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Abstract analogous to Lifschitz’s predicate completion reformulation
of McCain-Turner[Lifschitz, 199§; however, our rules are
more general. Furthermore, these rules have a richer metathe-
ory than predicate completion: this (and particularly the cut
elimination result) will also be useful to us.

Remark 1. Itis easy to verify that we could just as well have

We give a modal presentation of the McCain and
Turner's “causal theories”; we show how to for-
malise, in this framework, Foo and Zhang’s inter-
polation argumeniZhang and Foo, 2002

used left and right rules where tidg,, . .., Q; (and the cor-
1 Introduction responding sets dPs) range oveminimalsets such that
Consider McCain and Turner’s theory of “causal reasoning” Q1,...,QrH X.

[McCain and Turner, 1997 this starts from a collection of
causal laws(written ¢ > 1), and defines a logical conse-
guence relation as follows:

In effect, the rules defin@X as a large disjunction of con-
junctions likeP; A. . . A Py; allowing non-minimal entailmen-
nts means allowing more disjuncts, each of which entails one
1. Suppose that we are given a set of causal laws: cBJl it of the non-minimal disjuncts. Such an enlargement replaces
formulated in some languag® Let M be a model of the disjunction with a logically equivalent one.
£. Given a modelM of our language, define a theory as  However, although the systewith the restriction to mini-
follows: mal sets may well be important for applications (it is certainly

A def more computationally tractable), it is considerably clumsier
T = {¢|forsomep € £, 9> andM = ¢} (1) g work with: we wili, therefore, use the non-minimal sys-

. . : tem.
2. Now we say thal/ is causally explainedaccording to ] ] S ]
T) if it is the only model of M. This system is (as the notation implies) a modal logic:
3. Finally, we say thap € £ is a consequencef a  roposition 1. Ois aK modality.
causal theor{I' if ¢ is true in everyl-causally explained  prgof. [White, 2002 0

model.
Notice thatdL is, in general, infinitary (and one can invent

With a particular choice of causal theofy this gives — it o X :
seems — a consequence relation appropriate for causal reasgr)\(-""mples where it is undecidable). However, in standard ap-

ing of the usual sort. It has, furthermore, good mathematica{f’l'C",z‘t't(;lnS gf trlde]_syﬁtem, we can Shg";’hth?t”'t re_zmalnstqtl:]lte
properties: as | argug002b; 2002} this consequence rela- ract.a Ie. c:tr IS, however, we need the following metathe-
tion is independent of the vocabulary that it is formulated in°'e |ca_r_esu S _
(a feature not shared by circumscription-based approaches)Proposition 2. The system given by Tables 1 and 2 has cut
Interesting though it is, this system has some disadvarelimination: thatis, given any proof of a sequént A, there
tages. It is defined in terms of models: models, howeveriS a proof of the same sequent without using the multicut rule.
are large, computationally unwieldy objects. Furthermorep, ¢ Given in[White, 2002; the proof uses the methods
although these systersgsento work, they are not metatheo- of Schroeder-Heistd 997 O
retically transparent: on the formal level, it is hard (and ex- '
tremely bureaucratic) to prove their correctness, whereas, on Now from cut elimination, we can (as is standard) con-
the informal level, they do not provide very much insight into clude that our system is consistent. We can also derive more
why they work. interesting results. Note first that, df > ¢ is a causal law,
Consequently, wg2002] have defined a modal system ¢ - Oy is trivially a theorem of our system. Using cut elimi-
which can be used to reformulate these McCain-Turner theaaation, we can prove a sort of converse. We suppose that we
ries. Itis given by a sequent calculus: the non-modal rules arstart off with a non-modal languagg in which the original
given in Table 1, whereas the modal operator is given by thélcCain-Turner theory is formulated: &5 is £ extended by
rules in Table 2. The introduction and elimination rules areour modal operatar, then we have:
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| A A VANAN
&y not free inl" or A, and eithery = z or y not free inA
by not free inl" or A, and eithery = z or y not free in4
‘whereX™ stands fom occurrences oX; m,n > 0
Table 1: The Non-Modal Rules
'EPLAN...ANPy,A Q1,...,Q,FX
OR?
r-oXx, A
{L,Pyy o P BA Qi Qi B Xy n b
oXrA

awhere, for alli, P; > Q;

bwhere, for each, we haveP;, > Q;,,... P;, > Q;,, and where the
{Pi,;} and{Qq, }, fori = 1,...n, are the only such sets éts andQs
that there are.

