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Chapter 1

Wavelets

1.1 The Haar wavelet

We implement in Matlab R©

s(t) =
∑

k

skφ(t − k) (1.1)

where

φ(t) =

{

1 0 ≤ t < 1

0 otherwise

We assume the sum in (1.1) is finite, therefore

s(t) =
kmax∑

k=kmin

skφ(t − k) =

kmax−kmin+1∑

j=1

skmin−1+jφ(t − (kmin − 1 + j)) =

=

kmax−kmin+1∑

j=1

rjφ(t − (kmin − 1 + j))

(1.2)

1.1.1 The trend

The trend is defined as

T (t) =
∑

h

s2h + s2h+1

2
φ(t/2 − h)

Given the previous kmin and kmax, we have to find the indexes involved in the
sum above. We need 2hmin ≥ kmin and 2hmax + 1 ≤ kmax. If kmin is odd, we
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6 CHAPTER 1. WAVELETS

get hmin = ⌈kmin/2⌉ = (kmin + 1)/2. But in the definition of the trend, the
coefficient relative to hmin − 1 is

s2(hmin−1) + s2(hmin−1)+1

2
=

skmin−1 + skmin

2
=

skmin

2
6= 0

Therefore, we cannot neglect the index hmin − 1 and we cannot take hmin =
⌊kmin/2⌋, otherwise we have to access index 0 in the vector r. A similar
consideration holds for hmax. The simplest way to overcome this problem is
to modify the values kmin and kmax in the following way: if kmin is odd, then
kmin = kmin−1 and skmin

= 0; if kmax is even, then kmax = kmax +1, skmax = 0.
Finally, hmin = kmin/2 and hmax = (kmax − 1)/2 and

T (t) =
hmax∑

h=hmin

s2h + s2h+1

2
φ(t/2 − h) =

=

hmax−hmin+1∑

i=1

s2(hmin−1+i) + s2(hmin−1+i)+1

2
φ(t/2 − (hmin − 1 + i)) =

=

hmax−hmin+1∑

i=1

skmin−1+(2i−1) + skmin−1+2i

2
φ(t/2 − (hmin − 1 + i)) =

=

hmax−hmin+1∑

i=1

r2i−1 + r2i

2
φ(t/2 − (hmin − 1 + i)) =

=

hmax−hmin+1∑

i=1

uiφ(t/2 − (hmin − 1 + i))

Therefore, T (t) is a signal defined by hmin and the vector u, with breaks at
2x integers.

1.1.2 The detail

The detail is defined as D(t) = s(t) − T (t). It can be proven that

D(t) =
∑

h

s2h − s2h+1

2
ψ(t/2−h) =

hmax−hmin+1∑

i=1

viψ(t/2−(hmin−1+i)) (1.3)

where vi = (r2i−1 − r2i)/2 and ψ(t) = φ(2t) − φ(2t − 1).
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1.2 Haar decomposition

The signal s(t) can be decomposed into l levels as

s(t) = T1(t) + D1(t) = (T2(t) + D2(t)) + D1(t) = . . . =

= (Tl(t) + Dl(t)) + Dl−1(t) . . . + D2(t) + D1(t)

Notice that it is easy to write the signal as the sum, but in general not to
compute the amplitudes of the signal given its decomposition.

In order to decompose a signal, we could make use of a structure S with
fields:

• type: signals are of type trend (they need φ functions to be computed)
or detail (they need ψ functions to be computed);

• breaks: an integer number l such that breaks are at 2l−1x integers;

• kmin: smallest index;

• amplitudes: array containing the coefficients.

1.3 Images

We will consider only gray-scale images. A gray-scale image is a matrix of
order m × n (m is the height of the image in pixels and n the width) with
integer entries in [0, 255] (0 is black and 255 is white). The command to load
an image and check the result is

>> a = imread(’arena.png’);

>> size(a)

ans =

512 1024

>> colormap(gray(256));

>> image(a)

In order to apply our tools we need m and n powers of 2 (see imresize).
Notice that a is a matrix of unsigned 8-bit integers (uint8). When com-

puting the trend and the detail, we will use double (standard) numbers.
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The trend can be stored into a m/2 × n/2 matrix. The detail into three
m/2 × n/2 matrices. In fact, a square

a − µ b − µ
c − µ d − µ

where µ is the average of a, b, c, d, can be represented by

A · 1 −1
1 −1

+ B · 1 1
−1 −1

+ C · 1 −1
−1 1

where

A =
a − b + c − d

4
(x details)

B =
a + b − c − d

4
(y details)

C =
a + b − c − d

4
(xy details)

1.3.1 Colormaps

Another good color-map for gray-scale images is pink. Since the detail im-
ages contain negative values, the images appear quite dark. In order to
brighten them it is possible to use

colormap(gray(256).^(1-beta))

where beta is a number between 0 and 1. Conversely, to darken an image
you can use

colormap(gray(256).^1/(1-beta))

See also the command brighten.

1.4 Exercises

1. Write a function which computes s(t), T (t) and D(t), given kmin,mkhaar.m

haarplot.m an array r of coefficients of length kmax − kmin + 1 and an array t of
independent variables. Test it to plot s(t), T (t) and D(t) for

[
s2, s3, s5, s8

]
=

[
1, 2,−1,−4

]

[
s1, s3, s5, s8, s10

]
=

[
1, 2,−1,−4,−2

]

[
s−2, s1, s5

]
=

[
1, 2,−1

]

[
s−1, s3, s5, s8, s9

]
=

[
1, 2,−1,−4,−5

]
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2? Compute the detail D(t) as s(t) − T (t) and as in formula (1.3) and
check that they coincide. haar.m

3 Write a function which decomposes a signal. The decomposition should
be stored into a structure dec with fields dec.T (the cell array of the haar.m

trends) and dec.D (the cell array of the details). Then write a function
which decomposes a signal up to level l. haardec.m

haarcomp.m

4 Load an image m×n (powers of 2) with imread and compute its trend imagetrenddetail.m
and detail. The trend image should have size m/2 × n/2. Show that
the original image is the sum of its trend and its detail. zoomtrend.m

5 Show the decomposition of the detail into A, B and C. showdec.m

ABC2detail.m
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Chapter 2

Splines

2.1 Piecewise polynomials

Let us consider a sequence of nodes x1 < x2 < . . . < xn and a piecewise
polynomial which on the interval [xi, xi+1] is

ai,1(x − xi)
j−1 + ai,2(x − xi)

j−2 + . . . + ai,j−1(x − xi) + ai,j

Matlab R© handles piecewise polynomials through the pp structures. They
contain the following fields:

• form: pp;

• breaks: interpolation nodes {xi}, as a row vector;

• coefs: coefficients stored in a matrix A = (ai,j) of size (n − 1) × j;

• pieces: number of intervals, n − 1;

• order: j;

• dim: number of sets of values related to the breaks.

