, the more cond2(P
−1A) is close

to 1), the better is. Notice that there is an addition linear system Pz(l+1) =
r(l+1) to solve which is in general easy, since P = RTR and R is triangular.
Also in this case, it is not strictly necessary to know the matrix P , but it is
enough to know the result of P−1 applied to a vector. The choice minimizing
the number of iterations is, of course, if P = A, but P has also to be “easy
to invert”. In practice, because of the bad scaling of the matrix due to the
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penalty method, it is always necessary to use a preconditioned. A simple
choice is P = diag(A) and a more effective choice is the incomplete Cholesky
factorization with no fill-in of A. That is, P = R̃TR̃ ≈ A where

{

(A − R̃TR̃)ij = 0 if aij 6= 0

r̃ij = 0 if aij = 0

The incomplete factorization is chosen because for a sparse matrix A, its
complete factors are generally not sparse. We report here the algorithm for
the general incomplete LU factorization with no fill-in:

function [L,U] = luinckij(A)

% Incomplete LU with no fill-in, kij variant, no pivoting

m = length(A);

for k = 1:m-1

for i = k+1:m

if (A(i,k) ~= 0)

A(i,k) = A(i,k) / A(k,k);

for j = k+1:m

if (A(i,j) ~= 0)

A(i,j) = A(i,j) - A(i,k) * A(k,j);

end

end

end

end

end

U = triu(A);

L = tril(A,-1) + speye(m);

If we remove the two if clauses, it is a complete LU factorization. Usually, for
a row-contiguous data structure (such as C), the ikj-variant is used and for
column-contiguous data structure (such as Fortran, Matlab, Octave) the jki-
variant is used, which minimizes memory accesses. The incomplete Cholesky
factorization can be obtained from the incomplete LU by scaling the rows of
U by the square root of the diagonal

R = diag(sqrt(diag(U))) \ U

In general, the incomplete factorization with no fill-in is not used: instead,
a certain fill-level is allowed, in order to have L̃Ũ closer to A. From these
two examples, it appears clear that the more the bandwidth of A is small,
the better is. The bandwidth depends only on the topology of the mesh.
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Since usually the mesh points are given and the triangulation is unique, the
bandwidth essentially depends only on the numbering of the points. There
are algorithms, such as the symmetric reverse Cuthill–McKee one, which
heuristically minimize the bandwidth of a matrix.

For non-symmetric problems, the conjugate gradient method has to be
extended to the bi-conjugate gradient method. Another possible choice is
GMRES. As preconditioner, one can consider the incomplete LU factoriza-
tion.

1.4.2 Evolution problems and mass matrix

For the heat equation















∂u

∂t
(t, x, y) = ∆u(t, x, y) (x, y) ∈ Ω

u(0, x, y) = u0(x, y) (x, y) ∈ Ω

+boundary conditions

the procedure is almost the same, considering the approximation

u(t, x, y) ≈
m

∑

j=1

uj(t)φj(x, y)

The weak formulation leads to the computation of

∫

ℓj

φℓj,k
(x, y)φℓj,h

(x, y)dxdy =

{

|∆j |

6
if k = h

|∆j |

12
if k 6= h

We notice that in the one-dimensional case it is

∫

ℓj

φℓj,k
(x)φℓj,h

(x)dx =

{

hj

3
if k = h

hj

6
if k 6= h

The FEM approximation is then

Pu′(t) = −Au(t)

where P is the mass matrix (symmetric and positive definite). At this point
a method for systems of ODEs can be applied, such as the θ-method

Pun+1 − Pun = −∆t(1 − θ)Aun − ∆tθAun+1

(P + ∆tθA)un+1 = (P − ∆t(1 − θ))un
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Due to the presence of the mass matrix, even explicit methods (such as
Euler’s) requires the solution of linear systems. This is not a real drawback,
since usually for the stiff heat equations explicit methods are not a choice.

About exponential methods, they require to compute P−1 as well

un+1 = exp(∆tP−1A)un

A solution to avoid the possible expensive computation of P−1A is to replace
P with the mass-lumped diagonal matrix PL which contains in the diagonal
element of each row the sum of all the elements of the row. Its usage does
not compromise the order or the accuracy of the method, since it is the result
of

∫

ℓj

φℓj,k
(x, y)φℓj,h

(x, y)dxdy ≈

{

|∆j |

3
if k = h

0 if k 6= h

whenever the trapezoidal formula is used to approximate the integrals. The
trapezoidal formula does not introduce an error greater than the error already
done by using linear basis functions.
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