Table 2: The Basic Modal Rules



=

. fo > fo and—fq > — fo, for any fluentf at time 0;
. a; > a; and—ay; = —ay, for any actiom at any timet;

. i1 A fe o frand=fi_1 A fy > fy, for any fluentf
and any time;

Proposition 3. Let M be a model o, and letP € £. Then
TM - P iff there is a valid entailment - OP, with " a set
of propositions of true in M. 3

N

Proof. Only if is clear: we can simply use the proof of . .
TM - P to get a proof oflf - OP. The other direction - fi—1 Aaz—y > gy, for any timet, wheref is the precon-
needs cut elimination: we take a cut free prooflof- OP dition andg is the postcondition of actiom.

and, by induction on the complexity of the proof tree, find a 5. =P >, for any domain constrairf.

set of causal laws with their bodies truefifi and their heads

entailing P. O Table 3: McCain and Turner's Laws

N

From this follows: Example 1 (Necessitation).As an example, we show that

Proposition 4. The canonical model of our modal logic is the rule of necessitation is admissible: that is, that, if we have
given as follows: the worlds are all the models of our non-a proofIl of I' - A, we can also proval - OA (where, as
modal languageC, whereas the accessibility relatioR is  usual, 0" = {Ov|y € T'} for a set of formulad’).

given by We first applydL to all of theO~:

MRM' iff M’isamodel off™. 2) {b100 0140 nys s by, FOA}

Proof. We first prove that, in any modéll of £5, the truth or - oA

values of modal propositions are given by the truth-values ofvherel’ = {~,, .. .,,}, where the entailments in the brack-
the non-modal propositions: thus, modelsSgfare given by  ets are given by all of the sets of bodies of causal rgies
models of€. By cut elimination, £y is a conservative exten- where the corresponding heads satisfy

sion of £, so each model of can be extended to a model of

£4. Now the worlds of the canonical model are precisely the Piys oo Yy, F i 3)
models_ o_f_SD, Wh_ich _are_the models of; the fact that the for eachi.
accessibility relation is given by (2) is standard. 0 Consider one of the entailments in brackets. From the en-

) tailments (3), together with our proof bf+ A, we can derive
Our modal system thus tells us everything we want to knowg proof of

about the causal theory: the worlds of its canonical model

give us the models of the original language, whereas the ac- Vigseo s V1o Unas e e Uny A

tc_eSS|Ib|I|ty reIat]lotR on tff};\far;omcaélk]r.nodel gives uskthe tdt%duc\he can use this proof as a side condition for an application of
IVe closures ot ihe sets . From _'S We can work Out I€ - op "5 thus prove the required entailment.

McCain-Turner entailment relation: more formally, we have

Proposition 5. Let P € £. ThenP is causally entailed b{f 2 The Original Causal Laws

iff we have , McCain and Turner’s original laws are given in Table 3; here

LIEp we suppose that we have sets of flughfts (wheref; stands
whereT is a set of propositions of the formA F A, and[”  for the fluentf at timez, and of action symbols;, and also
is a set of propositions of the fora - 0A, and where the thatthe domain constraints (if any) are given by senteites
modal operator is defined by.

