TOWARDS A LOGIC FOR PRAGMATICS
GIANLUIGI BELLIN

Abstract. The logic for pragmatics extends classical logic in order to charac-
terize the logical properties of the operators of illocutionary force such as that of
assertion and obligation [7, 8, 2]. Here we consider the cases of assertions and
conjectures: the assertion that a mathematical proposition « is true is justified by
the capacity to present an actual proof of a, while the conjecture is justified the
absence of a refutation of a. We give unitary sequent calculi of type G3i and G3im
[29] with subsystems characterizing intuitionistic logic and its dual [16, 25, 6] and
also a fragment of classical reasoning with such operators. Extending Gddel’s and
McKinsey and A. Tarski’s translations of intuitionistic logic into S4, we show that
our sequent calculi are sound and complete with respect to Kripke’s semantics for
S4. Although the logic for pragmatics does not impose a philosophical view, the
ontological committments implicit in the formalism are at least as strong as those
of potential intuitionism [19, 20].

81. Preface. The logic for pragmatics, introduced by Dalla Pozza
and Garola in [7, 8] and developed in [2, 24], aims at a formal char-
acterization of the logical properties of illocutionary operators: it is
concerned, i.e., with the operations by which we performs the act of
asserting a proposition as true, either on the basis of a mathemati-
cal proof or by empirical evidence or by the recognition of physical
necessity, or the act of taking a proposition as an obligation, either
on the basis of a moral principle or by inference within a normative
system. ! The discipline of pragmatics (as presented, e.g., in [15])
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makes reference to the classical texts of 20th century philosophy
and philosophical logic, e.g., by Austin [1], Grice and Searle, and
includes a large body of linguistic research in a complex relation-
ship with semantics and other areas of linguistics, which at present
lies beyond the scope of our methods. For instance, the focus of
our current work is on impersonal acts of judgment, leaving the
consideration of speech acts to future developments. The present
task of a logic for pragmatics is to characterize the abstract be-
haviour of a few pragmatic operators, as it is manifested in highly
regimented forms of reasoning such as mathematical discourse, or
the foundations of laws.

The consideration of the impersonal operator of assertion in Dalla
Pozza and Garola’s pragmatic interpretation of intuitionistic logic
[7] has given an interesting insight in the interpretation of intuition-
istic and classical connectives. Their viewpoint can be sketched as
follows. There is a logic of propositions and a logic of judgements.
Propositions are entities which can be true or false, judgements are
acts which can be justified or unjustified. The logic of propositions
is about truth according to classical semantics, the logic of judge-
ments gives conditions for the justification of acts of judgement.
An elementary act of judgement is the assertion of a proposition
a, which is justified by the capacity to exhibit a proof of it, if « is
a mathematical proposition, or some kind of empirical evidence, if
a is about states of affairs. It is then claimed that the justification
of complex acts of judgement must be in terms of Heyting’s inter-
pretation of intuitionistic connectives: for instance, a conditional
jJudgement where the assertion of S depends of the assertibility of
« is justified by a method that transforms any justification for the
assertion of « into a justification for the assertion of 5.

In modern logic the distinction between propositions and judge-
ments was established by Frege: a proposition expresses the thought
which is the content of a judgement and a judgement is the act of
recognizing the truth of its content. In Frege’s formalism the ex-
pression - « expresses the judgement asserting the proposition
a; only truth-functional connectives and quantifiers are considered
and judgements appear only at the level of the deductive system.
It follows that there cannot be nested occurrences of the symbol
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“+” and that truth-functional connectives cannot be applied to
expressions of judgement. For instance the assertion

(1) Fermat’s last theorem holds but I don’t believe it.

cannot be formalized by the ill-formed formula - (F F A =B),
where F' expresses the statement of Fermat’s last theorem and B
my belief in it.

The distinction between propositions and judgements has re-
cently been taken up by Martin-Lof: in his formalism “a prop”
expresses the assertion that « is a well-formed proposition, and
“a true” expresses the judgement that it is known how to verify
a. Here propositions are given a verificationist semantics: to give
meaning to a proposition we must know what counts as a veri-
fication of it; indeed, by replacing Frege’s “I o” with “a true”,
Martin-Lof reveals that in his view it is impossible to separate the
truth of a proposition from the conditions of its verification.