Given the interpolation nodes and coefficient matrix it is possible to assemble
the structure pp through the command mkpp. Given a structure pp it is
possible to extract the nodes and the coefficient matrix through the command
unmkpp.

11
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2.2 Splines of degree 1

Splines of degree 1 are quite easy to implement in this way: in fact

ai,1 =
yi+1 − yi

hi

ai,2 = yi

with hi = xi+1 − xi and it is enough to use the command mkpp. Once the
structure pp is created, it is possible to evaluate the piecewise polynomial on
a arbitrary set of points through the command ppval.

2.2.1 Compression

It is possible to compress a set of values {yi} corresponding to {xi}, that is
to extract a subset of {xi} for which its linear interpolant differs less than a
prescribed tolerance from the original values {yi}. We proceed in this way:
x1 has always to be kept and we take the linear interpolant between x1 and
x3 and measure the error between its values at internal nodes (actually only
x2) and the corresponding y’s: if it is below to a prescribed tolerance, replace
x3 with x4 and repeat. As soon as the linear interpolant between x1 and xm

fails the criterion, xm−1 has to be kept. We restart the procedure from xm−1.
We stop as soon as we reach the last original node.

2.3 Quadratic splines

Let us consider a quadratic spline S(x) defined at the sites (i.e., interpolation
points) {xi}. In order to construct its coefficients, we can consider its first
derivative in the interval [xi, xi+1]

S ′
[xi,xi+1](x) =

mi+1 − mi

hi

(x − xi) + mi, i = 1, 2, . . . , n − 1

where mi = S ′(xi) are the unknowns. By integration we get

S[xi,xi+1](x) =
mi+1 − mi

2hi

(x − xi)
2 + mi(x − xi) + ai

We require the interpolation property S[xi,xi+1](xj) = yj, j = i, i + 1

yi = ai

yi+1 = (mi+1 − mi)
hi

2
+ mihi + yi
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and we get the linear system

mi

2
+

mi+1

2
=

yi+1 − yi

hi

, i = 1, 2, . . . , n − 1

The missing condition is usually prescribed on m1 or mn. Due to this asym-
metry in the conditions, sometimes quadratic splines show an oscillatory
behavior.

2.3.1 A note about periodic quadratic splines

Let us try to construct a periodic quadratic spline. It means that y1 = yn

ans we impose m1 = mn. The arising system is










1 0 . . . 0 −1
1 1 0 . . . 0

0
. . . . . . . . .

...
...

. . . 1 1 0
0 . . . 0 1 1



















m1

m2
...

mn−1

mn










= 2










0
y2−y1

h1
...

yn−1−yn−2

hn−2
yn−yn−1

hn−1










If n is odd, the rank of the matrix is n − 1 (the first row is the sum, with
alternate sign, of the following). Therefore, a solution exists only if the rank
of the complete system is n − 1, too. In that case, given a solution {mi},
{mi + (−1)ik} is a solution, too.

2.3.2 Quadratic splines with knots

Another way to proceed is the following: given the set {xi}, we consider the
intervals given by the knots {tj}, where

t1 = x1 −
h1

2

tj =
xj−1 + xj

2
, j = 2, 3, . . . , n

tn+1 = xn +
hn−1

2

and the quadratic spline S(t) defined by

S ′
[tj ,tj+1](t) =

mj+1 − mj

kj

(t − tj) + mj, j = 1, 2, . . . , n

S[tj ,tj+1](t) =
mj+1 − mj

2kj

(t − tj)
2 + mj(t − tj) + aj, j = 1, 2, . . . , n
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First of all, with this choice we have automatically the continuity of first
derivatives at internal knots. Moreover, we require interpolation conditions
at {xi}

S[tj ,tj+1](xj) =
mj+1 − mj

8
kj + mj

kj

2
+ aj = yj, j = 1, 2, . . . , n

from which

aj = yj −
mj+1 − mj

8
kj − mj

kj

2
= yj −

3

8
kjmj −

1

8
kjmj+1

and finally continuity at internal knots S[tj−1,tj ](tj) = S[tj ,tj+1](tj), j = 2, 3, . . . , n
from which

kj−1

8
mj−1 +

3

8
(kj−1 + kj)mj +

kj

8
mj+1 = yj − yj−1, j = 2, 3, . . . , n

Two other conditions are missing, and we can prescribed the values of m1 and

mn+1, or the value of the second derivative at x1 and xn, or the continuity of
second derivative at the second and the second-last knot (we will call such a
quadratic spline not-a-knot quadratic spline), or the periodicity of first and
second derivative, or finally we can prescribe the values at t1 and tn+1. For
instance, if we consider the not-a-knot quadratic spline, from S ′′

[t1,t2] = S ′′
[t2,t3]

we get −k2m1 + (k1 + k2)m2 − k1m3 = 0 and similarly −knmn−1 + (kn−1 +
kn)mn − kn−1mn+1 = 0.

2.4 Cubic splines

Let us consider a cubic spline S(x) defined at the sites {xi}. In order to
construct its coefficients, we can consider its second derivative in the interval
[xi, xi+1]

S ′′
[xi,xi+1](x) =

mi+1 − mi

hi

(x − xi) + mi, i = 1, 2, . . . , n − 1

where mi = S ′′(xi) are the unknowns. By integration we get

S ′
[xi,xi+1](x) =

mi+1 − mi

2hi

(x − xi)
2 + mi(x − xi) + ai

S[xi,xi+1](x) =
mi+1 − mi

6hi

(x − xi)
3 +

mi

2
(x − xi)

2 + ai(x − xi) + bi
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We require the interpolation property S[xi,xi+1](xj) = yj, j = i, i + 1

bi = yi

ai =
yi+1 − yi

hi

− (mi+1 − mi)
hi

6
− mi

hi

2
=

=
yi+1 − yi

hi

− mi+1
hi

6
− mi

hi

3

and finally we require the continuity of the first derivative S ′
[xi−1,xi]

(xi) =

S ′
[xi,xi+1](xi), i = 2, 3, . . . , n − 1, from which

hi−1

6
mi−1 +

hi−1 + hi

3
mi +

hi

6
mi+1 =

yi+1 − yi

hi

− yi − yi−1

hi−1

(2.1)

Two other conditions are missing and they depend on the type of the cu-
bic spline. System (2.1) is tridiagonal with dominant diagonal: Thomas’
algorithm can be used to solve it, with cost O(n).

2.4.1 Cubic spline interpolation of a curve

Given a parametric curve γ(t) = (x(t), y(t)), we may want to interpolate it
at some sites {ti} by splines. It is just a double interpolation of the functions
(t, x(t)) and (t, y(t)).