Example 2 (Using the Constraints). Suppose that we have

Proof. By (2), together with standard resuftgan Benthem, to prove an entailment of the forin - 0A, A. We can get
1984, the causally explained worlds are precisely those irthe constraints onto the left hand side like this:
whichdOA — A and A — OA hold, for all A. The result

follows. O :
ILCHOAA
Finally, note a further consequence of cut elimination: T+ —-C,04,A B
proof search for entailments of the forth OA, wherel’
andA are sets of non-modal propositions, is monotoniE,in ['-D0A,04,A
A and the elements &f, and is also generally quite tractable. I'FOA A RC

Nonmonotonicity only arises when we have to deal with ap-

plications of the left rule for. This is an illustration of a where the application afR is justified by the entailmentH
rather more general theme: that, if we can find logical sys+4.

tems with robust mathematical properties (cut elimination, )

for example, or interpolation), then, even though our rea2-1 The Meaning of These Rules

soning may be nonmonotonic, it can, still, be quite tractableMcCain and Turner’s system is often described as a system of
[Zhang and Foo, 2002 causal reasoning: | would like to argue, however, that we can



interpret it in a rather more general sense, and that, so inteBubstantiating this hypothesis involves metatheoretical work:
preted, it can be seen as a continuation of a well-establisheghat we need to show is some sortioferpolation prop-
tradition. erty [Troelstra and Schwichtenberg, 1996, Sectior] 42
The idea of questions and answers is quite appropriatthe logic concerned. Zhang and F002, pp. 365fi. es-
here. According to Hintikk&1976; 1972, and Harraf1979  tablish such a property for their logic (a variant of dynamic
a question can be regarded as denoting its set of possiblegic); here we establish it for ours.
answers (out of which an appropriate answer selects one). We first lay down some assumptions and some notation.
For example, in Harrah's system omP would be called Suppose that the relation symbols of our languggesan be
the “assertive core” of the question, whereas ihdicated  partitioned into two disjoint setR’ andR”, and that the con-
replieswould, in our system, be combinations of rule bod- stants can likewise be partitioned into two disjoint €&tand
ies¢, ..., ¢, such thaty, ..., ¢, - OP. Here we have two C”; let £ and £” be the corresponding sublanguagestof
rules forO, left rules and right rules; when we apply a left and, similarly, let¢ and £7 be the corresponding sublan-
rule to the necessitation of a given fluent, we get the set ofjuages oft-.

possible answers to a question. When we apply a r_ight ruleyefinition 1. C'is animplicit constraintif -C' -0 L.
we have to select an answer from the set of appropriate ones. Note that an implicit constraint must be true in every

The duality of left rules and right rules, then, corresponds tocausally explained model: if it were to be false in a model,

2 Cli\luélvl\llt%nm;r?éJ i?é%ngfal\qgggiiwaegg.Turner’s original exam- thend L would be true in that model, and so would be
' 9 &ue in that model, which is a contradiction.

ples these questions and answers come from the domain .

causal explanation: the operators give us answers to the quegroPosition 6. Suppose that the causal rules are such that,

tions that arise in the process of constructing a causally ex! ¢ > ¢, then e}therdmzz € Lhorgy € L". Define a

plained narrative. However, there is no need to limit thismodal operatort)’ by rules restricted to”: the right rule,

system to merelycausal questions, or causal explanations. for example, will be

In fact, Parsons and Jenning®&rsons and Jennings, 1996 TE A AP A

see alsdParson®t al, 1999) have described a consequence Trox

relation, Facr, Which is intended to capture the practice of , , ., ,

argumentation from a given set of basic arguments. TheiWheneverg; > v for all 7, ¥y,...,v; £ X, and where

system turns out (sd@Vhite, 2003) to be a special case of o5, 0; € £ for all . The left rule is S|_m|lar. Similarly, d_e-
fine a modal operatod” by rules restricted t&2”. Then, if

ours: to each proof of theirs . . .
P X e £,0X =2 " — 00X/, whereC” is a conjunction
Atacr (p, 4) of domain constraints itt”. Correspondingly, ifX”” € £,

"N~ 1 "
— which says that the argumentgdrom premisesA is valid, OXT =077,
given the basic arguments ik — we can associate a proof in Proof. For any X, 0'X + 0OX: we take the sequent’ X +
our system of 00X and applydX, which gives us a set of sequents of the
A Oap, form
whered, is the modality obtained by taking the basic ar- Prse-r O OX
guments inA as “causal” axioms (although, of course, they whereyy, ..., ¢’k F X: but now we can simply apply R.
need not be causal, and, in Parsons and Jenning’s case, theyThe converse is not so immediate. We have to prove
are not causal). C”,0X' + O’X’, and so we have to prove sequents of the
form
3 The Zhang-Foo Interpolation Argument C" 1, o FOX,