Unlike Martin-Lof and in agreement with Frege, Dalla Pozza
and Garola distinguish between the truth of a proposition and
the justification of a judgement, and extend Frege’s framework by
introducing pragmatic connectives with Heyting’s semantics while
retaining Tarski’s semantics for the logic of propositions. In their
compatibilist approach classical semantics is extended rather than
challenged by intuitionistic pragmatics, the latter having a different
subject matter than the former. The task and the challenge for
Dalla Pozza and Garola’s approach is to characterize and explain
the relations between these two levels, which seem to take the form
of a reflection of pragmatics on semantics and of the interactions
between classical and pragmatic connectives.

Concerning the interactions between classical and pragmatic con-
nectives, some relevant facts are pointed out in [7, 8], such as

Fanp) ©FanFEEL and F(a—p) = (Fa)D(FpP)

The pragmatic level is reflected into an extension of the classical
semantic level through modal operators. Such a reflection is ex-
plained by the distinction between expressive and descriptive uses
of the pragmatic operators: for instance, a correct formalization of
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(1) would be  (OF A—B), where “00" describes justified assertibil-
ity. In the case of the operator of assertion the reflection is given
by Godel, McKinsey and Tarski’s translation of intuitionistic logic
into the classical modal system S4, namely

(Fa)M = Oa (¥, D 9)M = OWM — M)

(and A™ = L where A is the unjustifiable act and L is falsity;
here we define ~ ¥ =4 ¢ D A). In [8] the same distinction is
made with reference to the operator of obligation, whose descriptive
use is given by the necessity operator of the deontic system KD.
Through modal reflections, the logics of the illocutionary operators
of assertion and obligation are given a classical Kripke semantics
on preordered frames and on frames without terminal worlds, re-
spectively. An important question is the adequacy of reflection:
does Kripke’s semantics actually represent all the mathematical
structure of the logic of illocutionary operators and does it char-
acterize its most significant properties from a philosophical view-
point? Should a mathematical treatment of pragmatics be based
on the typed A-calculus, categorical logic or game-theory rather
than Kripke semantics? These are well-known questions to the
philosophical interpretations of intuitionism throughout the 20th
century (cfr. [9]).

Another philosophical question concerning the justification of
judgements should be mentioned here, which has recently been
raised by Martino and Usberti ([20], pag. 83) in a discussions of the
intuitionistic philosophy of mathematics. Can we say that proofs
have a potential existence, where “possibility is not understood in
the traditional intuitionistic sense as knowledge of a method” to
produce such a proof, but as “knowledge-independent and tense-
less” possibility? Professor Prawitz accepts this of possibility:

“That we can prove A is not to be understood as meaning that it
is within our practical reach to prove A, but only that it is possible
in principle to prove A. ... Similarly, that there exists a proof of
A does not mean that a proof of A will be constructed but only
that the possibility is there for constructing a proof of A. ... I see
no objection to conceiving the possibility that there is a specific
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method for curing cancer, which we may discover one day, but
which may also remain undiscovered.” ([23], pag. 153-154)

Martino and Usberti use the expression “potential intuitionism” to
indicate the point of view of an intuitionist who believes that proofs
have a potential existence independently of our present knowledge,
and “orthodoz intuitionism” for the view that there are no potential
proofs. Presumably, for an orthodox intuitionist intuitive proofs
are nothing but acts of knowing, whose aim is to make a judgement
evident and which have no ontological status, not unlike free choice
sequences, which have no tense-less identity independently of the
acts of choice constituting them.

Martino and Usberti claim that the point of view of potential
intuitionism inevitably entails a compatibilist philosophy with re-
spect to classical logic:

“once a tense-less notion of provability has been espoused, the com-
mitment to an objective realm of propositions is unavoidable. For,
if the possibility to prove a proposition A is conceived as atemporal,
then A itself becomes an atemporal entity.” ([20], pag.84).

where “proofs and propositions have atemporal existence” means

“the existence of a proof and of a propositions is independent of
the contingent fact that in human history the proof has been found
and the truth or falsity of the proposition has been recognized.”

It follows that the potential intuitionist can understand the law of
potential excluded middle

7 A is potentially true or A is not potentially true”

in its own framework and therefore reconstruct Tarski’s truth def-
initions in it.

We cannot discuss Martino and Usberti argument here. However,
their characterization of potential intuitionism seems to fit Martin-
Lof’s point of view: what makes a judgement “a true” evident
(and thus justified) is a proof ¢ of a, where the proof is reified, so
that it can be explicitly represented by the primitive expressions
t . a of the formalism. It is remarkable feature of his type theory
that it axiomatizes an intuitionistic and predicative notion of what
an informal proof is. It should also be mentioned that Martin-Lof
does not include in his system the notion of a free choice sequence,
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which alone makes it possible to derive a contradiction from the
law of excluded middle.