2.4.2 Cubic splines in Matlab R©

We use the command csape.

2.4.3 Smoothing cubic splines

The Matlab R© command csaps computes the pp form of the cubic spline S(x)
minimizing

(1 − p)
m∑

i=1

wi |yi − S(xi)|2 + p

∫ xm

x1

S ′′(x)dx

where {xi}i is the set of sites and {yi} the set of values, possibly affected by
a noise. The weights {wi}, if not specified, are chosen equal to 1. If p = 0 the
result is the least-squares straight line and if p = 1 the result is the natural
cubic spline interpolating the values. If p is not supplied, a default value is
chosen.
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2.4.4 Thin-plate smoothing splines

In Matlab R©, for a set {(xi, yi)}n
i=1, two-dimensional thin-plate smoothing

splines are defined as the function

S(x, y) =
n∑

i=1

ciφ(
√

(x − xi)2 + (y − yi)2) + cn+1x + cn+2y + cn+3 (2.2)

where

φ(r) = r2 log(r2)

which minimizes

(1−p)

n∑

i=1

|zi − S(xi, yi)|2 +p

∫∫ ∣
∣
∣
∣

∂2S

∂x2
(x, y)

∣
∣
∣
∣

2

+2

∣
∣
∣
∣

∂2S

∂x∂y
(x, y)

∣
∣
∣
∣
+

∣
∣
∣
∣

∂2S

∂y2
(x, y)

∣
∣
∣
∣
dxdy

They are computed by the command tpaps (p an optional parameter) which
returns a st form (which can be evaluated by stval).

A note on thin-plate spline evaluation

The result of tpaps(xy,z), where xy is a 2 × n matrix (xy(1,i) = xi,
xy(2,i) = yi and z a vector of values (z(i) = zi) is a structure containing
the fields

• form: st-tp00

• centers: the set {(xi, yi)}n
i=1;

• coefs: the set {ci}n+3
i=1 ;

• ncenters: n;

• number: n + 3;

• dim: number of sets of values

• interv: the cell array

{[min(x(1,:)),max(x(1,:))],[min(x(2,:)),max(x(2,:))]}

If we want evaluate (2.2) at a grid of values [X,Y] = ndgrid(xx,yy), either
we use stval(st,{xx,yy}) (the easy way) or we use the following code
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XY = [X(:)’;Y(:)’];

DM = zeros(size(xy,2),size(XY,2));

for i = 1:2

[xyd,XYd] = ndgrid(xy(i,:),XY(i,:));

DM = DM+(XYd-xyd).^2;

end

% DM is the squared distance matrix

[centers,coefs] = stbrk(st); % get centers and coefs

n = size(centers,2);

vals = coefs(1:n)*phi(DM); % phi part, phi(r) = r*log(r)

vals = vals+coefs(n+1)*XY(1,:)+coefs(n+2)*XY(2,:)+...

coefs(n+3); % linear part

In order to plot the result we can tpss.m

mesh(X,Y,reshape(vals,size(X)))

The distance matrix may be quite large (it is a full matrix): it could be more
convenient to evaluate the thin-plate spline on sub-matrices.

2.5 Exercises

1. Write a function spline1 which given a set of nodes x and a set of spline1.m

values y computes the structure pp associated to spline of degree 1.
If an optional argument xx is given, it should evaluate the computed
structure at xx.

2. Write a function compress which given a set of nodes x, a set of values compress.m

y and a tolerance tol perform a compression as described above. The
function should also give the maximum interpolation error.

3. Complete system (2.1) with the missing conditions for any type of cubic
spline. Keep the system tridiagonal.

4. Consider n couples of equispaced sites on the quarter of circle of equa- curve.m

tion y =
√

1 − x2, x ≥ 0, from (x1, y1) = (0, 1) to (xn, yn) = (1, 0).

• draw the cubic natural spline S(x) through the sites;

• draw the cubic piecewise interpolant P (x) given by pchip

• verify that
∫ 1

0

|S ′′(x)|2dx ≤
∫ 1

0

|P ′′(x)|2dx
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• draw the natural spline which interpolates the parametric curve
γ(t) = (cos(π/2 − t), sin(π/2 − t)), 0 ≤ t ≤ π/2 at n equispaced
sites {ti}.

Do the points above for n = 4, 5, . . . , 10.

5? We considerweightedspline.m

S[xi,xi+1](x) = ai
(x − xi)

3

h2
i

+ bi
(x − xi)

2

hi

+ mi(x − xi) + yi

Clearly we have
S[xi,xi+1](xi) = yi

S ′
[xi,xi+1](xi) = mi

(a) find ai and bi such that

S[xi,xi+1](xi+1) = yi+1

S ′
[xi,xi+1](xi+1) = mi+1

(b) compute S ′′
[xi,xi+1](x);

(c) impose the optimality condition

wi−1S
′′
[xi−1,xi]

(xi) − wiS
′′
[xi,xi+1](xi) = 0, i = 1, 2, . . . , n

where w0 = wn = 0 and get the tridiagonal sparse linear system
for {mi}n

i=1;

(d) implement a function weightedspline taking x and y as input
arguments and, optionally, the weights w which computes the pp

structure associated with S(x) above; if the weights are not given,
the default weights are

wi =
1

(

1 +
(

yi+1−yi

hi

)2
)3 , i = 1, 2, . . . , n − 1

(e) compare weighted cubic splines and natural cubic splines on the
following sets of sites

m = 10;

h = 1/10; % h<1/2

x = linspace(0,1,m);

y = zeros(size(x));

y(abs(x-1/2)<h) = 1;
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with different values of m and h.

6. Consider the function f(x) = cos(x) in the interval [0, 2π]. Show the orderspline.m

behaviour of

(a) ‖f −Sh‖∞ for h → 0, where Sh is the spline interpolating at a set
of sites with step-size h; consider the four types of splines.

(b) ‖f (i) − S
(i)
h ‖∞ for h → 0, for i = 1, 2, 3.

Repeat the exercise for f(x) = cos(x) + (x−2π)2

2
. Finally, numerically

detect the order of approximation by knot-a-not cubic splines of f(x) =

|x| 72 in [−π, π].

7. Consider the function f(x) = arctan(x) in the interval [0, 30]. Show quadraticspline.m

spline2.mthe behavior of a quadratic spline where the value of f ′(0) or f ′(30) is
prescribed and of a not-a-knot quadratic spline on a set of 11 equispaced
sites.