Zhang and Foo argue that reasoning about the frame proB‘-’h_e“?X'/e £', but where now thes are no longer restricted
lem can be made considerably more tractable if one uses {8 /i€ in £". We know that)y, ..., ¢ = X: re-order the)s
meta-hypothesis that “local queries require only local frame! Neécessary so that we have

axioms”[2002, p. 359 Making sense of this hypothesis de- e 2"

pends, of course, on being able to give a sense to “local”: m ﬁ L

Zhang and Foo interpret it using the idea of a sublanguage, so L W Vit Wk

thatlocal reasoning would be reasoning would be reasoningdy interpolation forg, there is a propositiod” € £ N £”
which could be carried out in some appropriate sublanguageuch that

So, as they write, Vit FOF

. engineers can localise their language so that it W F X
involves only the relevant components yet is suffi- Y S _
cient for specifying the system and expressing pos- ~ NOW, by assumption’ N £” = {T, 1 }, there are two cases:

sible future queries ... [AJnswering a query in the if =T, then we already have,, ..., ¢} X, and we can
local language might only require local frame ax- applyD'R.

ioms. Therefore the number of frame axioms will If ' =1, thenyy ,, ..., ¢y L, and sopy | A ... A @)
mainly depend on the size of the local language. is the negation of an implicit constraint itf’: we simply add

[2002, p. 358 it to C”, and we can prove the desired sequent. O



We now specialise to a particular class of theories: in these Thus, every causally explained model Bfis a pair of
theories, there will be temporally indexed proposition and ac€ausally explained models, one®Bf and one ofl”’: and we
tion symbols, and the “causal rules” will be of the form given have a local reasoning result very similar to Foo and Zhang’s.
in Table 3: that is, both heads and bodies will be conjunc- Results like these are not only useful for the tractability
tions of fluents and actions. Call such a theofluant-based of causal reasoning: they also play an important role in the
theory. metatheory. Consider a causal theory in McCain and Turner’s

Lemma 1. LetT be a fluent-based theory: then a modélis form: how do we verify its correctness? Suppose, for sim-

causally explained iff, for every conjunctidnof fluents and  Plicity: that we have a scenario with only one action occur-
actions M £ P — OP, rence: partition the vocabulary into two parts, one of which

(£') contains the action, together with its preconditions and
Proof. Any proposition ing can be put into disjunctive nor- Postconditions, whereas the oth&f'j contains all the other
mal form. So, suppose th&t = P, V...V P, where theP;s ~ Primitives. It is elementary to verify that the only model of

are conjunctions of fluents and action symbols. To work outS" in Which no actions occur is the one in which nothing
0P, we have to consider proofs of changes: consequently, we only have to verify correctness

for £, which is a much simpler affair.
Ui, ..., PV, VP

By cut elimination forg, and the form of the);, every such 4 Conclusion

proof comes from a proof of Makinson[2003, pp. 101.has argued that nonmonotonic con-
sequence relations are not closed under uniform substitution,
Y1,..., Y E P and that they do not need to be. This is, | would argue, too

hasty: the inclusiong’, £ C £ of this paper can be viewed
as substitutions, and the main results can be viewed as show-
- ing that the consequence relation is, in fact, closed under the
OpP=0R V... VOP, substitutions in question. The truth of the matter is surely
and this shows that, for such theories, propositions in thehis: although the consequence relation is not closed under
modal language can be put into “disjunctive normal form”; substitutionin general there are certain substitutions that it
the disjuncts here will be conjunctions of is closed under. Furthermore, knowing which substitutions
are possible tells us a good deal about the structure of the
logic — indeed, if Zhang and Foo are correct, this knowledge

for a suitablej. Consequentlyfor fluent-based theoriesve
have

1. conjunctions of fluents and action symbols, and

2. modalisations of fluents and action symbols. can be regarded as the key to a tractable grasp of the logic in
The result follows. O question.
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