1.1. Conjectures and assertions. The contribution of this
paper to the project of logic for pragmatics is the treatment of
the illocutionary operator of congecture “ #’ regarded as dual of
that of assertion “F”; this opens the way to an extension of in-
tuitionistic logic and Heyting algebras to dual structures such as
co-Heyting algebras, following Lawvere, Makkai, Reyes, Zolfaghari
and others [16, 25]. Here we motivate our work by showing how
the standard and dual intuitionistic logic fit in the extended system
and also how richer interactions between semantic and pragmatic
connectives yield a translation of a fragment of classical logic into
intuitionistic pragmatics. Also we must briefly indicate an intended
interpretation of the extended language in common sense reason-
ing, how the extended system fits in the philosophical discussion
of intuitionism and how it could be used to formalize some areas
of informal reasoning.

What is the justification of an impersonal act of conjecture # a,
where « is a mathematical statement? We claim it is the absence
of a refutation of «, i.e., the absence of a proof of the falsity of «.
However, we must explain what “absence” means in this context.
We would like to give a characterization of impersonal illocution-
ary acts in a logical theory, which should hopefully be the basis
of a theory of speech acts by relativization. Now, speaking at the
very beginning of the 21st century, one is justified in conjecturing
the falsity of famous statements such as (i) Goldbach’s conjecture,
(ii) P # NP and also (iii) the truth or the falsity of the contin-
uum hypothesis: as a matter of fact, as long as we know, nobody
has produced a proof of (i) and (ii) and also, thanks to Gdodel
and Cohen, we know that there can be no proof of the continuum
hypothesis not of its negation, unless we modify our current un-
derstanding of what a set is. Perhaps we can say that we have
a conclusive justification for the conjectures in (iii) and inconclu-
sive justification against (i) and (ii): in any case, at present all
such acts are felicitously made. Nevertheless, (i) and (ii) may very
well be true and a proof of them may be around the corner: in a
few decades conjecturing their falsity could become infelicitous. It
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seems to us that if an smpersonal act of conjecture # « is justified,
then it should remain justified when instantiated in any period of
history: after all, the circumstances of the present time are relative
to the persons now living. Therefore to say that # « is justified by
the “absence of a proof” must mean that a proof of =« is nowhere
to be found, either now, in the past or in the future.

How do we produce a conclusive justification of #a? Clearly by
proving that there can be no proof of =, where the proof of this
impossibility must also be of a mathematical nature. Notice that
this proof is already a justification of the assertion ~ + —a, and
therefore the consideration of conjectures does not extend the ex-
isting pragmatic theory. Can there be an inconclusive justification
of #a? It seems that we are now in an interesting dilemma.

(a) On one hand, we could say that # « is justified inconclusively
if there is no proof of the truth of =« but also no proof that
there is no proof of —a, therefore no proof of «a; but then it
would never be possible to improve our inconclusive conjecture

# « by giving a proof of the truth of a.

(b) Alternatively, we could claim that # « can only be justified
conclusively; but makes impersonal conjectures very far re-
moved from the conjectures felicitously made made by us.

Further explanations depend on the ontological status of potential
proofs. If there are no potential proofs, then there is no logical al-
ternative to (b). If we admit potential proofs, then we can still give
a logical status to conjecturing # a with inconclusive justification,
but we still need to avoid the definition in (a). The solution comes
from an improved explanation of what it means to assert that o
is true. We claim that the assertion of the truth of « is justified
not merely by the existence of a proof of the truth of a, but by
the capacity to exhibit an actual proof t of a: an act of asser-
tion that « is true is felicitous if we can explicitly produce the pair
t : . At present we cannot definitely characterize what constitutes
inconclusive evidence for a justified impersonal act of conjecture;
however by contrasting conjectures with assertions in the refined
definition, we conclude that conjecturing is similar to betting and
that asserting provability without having a proof is getting close
to bad manners.
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Op
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TABLE 1. The modalities of S4

In this perspective, we may distinguish between # a and ~ F -«
and between a weak negation ~ § (it is doubtful that ¢) and the
usual intuitionistic strong negation ~ ¢, which is the assertion of
the negation of §; their modal translations are (~ )M = &-6M)
and (~ 0)M = O-6M). Tt is well-known that there are only seven
“modalities” in S4 (including no modality), the ones in Table 1,
and that applying negation to this Table yields a symmetry along
the horizontal axis together with a substitution of —p for p. More
precisely, the fragment of the Lindenbaum algebra on one generator
without binary operations is a lattice given by the figure in 1 and
by its dual. Notice that of these seven modalities of S4 only three
are expressible in usual intuitionistic logic, namely