8. Consider the function f(x) = 1
1+x2 on the interval [−5, 5]. Take a set sspline.m

of uniformly distributed sites {xi}11
i=1 and add a random uniform noise

to the corresponding values yi = f(xi). Try the command csaps with
different values of p. In particular

(a) show that for p = 0 the result corresponds to the least squares
straight line;

(b) show that for p = 1 the result corresponds to the natural spline;

(c) try a value 0.9 < p < 1;

(d) get the default value used for p;

(e) compare the result with a global polynomial fitting obtained by
the command polyfit (and evaluated by the command polyval)
with an appropriate degree.
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Chapter 3

B-splines

3.1 Definition

Given the knots {tj}n
j=1 with tj ≤ tj+1, we define the B-spline of order 1

(degree 0) for j = 1, 2, . . . , n − 1

Bj,1(t) =

{

1, t ∈ [tj, tj+1)

0, otherwise

and, recursively, the B-spline of order k (degree k − 1) for j = 1, 2, . . . , n− k

Bj,k(t) = aj,k(t) + bj,k(t)

where

aj,k(t) =

{
t−tj

tj+k−1−tj
Bj,k−1(t), tj 6= tj+k−1

0, tj = tj+k−1

bj,k(t) =

{
tj+k−t

tj+k−tj+1
Bj+1,k−1(t), tj+k 6= tj+1

0, tj+k = tj+1

We also set the following continuity condition

Bj,k(t) = 1, for j = n − k and t = tn

The definition above can be easily, though not efficiently, implemented in a BSplinerec.m

recursive way. The more efficient iterative way is

Bi,h(t) =
t − ti

ti+h−1 − ti
Bi,h−1(t)+

ti+h − t

ti+h − ti+1

Bi+1,h−1(t), h = 2, 3, . . . , k, i = 1, 2, . . . , n−h

In this way, all the B-splines Bj,k(t) for j = 1, 2, . . . , n−k are computed (this
can be useful for B-splines curves). BSplineEval.m

21
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3.2 Subdivision of spline curves

3.2.1 Chaikin’s algorithm

Given a sequence of control points {bj}n
j=1, we can refine them through the

iterations

b0j : b1 b2 b3 . . . bn

b1 b1 b2 b2 b3 b3 . . . bn bn

b1j : b1
b1+b2

2
b2

b2+b3
2

b3 . . . bn

b2j :
3b1+b2

4

b1+3b2
4

3b2+b3
4

b2+3b3
4

. . .
bn−1+3bn

4

b3j : . . .

The first and last points possible require a special treatment. The sequence
{b2

j} is the original Chaikin’s sequence. Moreover, we can take the sequence
{b2

j} and apply again and again the same refinement. We will call this pro-
cedure Chaikin’s refinement algorithm of the second order.

3.2.2 Chaikin’s algorithm in two variables

A note on the command meshgrid

In Matlab R© it possible to define and plot a function of two variables with
the following commands

x = linspace(0,1,11);

y = linspace(2,4,21);

[X,Y] = meshgrid(x,y);

f = @(x,y) x.^2.*y.^3;

Z = f(X,Y);

mesh(X,Y,Z)

If we look at X, we see that it is equivalent to repmat(x,lenth(y),1) and Y

is equivalent to repmat(y’,1,length(x)). Therefore, Z(i,j) corresponds
to f(xj, yi). In other words, the sequence [X(:),Y(:)] corresponds to the
points in the grid numbered from bottom to top and from left to right. If
we replace the command meshgrid with ndgrid, then Z(i,j) corresponds
to f(xi, yj) and the sequence [X(:),Y(:)] corresponds to the points in the
grid numbered from left to right and from bottom to top.

3.2.3 Computation of Nk(t − j)

Given the infinite knot-sequence t̂j = j, j ∈ Z, we consider

Nk(t − j) = B̂j,k(t)
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where B̂j,k(t) is the B-splines defined on the infinite knot-sequence {t̂j}. Let
us consider first the case k > 1. For j = 0 it is

Nk(t) = B̂0,k(t)

which has support in [t0, tk] = [0, k] with Nk(tk) = 0. The sequence of knots
{tj}k+1

j=1

0, 1, . . . , k − 1, k

is not enough, because B̂0,k(t̂k) = B1,k(tk+1) = 1 (by the continuity condi-
tions). Therefore, the sequence {tj}k+2

j=1

0, 1, . . . , k − 1, k, k + 1

has to be considered instead. Finally, Nk(t− j) is computed as B1,k(t− j) on
the finite sequence of knots {tj}k+2

j=1 . For the case k = 1, the corresponding
sequence of knots {tj}3

j=1

0, 1, 2

gives N1(t) = B̂0,1(t) = B1,1(t) which has support in [t0, t1] = [0, 1], with
N1(1) = 0.

3.2.4 Subdivision of periodic spline curves

First of all, observe that the support of Nk(t− j) is [j, j +k]. Let us consider
the curve

s(t) =
∑

j

bjNk(t − j) (3.1)

where bi+n = bi, i ∈ Z, n > 2. It follows

s(t + n) =
∑

j

bjNk(t + n − j) =
∑

j

bjNk(t − (j − n)) =

=
∑

i

bi+nNk(t − i) =
∑

i

biNk(t − i) = s(t)

that is s(t) is periodic with period n. Let us consider the interval [k, n + k]:
for k > 1, the first Nk not completely zero on it is Nk(t − 1) and the last is
Nk(t − (n + k − 1)). For the particular case k = 1, the first not completely
zero on [0, n] is N1(t − 1) and the last is N1(t − (n + k)). Therefore

s(t) =

n+k−min(k−1,1)
∑

j=1

bjNk(t − j), t ∈ [k, n + k] (3.2)

It is possible to prove that the curve s(t) is the limit of Chaikin’s refine
algorithm of order k − 1 on the original sequence of control points {bj}n

j=1.
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3.3 Interpolation by B-splines

Given a set of sites {xi}n
i=1 and a set of knots {tj}n+k

j=1 satisfying the Schoenberg–
Whitney condition

xi ∈ (ti, ti+k)

with equality only at the extreme knots, each of which occurs with exact
multiplicity k, then it is possible find the curve

s(t) =
n∑

j=1

bjBj,k(t), s(xi) = yi

where the set {yi}n
i=1 is given. Clearly, the set of coefficients {bj} are the

solution of
Ac = y, A = (ai,j) = Bj,k(xi)

3.4 B-spline curves

We define the B-spline curve of order k as

S(t) =
n+1∑

i=1

biB
k
i (t), t ∈ [0, 1] (3.3)

where Bk
i (t) is the i-th, 1 ≤ i ≤ n+1, B-spline Bi,k(t) on the n+1+k knots

0, . . . , 0
︸ ︷︷ ︸

k − 1 times

,
0

n − k + 2
,

1

n − k + 2
, . . . ,

n − k + 2

n − k + 2
, 1, . . . , 1
︸ ︷︷ ︸

k − 1 times

and bi ∈ R
d. Clearly, for k = 1 we recover the control points and for k = 2 the

control polygon, i.e., the (possibly open) polygon of vertexes {bi}n+1
i=1 . The

maximum value for k is of course n + 1, in which case the B-spline curve
coincides with the Bézier curve of degree n. It interpolates b1 and bn+1.