(»—p)D = Op (NN I—p)D = OoOp (N |——|p)D = OOp

and that in the language extended with the operator of conjecture
and with weak negation we give a pragmatic counterpart to three
other modalities of S4:

(xp)" = Op  (~hwup) = 000p  (~up)Y = OOp

Next we can define other conjectural connectives such as a weak
implication “6 > 0’ (6 may imply §'), a weak conjunction & A ¢’
(possibly 6 and possibly 0') and a weak disjunction 6 Y ¢ (possibly
d or possibly ¢'); thus we can study the proof-theory of co-Heyting
algebras (see [6]).
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Hp
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TABLE 2. Asserting and conjecturing

A Heyting algebra is a (distributive) lattice A in which the oper-
ation of Heyting implication is defined, which satisfies the adjunc-
tion 2

PAg=ST

p<qg—r.
A co-Heyting Algebra C' is a (distributive) lattice such that the
opposite C'? is a Heyting algebra. In a co-Heyting algebra the
operation of co-implication or subtraction is defined, satisfying

r<qVp
rN~qg<p

Conjectural connectives allow us to develop the proof-theory of co-
Heyting algebras in our framework. We write v for formulas that
are conjectures or result from conjectural connectives, and 9 for
formulas resulting from assertion or assertive connectives; we let §
= 19 or v. The modal translation of the conjectural connectives is
(Ha)M = O O(wM A =)
(v Av)M = VM AV (v Y )M = vM v ol
Since we distinguish between assertive and conjectural expressions,
we are not working in bi- Heyting algebra, i.e., a structure that is
both a Heyting algebra and a co-Heyting algebra. But interesting
result appear if we extend the framework by allowing a free interac-
tion of assertions and conjectures through mized-type connectives,

2The overloading of symbols shall not create confusion between meet, join
and Heyting implication and the classical connectives.
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for instance
~~py = v and ~~9 = 4.

The modal translation of mixed-type implications and subtraction
is unchanged; the translation of mixed-type conjunction and dis-
junction becomes

For the resulting generalized system ILP we prove soundness and
completeness with respect Kripke’s semantics. Corrado Biasi [5]
has also proved the cut-elimination theorem for ILP.

In the generalized system ILP much richer interactions are found
between classical and pragmatic connectives. Considering weak
implication 61 = 0o and its dual, strong subtraction 6; . do and
their modal translation

(61 = 0)M = O(6M = 6M) and (6 5)™ = O(6M A —621)

we can easily verify that the following rules are valid and semanti-
cally invertible with respect to the modal translation.

F—a Hoa o H(a—fF) FlaAn=-p) F(aAp) H(aVp)
~Ha ~Fa Fas-#Hp Fax#Hf8 Fankp HaY Hf

As a consequence, a fragment of the classical propositional lan-
guage in the lower level sematical part can be represented in the
intuitionistic pragmatic part.

What applications are expected for our rich formalism? Which
forms of scientific or common sense reasoning involving conjectures
and assertions could we wish to formalize in it? As Imre Lakatos
showed, conjectures play a fundamental role in mathematics, es-
pecially from a heuristic and dynamical point of view, but when
a mathematical theory is mature for formalization, then usually it
can be represented by a formal system whose axioms are assertions
and whose rules of inference transform assertions into assertions.
The naif view that a concept (such as that of physical space) could
be captured once and for all by a unique mathematical formaliza-
tion may be seen with skepticism today, but the formalization of
mathematical theories as conjectures could play a significant role
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only in a metamathematical consideration of successions of theo-
ries as approximations of the diverse uses of a scientific concept.
Conjectures play a fundamental role also in natural sciences: the-
oretical constructs are intrinsically conjectural, as Popper pointed
out. However, it has also been argued that the distinction between
theoretical constructs and empirical evidence may not be obvious
as Popper made it, a discussion which is clearly beyond the scope
of this work.

Weak and strong subtraction may be regarded as paradigms of
an investigative form of common sense reasoning. If the known

that the facts 9 entail a disjunction of conjectures vy, ..., Upy1,
then from the meaning of “subtraction” we know that ¥ \ v,11
entails the disjunction T = vy, ..., v,. The \-R rule gives us

an operational interpretation of the meaning of “¥ \ v,41”: this
conjecture is justified as an alternative to T on condition that ¥ s
proved and moreover that the conjecture v, 1 entails Y.