3.4.1 A (not so) efficient implementation

If t is a row vector of evaluation points, it is possible to evaluate all the
B-splines through the iterative scheme by following commands

B = zeros(n+k,length(t));

for i = 1:n+k

B(i,knots(i) <= t & t < knots(i+1)) = 1;
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end

for h = 2:k

for i = 1:n+1+k-h

v1 = knots(i+h-1) == knots(i);

v2 = knots(i+h) == knots(i+1);

B(i,:) = (1-v1)*(t-knots(i))/(knots(i+h-1)-knots(i)+v1).*B(i,:)+...

(1-v2)*(knots(i+h)-t)/(knots(i+h)-knots(i+1)+v2).*B(i+1,:);

end

end

B = B(1:n+1,:);

B(n+1,t == knots(n+1+k)) = 1;

where each row of the matrix b corresponds to a B-spline. Then, if b is the
matrix d × (n + 1) of the control points, the B-spline curve evaluated at t

is b*B. The only weak part of this algorithm is that usually B is a matrix
with a lot of zero entries (since B-spline has local support). A more clever
implementation should compute the rows of B only where they are different
from zero.

3.4.2 Periodic B-spline curves

We have already seen a periodic curve defined by B-splines (see (3.2)). We
want to rewrite it in terms of B-spline curve. We consider the cases k > 1.
First of all, we write that formula for n + 1 periodic control points

s(z) =
n+k∑

j=1

bjNk(z − j), z ∈ [k, n + 1 + k]

where bn+1+i = bi, i ∈ Z. We now set

S(t) = s(z), t =
z − k

n + 1

We have

S(t) =
n+k∑

j=1

bjNk((n + 1)t + k − j), t ∈ [0, 1]

with

Nk((n + 1)t + k − j) = B1,k((n + 1)t + k − j)
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B1,k the B-spline defined on the knots [t1, t2, . . . , tk, tk+1, tk+2] = [0, 1, . . . , k−
1, k, k + 1]. We apply its definition

B1,k((n + 1)t + k − j) =
((n + 1)t + k − j) − 0

(k − 1) − 0
B1,k−1((n + 1)t + k − j)+

+
k − ((n + 1)t + k − j)

k − 1
B2,k−1((n + 1)t + k − j) =

=
t − j−k

n+1
j−1
n+1

− j−k
n+1

B1,k−1((n + 1)t + k − j)+

+
j

n+1
− t

j
n+1

− j+1−k
n+1

B2,k−1((n + 1)t + k − j)

If we now define the B-splines Bk
j on the knots tj = (j − k)/(n + 1), j =

1, 2, . . . , n+2k, we have Bi,k((n+1)t+k−j) = Bk
j+i−1(t), j = 1, 2, . . . , n+k.

In particular, Nk((n+1)t+k− i) = B1,k((n+1)t+k− i) = Bk
i (t). Therefore

S(t) =
n+k∑

i=1

biB
k
i (t), t ∈ [0, 1]

From the implementation point of view, we observe that

Bk
i (t) = Bk

k

(

t − i − k

n + 1

)

= Bk
k

(
(n + 1)t − i + k

n + 1

)

and Bk
k requires only the knots tj = (j − k)/(n + 1), j = 1, 2, . . . , 2k + 1.periodicB.m

periodicBScurve.m

An application to fonts

TrueType fonts use Bézier splines composed of quadratic Bézier
curves. Modern imaging systems like PostScript, Asymptote,
Metafont, and SVG use Bézier splines composed of cubic Bézier
curves for drawing curved shapes. OpenType fonts can use either
types, depending on the flavor of the font [Wikipedia].

Suppose

S(t) =
n+1∑

i=1

biB
k
i (t)

is a non-periodic B-spline curve of order k = 3 (degree 2) representing a
font, with b1 = bn+1. If we consider the piecewise Bézier curve of degree 2
with control points (bi + bi+1)/2, bi+1, (bi+1 + bi+2)/2, i = 1, 2, . . . , n, where
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bn+2 = b2, then it “almost” coincides with the B-spline curve. The differences font.m

are in the first and last control point. In order to have an exact match,
we need the B-spline curve to be periodic. We can repeat with k = 4. periodicfont.m

The piecewise Bézier curve of degree 3 to be considered has control points
((bi/3+2bi+1/3)+(2bi+1/3+bi+2/3))/2, 2bi+1/3+bi+2/3, bi+1/3+2bi+2/3, and
((bi+1/3 + 2bi+2/3) + (2bi+2/3 + bi+3/3))/2, i = 1, 2, . . . , n, where bn+3 = b3. periodicfont3.m

3.5 B-spline in Matlab R©

Matlab R© handles B-splines through the B- structures. They contain the
following fields:

• form: B-;

• knots: vector of knots {tj};

• coefs: vector of coefficients {bj};

• number: number of coefficients;

• order: B-spline order k;

• dim: number of sets of values related to the knots.

About the field dim, it corresponds to the number of rows of coefs, that is
1 for a B-spline function, 2 for a two-dimensional B-spline curve and 3 for a
three-dimensional B-spline curve. It is possible to assemble the structure B-

through the command spmak and to evaluate at a set of points through the
command spval.

For instance, given n+1 coefficients {bj}n+1
j=1 , the two-dimensional B-spline

curve of order k defined in (3.3) can be evaluated through the commands

n = size(b,2)-1; % b of size 2 x (n+1)

knots = linspace(0,1,n+1-k+2);

knots = [zeros(1,k-1),knots,ones(1,k-1)];

Bform = spmak(knots,b);

t = linspace(0,1);

s = spval(Bform,t);

plot(s(1,:),s(2,:))
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3.6 Knot insertion

Given the B-spline curve

S(t) =
n+1∑

i=1

biB
k
i (t)

with knots {tj}n+1+k
j=1 we can perform a knot insertion of knot t̄ in the follow-

ing way:knotinsertion.m

• find h such that t̄ ∈ [th, th+1) (if t̄ = 1, set h = n + 1)

• define the new set of n + 2 control points

b1, b2, . . . , bh−k+1, b̄h−k+2, b̄h−k+3, . . . , b̄h, bh, bh+1, . . . , bn+1

where

b̄i = (1−ai)bi−1+aibi, ai =
t̄ − ti

ti+k−1 − ti
, i = h−k+2, h−k+3, . . . , h

with ai = 0 if ti+k−1 = ti.