A form of reasoning where the distinction between conjectures

and assertions plays an essential role in a highly regimented setting
is legal reasoning. Consider the sentence

“On Sunday, April 26 1998, Monsignor Juan Gerardi Conedera,
Awuziliary Bishop of Guatemala City, was killed by a member of a
paramilitary death squad”

Consider also the (fictional) scenarios in which such a statement
might have been made, in English or in Spanish, by different sub-
jects with different intentions: (a) as an assertion by the murdered,
reporting to his boss, (b) as a suggestion by gangsters to intimidate
political opponents, (c) as a statement by the prosecutor during the
trial, (d) as a confession by the murdered during the trial, (e) as a
part of the sentence of guilt read by a judge at the end of the trial,
(f) as a political statement in the US Senate, aimed at closing down
the Army School of the Americas, where the murderers had been
trained.® Notice that although the statements (a) - (f) would have
different illocutionary forces and diverse intentions and effects, in
a legal procedure the force of an impersonal assertion could be

30ur fictional scenarions are based on real events, see, e.g.,
http://www.peacehost.net/soaw-w/gerardi.html and
http://leahy.senate.gov/press/199804/980428 .html.
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recognized only to the statement (e), while under the presumption
of innocence of the defendant proper of a fair trial statement (c)
can only be an accusatory conjecture. Since further evidence can
cause the trial to be reopened, it seems that the evidence for such
an impersonal assertion should be regarded as inconclusive.

§2. The pragmatic language L”.

DEFINITION 1. (Syntaz) (i) The language £F is built from an
infinite set of propositional letters p, po, p1 ... using the proposi-
tional connectives -, N, V, —; these expressions are called radical
formulas. The elementary formulas of the pragmatic language are
obtained by prefixing a radical formula with a sign of illocutionary
force “F” and “ #’. There are elementary constants, /\ for absur-
dity, and \/ for validity. Finally, the sentential formulas of LT are
built from the elementary formulas and the constant A, using the
pragmatic connectives ~, N, U, D, ~, =, A and Y.

(ii) (Formation Rules) The pragmatic language L£” is the union of
the sets Rad of radical formulas and Sent of sentential formulas.
These sets are defined inductively by the following grammar:

a:=p|l-alarhalaVa|la—al
b =9 |v|
9 =ta| NI\ | ~6656[6N5]5U5 |

vi=wal N[\ | ~6[6=0[6Y6[5A0]

We use the letters «, 3, ay, ... to denote radical formulas, n, 1y,
...... for elementary sentential formulas, 9, ¥4, ... for assertive
expressions and v, vy, ... for conjectural expressions.

The intuitionistic fragment of the language £F is obtained by re-
stricting the class of elementary sentences to those with atomic

radical only:
/\, \/, Fp and #p.

DEFINITION 2. (Informal Interpretation) (i) Radical formulas are
interpreted as propositions, with the Tarskian classical semantics,
as usual.
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Sentential expressions ¥ and v are interpreted as interpreted as

impersonal illocutionary acts of assertion and conjecture, respec-
tively. Illocutionary acts (and the sentential expressions expressing
them) can be “ustified” or “unjustified”:

1

o

10.

11.

12.

13.

2
the

.\ is never justified and \/ is always justified.

b« is justified if and only if there is a proof that « is true; it is

unjustified otherwise.

H « is justified if there is no refutation of «, i.e., no proof that «

is false; it is unjustified otherwise.

~ ¢ is justified if and only if there is a proof that ¢ is unjustified;

it is unjustified otherwise.

. ~ ¢ is justified if and only if there is no proof that § is justified; it
is unjustified otherwise.

. 01 D 09 is justified if and only if there is a proof that a justification

of §; can be transformed into a justification of do; it is unjustified,

otherwise.

01 > & is justified if and only if there is no proof that §; is justified

and Jo is unjustified; it is unjustified, otherwise.

. 01 X 09 is justified if and only if there is a proof that a there
is justification of §; and no justification of do; it is unjustified,
otherwise.

. 01\02 is justified if and only if there is no proof that ¢; is unjustified

or Jo is justified; it is unjustified, otherwise.

91 N g is justified if and only if both ¥, and ¥ are justified; it is

unjustified otherwise. Similarly, ¥ U ¢ is justified if and only if

either 91 or ¢5 is justified.

vNd and §Nw are justified if and only if there are proofs that both

v and J are justified; they are unjustified otherwise. Similarly, vU¢

and § U v are justified if and only if there is a proof that either v

or ¢ is justified.

v1 A vy is justified if and only if both v and v are justified; it is

unjustified otherwise. Similarly, v; Y vy is justified if and only if

either vy or vg is justified.

YA and § A9 are justified if and only if there is no proof that either

¥ or § is unjustified; they are unjustified otherwise. Similarly, ¢ Y ¢

and § Y ¢ are justified if and only if there is no proof that both
and § are unjustified.

.1. Topological interpretation. A mathematical model for
system LF is obtained through a topological interpretation.
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DEFINITION 3. (topological interpretation). Let S be a set, let N,
U and \ be the usual operations of intersection, union and (binary)
complementation defined on the powerset p(S) of S, let (X)° be
S\ X and let I: p(S) — p(S) and C : p(S) — p(S) be the interior
and closure operators, satisfying

I(X)CX XCC(X)
I(X) CI(I(X))  C(C(X)) € C(X)
XCY=IX)CI(Y) XCY=C(X)CC(Y)
C(X)=(IX) IX)=(CX))*
A topological interpretation 6* of the full language £* is given by

assigning to each atomic formula P a subset P* of S and then by
proceeding as follows:

N =aq 0 M = S

(ra)* =g I(a¥) (#Ha)* =4 C(a¥)

(~O) =g I((89)9) (~0) =a C((6")°)
(61D &)* =4 I((6F)°U8))  (d1Nd)* =4 C((5])\63)
(01 02)* =g I((67)\ 63)) (01 = &) =¢ C((61)°UH)
(01Mda)" =g T(67) NI(65) (01 Y d2)" =g C(07) UC(d3)
(G1Ud)" =g T(67)UI(63) (01 A d2)" =g C(67) N C(63)

2.2. Modal interpretation. Another mathematical interpre-
tation is obtained through an extension of Godel, McKinsey and
Tarski’s modal translation ( )° into the logic S4. The language
of S4, Kripke’s semantics and sequent calculus for it are in the
Appendix. The language L” is translate in S4 as follows:

DEFINITION 4. (S4 translation)

WM =y 1 WM =y T
(Fa)¥ =y Ba (#a)M =y oo
(~ M =g DM (RO =y -
(61 D (52)M =df D((S{M — 5%4) (61 ~ (52)M =df 0(5{” A _|5é\4)
Grd)M =gy OGMA-0M) (5= )M =g (M s )
(191 N 192)M =df 19{\/[ A Q%VI (’U1 Y U2)M =qf U{V[ \Y Ué\/"
(191 U 192) =df 19{\/[ V 195\/[ (’U1 A Uz) =qf U{V[ A Ué\/"
If §; isan v, for i =1or 2, then Ife;isad for ¢ =1or 2, then
((51 N 52)M =df D(S{M A Déé\’f (61 Y 62)M =df OE{M \% 063/‘[
((51 U (52)M =df D(S{VI V Ddé\/" (61 A 62)M =qf OE{VI A 063/[
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§3. Sequent calculus for the logic of pragmatics. The se-
quent calculus for the logic of pragmatics is gigantic. It is a unitary
system [11], in the sense that it must contain fragments which for-
malize classical and intuitionistic reasoning, respectively: the clas-
sical fragment contains rules for the radical part of the pragmatic
language with classical semantics; the intuitionistic fragment con-
tains rules for the pragmatic connectives only, thus in this fragment
the radical parts are regarded as atomic and remain unchanged
throughout a derivation. Moreover, to represent the reflection of
the pragmatic part into the radical part within the calculus, the
sequent, calculus for S4 should also be added to the classical part.

Here it is convenient to keep the fragments separate. We shall
deal mostly with calculi for the intuitionistic fragment ILP, of
which we prove soundness, completeness and finite model prop-
erty for Kripke’s semantics through the S4 translation; the cut-
elimination theorem for ILP has been proved by [5]. For a frag-
ment of the classical language we shall also consider a basic classical
sequent calculus whose rules act on the radical part of the formulas
in the sequents; we shall also show that there is a translation of
this fragment in ILP such that a sequent is provable in the basic
sequent calculus if and only if its translation is provable in ILP.

The official calculus ILP for the Intuitionistic Logic for Pragmat-
ics is a system of type G3i in the classification of Gentzen systems
by Troestra and Schwichtenberg [29], where the rules of weaken-
ing and contraction are implicit. Gentzen’s familiar restriction for
intuitionistic sequents is generalized, by using sequents with privi-
leged areas in the antecedent and in the succedent and by requiring
that each sequent must contain at most one privileged formula.