• define the new sequence of n + 2 + k knots

t1, t2, . . . , th, t̄, th+1, th+2, . . . , tn+1+k

3.7 Exercises

1. Write a function computing the B-spline Bi,k(t).BSplineEval.m

2. Show the properties of subdivision of periodic spline curves.curves2d.m

curves3d.m

3. Reproduce the behaviour of splines of degree 1, not-a-knot quadraticbspline1.m

bspline2.m

bspline3.m

splines and not-a-knot cubic splines by B-splines.

4. Plot the B-splines of order 4 for the knots [0, 0, 0, 0, 1, 2, 3, 3, 3, 4, 5, 6, 6, 6, 6].
Using few sites, say 9, construct a cubic spline interpolation of f(x) =orderbspline.m

|x|1/2 in the interval [−1, 1], using the command spapi.

5. Schoenberg–Withney conditions are not enough to guarantee interpo-badknotssites.m

lation. The interpolation matrix, though non-singular, can become
ill-conditioned. Consider the following example:
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function B = badknotssites(m)

% m has to be odd

x = linspace(-1,1,m)’;

xx = linspace(-1,1,1001)’;

y = abs(x).^(1/2);

t = linspace(-1,0,(m-3)/2)’;

t = [t;0];

t = [t;linspace(0,1,(m-3)/2)’];

t = [t(1)*ones(3,1);t;t(m-2)*ones(3,1)];

B = spapi(t,x,y);

Plot the result with different values of m, from 11 to 501. Numerically
verify that Schoenberg–Withney conditions are always satisfied.

6. Given the control points b1 = (0, 0), b2 = (0, 1), b3 = (1, 1), b4 = (1, 0),
b5 = (1/2, 0) and b6 = (1/2, 1/2), show the B-spline curves of any order
from k = 1 to k = n + 1. BScurve.m

B.m

BScurve0.m

BScurve1.m

BScurve2.m

BScurve3.m

BScurve4.m

7? Take the control points

b = [0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9;...

0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0];

and plot the B-spline curve of order 3. Now take the control points

b1 = [0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9;...

0,1,1,0,0,1,1,0,0,1.5,1,0,0,1,1,0,0,1,1,0];

and plot the B-spline curve of order 3. Do the same with the Bézier
curves. Show that the difference between the two Bézier curves is not
local (for instance, compute their distance in t ∈ [0.8, 1]). locality.m
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Chapter 4

Bézier curves

4.1 Bernstein’s polynomials

We define Bernstein’s polynomial of degree n as

Bn
i (t) =

(
n

i − 1

)

ti−1(1 − t)n−i+1, i = 1, 2, . . . , n + 1

where usually t ∈ [0, 1]. Notice that B0
1 ≡ 1. It is possible to show that

Bn
i (t) = (1 − t)Bn−1

i (t) + tBn−1
i−1 (t), n > 0, i = 1, 2, . . . , n + 1 (4.1)

where Bn
0 ≡ 0 for n > 0 and Bn

i ≡ 0 if i > n + 1. A Bézier curve of degree
n is

B(t) =
n+1∑

i=1

biB
n
i (t)

where bi ∈ R
d are called control points.

4.2 Evaluation of a Bézier curve

Given a Bézier curve of degree n and control points {bi}n+1
i=1 , let us define

b0
i (t) ≡ bi and

br
i (t) = (1 − t)br−1

i (t) + tbr−1
i+1 (t), r = 1, 2, . . . , n, i = 1, 2, . . . , n − r + 1

(De Casteljau’s algorithm). We have

bn
1 (t) =

n+1∑

i=1

biB
n
i (t) (4.2)

31
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There is a nice result about this algorithm: given t0 ∈ [0, 1], if we define

ci+1 = bi
1(t0), i = 0, 1, . . . , n

di = bn+1−i
i (t0), i = 1, 2, . . . , n + 1

then the curve
n+1∑

i=1

biB
n
i (t)

is the union of the two disjoint curves

n+1∑

i=1

ciB
n
i (t),

n+1∑

i=1

diB
n
i (t),

4.3 Affine invariance

If an affine map
Φ(x) = Ax + b

where x, b ∈ R
d, A ∈ R

d×d is applied to a Bézier curve, then the result is
equivalent to the Bézier curve of the affine images of its control points, that
is

Φ(B(t)) =
n+1∑

i=1

Φ(bi)B
n
i (t) (4.3)

4.4 Degree elevation

Given a Bézier curve of degree n with control points {bi}n+1
i=1 we can make

a degree elevation considering the Bézier curve of degree n + 1 with control
points given by

b̂1 = b1

b̂i =
i − 1

n + 1
bi−1 +

n − i + 2

n + 1
bi, i = 2, 3, . . . , n + 1

b̂n+2 = bn+1

4.5 Exercises

1. Implement the recurrence relation (4.1) for Bernstein’s polynomialsBern.m

with a function Bern(i,k,t) and verify it coincides with the definition.
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2? Given the function decasteljau.m, verify equivalence (4.2). decasteljau.m

bezier.m
3 Given the control points b1 = (0, 0), b2 = (0, 1), b3 = (1, 1), b4 =

(1, 0), b5 = (1/2, 0) and b6 = (1/2, 1/2), verify equivalence (4.3) with a
rotation, a translation and a scaling on the corresponding Bézier curve.

4 Try the degree elevation on the Bézier curve defined by the control
points above. degreeelevation.m
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Chapter 5

Fast Gauss transform

5.1 On Hermite’s polynomials

Let us define the Hermite polynomials of degree α

Hα(x) = (−1)αex2 dα

dxα
e−x2

It can be proved that they satisfy the following recurrence relation

H0(x) = 1, H1(x) = 2x

Hα+1(x) = 2xHα(x) − 2αHα−1(x), α ≥ 1

We define the Hermite function hα(x) = Hα(x)e−x2
.

5.2 Fast Gauss sum

In order to compute

G(yj) =
N∑

i=1

qi exp

(

−(xi − yj)
2

δ

)

, j = 1, 2, . . . ,M (5.1)

we can use the Matlab R© commands

[X,Y] = ndgrid(x,y);

E = exp(-(X-Y).^2/delta);

G = q(:)’*E;
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In the d-variate case, we have

G(yj) =
N∑

i=1

qi exp

(

−|xi − yj|2
δ

)

=

=
N∑

i=1

qi exp

(

−(xi,1 − yj,1)
2

δ

)

· . . . · exp

(

−(xi,d − yj,d)
2

δ

) (5.2)

Therefore, the direct implementation is

d = size(x,1); % x a dxN array

E = ones(size(x,2),size(y,2));

for k = 1:d

[X,Y] = ndgrid(x(k,:),y(k,:));

E = E.*exp(-(X-Y).^2/delta);

end

G = q(:)’*E;

For the fast implementation, we can subdivide the source points {xi}i

into subintervals of length
√

δ, with centers {x̄m}. Therefore

G(yj) =
∑

m

∑

|xi−x̄m|≤
√

δ/2

qi exp

(

−(xi − yj)
2

δ

)

=

=
∑

m

∞∑

β=0

1

β!