DEFINITION 5. All the sequents S are of the form

O;¢e= ;7
where
e O is a sequence of assertive formulas 91, ..., U
e T is a sequence of conjectural formulas vy, ..., vy;

e ¢ is conjectural and € is assertive and at most one of €, €
occurs in S.
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The rules of ILP are given in the Appendix II. The main result
of this paper is the following theorem:

THEOREM 1. The intuitionistic sequent calculus ILP without the
rules of cut is sound and complete with respect to the modal inter-
pretation in S4. The finite model property holds for ILP.

In order to prove the completeness theorem for ILP, we reduce
the problem to the completeness of S4 and use the “semantic
tableaux” procedure for S4 given in Appendix I. More precisely,
given an ILP sequent S of the form © ; ¢ = ¢ ; T we consider
its modal translation S™, namely OM M = &M YTM and apply
the “semantic tableaux procedure” to SM. If SM is falsifiable, in
a finite number of steps the procedure yields a Kripke model M
on a preordered frame which falsifies S™, and it is regarded as a
countermodel for S. Otherwise, S™ is derivable in the sequent cal-
culus for S4 and we must show that S is derivable in ILP. We find
it convenient to introduce an auxiliary system FILP equivalent to
ILP and to prove that if S™ is derivable in the sequent calculus
for S4 then S is derivable in FILP.

§4. FILP. The auxiliary system FILP of Full Intuitionistic
Logic of Pragmatics generalizes intuitionistic sequent calculi with
multiple succedent, such as the systems G3im in [29] or the logic
FILL (Full Intuitionistic Linear Logic) by De Paiva and others
(from which we take the acronym). As FILL relaxes the intu-
itionistic restriction on the succedent, so in FILP the distinction
between two areas in the antecedent and sucedent of sequents is
removed and the restriction on the pair €, ¢ is relaxed whenever
this is possible from a logical point of view. In this way, FILP
retains exactly those restrictions on the sequent-premises S of its
rules which are needed for S™ to preserve the restrictions on the
modal inferences O-R and <-L of S4. The rules of ILP and FILP
for which it is not possible to relax the restriction on the sequent
premises are marked with an asterisk (*). Because of its close-
ness to sequent calculus for S4, the system FILP may have an
independent interest in the logic for pragmatics.
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identity and pragmatic axioms

logical axiom:
5,0,Y = 4§67

absurdity aziom: assertion-conjecture: validity aziom:
oANYT = O T ra6T = 0.1 na 61 = o,\/,T

structural rules
left exchange: right exchange:
9()’190;1913@11TI = (_)I"r (_),’rl = @IaTOJUOanTl

@0,291,290,@1,TI = (—)I?T G’TI = @I’TOJUI’U()aTl

TABLE 3. FILP, identity and structural rules

LEMMA 1. A sequent ©,Y = O Y is derivable in FILP
(without cut) if and only if Fsy OM, Y™ = ™ TM is derivable
in S4 (without cut).

The “only if” part is left to the reader. To prove the “f” part,
let d be a derivation in S4 of a sequent S, where S is a FILP
sequent. Given a sequent derivation d and a formula-occurrence «
in a sequent S in d we can define the notion of ancestor [descendant]
of v in d as usual and so it is clear what it means to say that a
formula 3 in a sequent S is traceable to a a formula « in a sequent
S’, when S’ occurs above S. To simplify the proof we make some
assumptions on the structure of d which are summarized in the
following proposition.

PROPOSITION 1. Let S be a FILP sequent. If SM is derivable
i the sequent calculus for S4, then there exists a derivation d of
SM with the following properties:

(a) Let Z be an application of V-L [A\-R]. If the principal formula
of Z is Oy V Oy [Oyy AOys], then the inference immediately
above T on both branches is O-L [&-R] with principal formula
the active formula of T.
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ASSERTIVE LOGICAL RULES

connective of type 9 — ¢

(*) ~R: ~L:
0,9 = T ~ 9,0, 7 = 9,07
@,T’ﬁNﬁ,@’,T N191®=T, = e’aT

connectives of type ¥ x ¥ — ¢

(*) >-R: O-L:
0,9 = 95,7 91 D92,0, Y = 91,0, T 92,91 D92,0,T = 7T
0,T = 91D 39.,0',7T 91D 92,0,T = 0,71
-R: N-R:
6,7 = 9,0, T 6,7 = 9,07 90,91,0,Y = @', T
0, T = 9:N¥Y,,0,7T Yo NY,0,T = 0,71
U-R: -L:
0,Y = 9o,91,0,T 9,0, T = ©,T 9,0,Y = 0.7
0,T = YU, 7T P UV1,0,Y = 0,7
(*) ~eR: ~eL:
0 = 9,7 92,0, = T 190\\191,190,(“),T’ = 191,@',T
0,1 = Y192,0", 7T Yox%1,0,T = 0,71