(
ȳ − yj√

δ

)β ∞∑

α=0

hα+β

(
ȳ−x̄m√

δ

)

α!

∑

|xi−x̄m|≤
√

δ/2

qi

(
xi − x̄m√

δ

)α

for a given ȳ. If |ȳ − yj| <
√

δ/2 thenFGT.m

G(yj) ≈
∑

m

k∑

β=0

1

β!

(
ȳ − yj√

δ

)β k∑

α=0

hα+β

(
ȳ−x̄m√

δ

)

α!

∑

|xi−x̄m|<
√

δ/2

qi

(
xi − x̄m√

δ

)α

The FIGTree library

The Matlab R© command

figtree(x,h,q,y,epsilon)

(from the library FIGTree) approximates the Gauss transform

G(yj) =
N∑

i=1

qi exp

(

−|xi − yj|2
h2

)

, j = 1, 2, . . . ,M
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by Ĝ(yj), with
∣
∣
∣Ĝ(yj) − G(yj)

∣
∣
∣ ≤ ε ·∑i qi. Here x is a d×N , y a d×M array

and q a N × L array: in fact, it is possible to compute L Gauss transforms
at once which correspond to different sets of weights {qi}.

5.3 Applications

5.3.1 Heat equation

The solution of






∂u

∂t
(t, x) = ∆u(t, x), x ∈ R

d, t > 0

u(t, x) = u0(x), lim
|x|→∞

u0(x) = 0

is

u(t, x) =
1

(4πt)d/2

∫

Rd

u0(ξ) exp

(

−|x − ξ|2
4t

)

dξ

The unbounded domain R
d can be truncated to (−a, a)d and the trapezoidal

rule applied on a uniform grid with h = 2a/(N + 1)

u(t, ξj) ≈
hd

(4πt)d/2

N∑

i=1

u0(ξi) exp

(

−(ξj − ξi)
2

4t

)

with ξi inner grid points.

Finite differences for the two-dimensional heat equation

Let us consider a uniform grid of inner points ξk = (xi, yj), k = (j − 1)N + i,
i, j = 1, 2, . . . , N , in a square [−a, a]2, with xi = −a + hi, yj = −a + hj,
h = 2a/(N +1). The standard matrix A of one-dimensional finite differences
(central, second order, homogeneous Dirichlet boundary conditions) is

A = toeplitz(sparse([1,1],[1,2],[-2,1]/h^2,1,N));

The matrix for two-dimensional finite differences is then A2 = I ⊗A + A⊗ I

kron(speye(N),A)+kron(A,speye(N))

With this discretization in space, the heat equation becomes
{

u′(t) = A2u(t)

u(0) = u0(t)

and can be solved with a method for ODEs. For instance, with forward
Euler, the code is
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x = linspace(0,1,N+2);

x = x(2:N+1);

h = 1/(N+1);

[X,Y] = ndgrid(x);

A = toeplitz(sparse([1,1],[1,2],[-2,1]/h^2,1,N));

A2 = kron(speye(N),A)+kron(A,speye(N));

u0 = sin(pi*X).*sin(pi*Y);

k = 0.002; % < 2/max(abs(eig(A2)))

u = u0(:);

for n = 1:10

u = u+k*A2*u;

end

mesh(X,Y,reshape(u,size(X)))

5.4 Exercises

1? Solve the one-dimensional heat equation in the interval [−10, 10] up to
the final time t⋆ = 1 using the (fast) Gauss transform. Take as initial
value the function

u0(x) =

{

1 |x| ≤ 1

0 |x| > 1

Compare the result with a method of lines. Repeat the exercise in two
dimensions.heat.m
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RBF

6.1 Interpolation by Radial Basis Functions

We consider the interpolation of a given function f : Ω ⊆ R
d → by radial

basis functions ϕ(r) at sites {xi}n
i=1 ∈ Ω

f(x) ≈ Pf (x) =
n∑

i=1

ciϕ(|x − xi|)

By the interpolation condition Pf (xj) = f(xj) we get the linear system

n∑

i=1

ciϕ(|xj − xi|) = f(xj), j = 1, 2, . . . , n

that is

AIc = f

with AI = (aij) = (ϕ(|xj − xi|)), c = [c1, c2, . . . , cn]t and fi = f(xi). Given
the d × n array x and a function phi.m, the code to recover the coefficients
is quite standard

d = size(x,1);

DM = zeros(size(x,2));

for k = 1:d

[xj,xi] = ndgrid(x(k,:));

DM = DM+(xj-xi).^2;

end

AI = phi(epsilon*sqrt(DM));

c = AI\f;
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If multiple interpolations with the same sites have to be performed, the
matrix AI can be factorized (usually with Cholesky’s algorithm) once and
for all.

In order to evaluate the RBF at a set of evaluation points {yj}m
j=1, we

can construct the evaluation matrix

AE = (aji) = (ϕ(|yj − xi|))

and then

Pf (y) =








Pf (y1)
Pf (y2)

...
Pf (ym)








= AEc

The code is

d = size(x,1);

DM = zeros(size(y,2),size(x,2));

for k = 1:d

[yj,xi] = ndgrid(y(k,:),x(k,:));

DM = DM+(yj-xi).^2;

end

Pf = phi(epsilon*sqrt(DM))*c;

If the number m of evaluation points is large, it may be convenient to split
the evaluation matrix.

6.1.1 Gaussian RBF

The function ϕ(r) is

ϕ(r) = e−(εr)2

where ε is the shape parameter. Given the coefficients, in this case it is
possible to apply the Fast Gauss Transform in order to evaluate Pf (yj)

figtree(x,1/epsilon^2,c,y,1e-10)

6.1.2 Multiquadric

The function ϕ(r) is

ϕ(r) =
√

1 + (εr)2
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6.1.3 Inverse multiquadric

The function ϕ(r) is

ϕ(r) =
1

√

1 + (εr)2

6.2 Franke’s function

Probably the most used two-dimensional test function for interpolation and
approximation is Franke’s function

f(x, y) =
3

4
exp

(

−(9x − 2)2 + (9y − 2)2

4

)

+
3

4
exp

(

−(9x + 1)2

49
− 9y + 1

10

)

+

+
1

2
exp

(

−(9x − 7)2 + (9y − 3)2

4

)

− 1

5
exp

(
−(9x − 4)2 − (9y − 7)2

)

in the unit square [0, 1]2.

6.3 Exercises

1? Measure the maximum interpolation error over a grid of 50×50 points,
using n × n interpolation points (n = 5, 10, . . . , 35), different values
for the shape parameter ε (ε = 0.5, 1.5, . . . , 4.5) for any of the known
RBFs for the interpolation of Franke’s function. Why is it sometimes
not possible to correctly solve the arising linear system?
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Chapter 7

Triangulations and some
elements

7.1 Delaunay triangulation

Two-dimensional Delaunay’s triangulation in MatlabR© is created by

dt = DelaunayTri(x,y)

where x and y are (column) vectors. The result dt is a structure containing
the fields Constraints, X (corresponding to [x(:),y(:)]) and Triangulation,
an ℓ×3 integer array: triangle l, l = 1, 2, . . . , ℓ is made of X(dt.Triangulation(l,1),:),
X(dt.Triangulation(l,2),:) and X(dt.Triangulation(l,3),:).

Given a point (p, q) it is possible to know which triangle it belongs to by
the command

pointLocation(dt,p,q)

The result is the number of the triangle in dt.Triangulation or NaN if
outside the triangulation.

Given a triangulation dt, it is possible to interpolate a function fun

through the command

F = TriScatteredInterp(dt,v,method)

where v=fun(dt.X(:,1),dt.X(:,2)) and method is ’natural’, ’linear’
or ’nearest’. Finally, it is possible to evaluate F as a normal bivariate
function.

43
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7.2 (Hsieh–)Clough–Tocher element

Given a triangle of points (x1, y1), (x2, y2), (x3, y3) and a function f defined
on it, it is possible to define a piecewise polynomial of degree 3 by prescribing
the following conditions:

• interpolation of f and ∇f at the vertexes (6 · 3 conditions)

• normal derivatives at the midpoint of each edge (3 conditions)

• C1 continuity at the barycenter (3 · 2 conditions)

• continuity of normal derivatives at the midpoint of the seams (3 con-
ditions)

The result of a Hsieh–Clough–Tocher interpolation could be a structure hct

containing the fieldsHCT sys.m

triangle.m • x: an array 3× 3 with x(i,j) the value of the j-th abscissa of the i-th
subtriangle;

• y: equivalent to x;

• coefs: the coefficients {aik}10
k=1 of the cubic polynomials defined on the

i-th subtriangle in the form

ai1 +ai2x+ai3y +ai4x
2 +ai5xy +ai6y

2 +ai7x
3 +ai8x

2y +ai9xy2 +ai10y
3

7.3 Reduced (Hsieh–)Clough–Tocher element

In this reduced model we prescribe the normal derivative at each edge to
be a linear function in x and y. Let us consider an edge with vertexes
A = (xA, yA) and B = (xB, yB). The normal derivative of the corresponding
cubic polynomial p(x, y) = a1 + a2x + a3y + . . . + a10y

3 evaluated at a point
[x(t), y(t)] = tA + (1 − t)B is

∂xp(x(t), y(t))(yA − yB) + ∂yp(x(t), y(t))(xB − xA)

(a normalization factor is missing). We want the quadratic terms in t of this
expression to be zero. We find

3a7(xA − xB)2(yA − yB) + a8(xA − xB)(2(yA − yB)2 − (xA − xB)2)+

a9(yB − yA)(2(xB − xA)2 − (yA − yB)2) + 3a10(yA − yB)2(xB − xA) = 0

These three equations (for A = 1, 2, 3 and B = 2, 3, 1) have to replace the
equations that impose the normal derivatives in the (full) HCT element.red HCT sys.m
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7.3.1 Estimate of first derivatives

It may be possible that only f is available. In this case, we have to estimate
the first derivatives at the vertexes and normal derivatives at the midpoint of
each edge. The easiest way is the following: for each point (x, y), we compute
the plane interpolating the values of f on each triangle containing (x, y) as
vertex. If the vertexes are (x1, y1), (x2, y2) and (x3, y3), then the plane has
equation

z = c1 + c2x + c3y

with 



1 x1 y1

1 x2 y2

1 x3 y3









c1

c2

c3



 =





f(x1, y1)
f(x2, y2)
f(x3, y3)





We approximate ∇f(x, y) by taking the average of the gradient of the planes
passing through (x, y). Once the gradient at the vertexes is approximated,
we can compute the normal derivatives at the midpoint of each edge as

∇f

„

x1 + x2

2
,
y1 + y2

2

«

· ~n3 ≈
− f̃x(x1,y1)+f̃x(x2,y2)

2
(y2 − y1) +

f̃y(x1,y1)+f̃y(x2,y2)

2
(x2 − x1)

p

(x2 − x1)2 + (y2 − y1)2

∇f

„

x2 + x3

2
,
y2 + y3

2

«

· ~n1 ≈
− f̃x(x2,y2)+f̃x(x3,y3)

2
(y3 − y2) +

f̃y(x2,y2)+f̃y(x3,y3)

2
(x3 − x2)

p

(x3 − x2)2 + (y3 − y2)2

∇f

„

x1 + x3

2
,
y1 + y3

2

«

· ~n2 ≈
− f̃x(x1,y1)+f̃x(x3,y3)

2
(y1 − y3) +

f̃y(x1,y1)+f̃y(x3,y3)

2
(x1 − x3)

p

(x1 − x3)2 + (y1 − y3)2

This approach is very simple and it can be used for quite regular meshes.
More sophisticated approaches may use local least square fitting.

7.3.2 Determining whether a point is inside a triangle

Once we know that a point P = (p, q) is inside a triangle, we have to find
in which subtriangle it is contained. We use in practice the barycentric
coordinates. Given the three points of a triangle A,B,C, P is inside (or at
most on an edge) if

P = A + u(C − A) + v(B − A)

with u, v ≥ 0 and u + v ≤ 1. Given A,B,C and P we have to compute u
and v. If we call v0 = C − A, v1 = B − A and v2 = P − A, we have

u =
(v1 · v1)(v2 · v0) − (v1 · v0)(v2 · v1)

(v0 · v0)(v1 · v1) − (v0 · v1)(v1 · v0)

v =
(v0 · v0)(v2 · v1) − (v0 · v1)(v2 · v0)

(v0 · v0)(v1 · v1) − (v0 · v1)(v1 · v0)
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Since these values are computed up to machine precision, the tests u ≥ 0,
v ≥ 0 and u + v ≤ 1 have to be slightly modified.

7.4 Exercises

1? Given some points on the unit square [0, 1]2interpolation.m

triangle.m

whichsubtriangle.m
• build a Delaunay triangulation;

• compute the HCT interpolant of f (using ∇f) for each triangle;

• evaluate the piecewise interpolant at a regular grid of 50 × 50
points;

• measure the interpolation error when f is a cubic bivariate poly-
nomial and Franke’s function;

• compute the HCT interpolant using an estimate of ∇f and mea-
sure the interpolation errors;

• compare the results with TriScatteredInterp.

2 Modify the function HCT_sys.m in order to compute the reduced HCT
element. Try the previous exercise with this element.
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