TABLE 4. Sequent calculus for FILP, the standard fragment

Similarly, let T be an application of A-L [V-R]. If the prin-
cipal formula of T is Oyy A Oyy [Oy1 V O, then the two
inferences immediately above I are applications of O-L [O-R]
and descendants of their principal formulas are active in T.

(b) Let T be an application of O-L [O-R] and let f = —y or v; —
Y2 or y1 A —yo. If the principal formula of T is OF [Of], then
the inference ' immediately above T is an application of —-L
or —-L or A-L immediately below an inference —-L [—-R or
—-R or A-R immediately below a —-L] respectively, and the
principal formula of T' is the active formula B of T.

(c) Let T be an application of O-R [O-L] and let f = —y or y; —
Y2 or y1 A —yo. If the principal formula of 7 is Of [Of], then
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CONJECTURAL RULES

connective of type v — v

~-R: (*) ~-L:
0,Y v = 0.,7,~v e = T
0,7 = e,T,~v 0,~v,T = 6.7

connectives of type v x v - v

=-R: (*) >-L:
0,Y v1 = O,Y,vs,v1 > V2 0, = T,u; O,v3 = T
0,T = O, ,T,v; > vy 0,Y v »vy = O'T
A-R: A-L:
0,Y = 0,7, v 0,T = 0,71, u 0,ve,v1, T = O, 7T
6,T = 0,T,v9 A v O,v0 Av1, T = O'T
Y-R: Y-L:
0,Y = 0, 7T, v1,vs 0,v,Y = 0,7 0,v:, Y = 07T
60,7 = ©,7T,v1Y v O,v1 Y v, T = ©,7T
~-R: (*) ~-L:
0,Y = O, 7, v1,vo\ V2 0,v1, T = O T, vo\ v2 0,v1 = T,v
@,T' = @’,T,U1\U2 (‘),’(}1 \’()2,T’ = @',T

TABLE 5. Sequent calculus for FILP, the dual fragment

the inference ' immediately above I is an application of - — R
or —-R or A-R immediately below an inference = — L [—-L
or —-L or A-L immediately below a —-L] respectively, and the
principal formula of T' is the active formula B of T.

(d) Let T be an application of V-R, N-R, N-L, V-L with principal
formula B of the form
(I) Og Ay in the antecedent or Oy V Oy in the succedent;
(IT) Oy VO, in the antecedent or Oyg AO7y; in the succedent.
Then the sequent-conclusion of I has the form

IL,OT, OA, A = A, O, OATT

where I1, II" are pairwise disjoint sequences of atoms and where
A and A" are sequences of formulas of the form (I) or (II).
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MIXED ASSERTIVE RULES

connective of type v — ¥

(*) ~R: L
0,v = T ~0,0,T = 0,0 7T
@,T’ﬁ""l},@’,’r N’U,@,T’ = ®I7T

connectives of type 9 x v > %, v x ¥ = J,v xv =9

(*) O-R: O-L:
0,61 = 6§, 01 262,60, T = ©0,5,7 82,01 D 32,0, 7 = O, 7T
0,7 = 61 D6,0,7T 61 D62,0,7T = O,7T
(*) N-R: N-L:
0 = 6,7 0 = 6,7 80,01,00N 61,0, T = O',T
0,T = § N 6,7 60Né1,0,Y = 0,7
(*) U-R: U-L:
0 = 6,7 80,00 U81,0,T = O, 7T 61,00 U 61,0, Y = 0,7
0,7 = §HUI,O,T S U,B0,T = 6,7
(*) ~<R: oL
0 = 6,7 62,0 = T So01,0,60, Y = 6,0, 7
0,7 = §ix§,0,T dox01,0,7 = ©,7

TABLE 6. FILP, mixed assertive rules

The proof of the proposition can be obtained by implementing
conditions (a), (b), (c) and (d) as a search-strategy in the “semantic
tableaux” procedure.

If d is a sequent derivation, the size s(d) of d is 1 plus the number
of inferences in d (not counting exchange and weakening rules).
The proof of the lemma is by induction on the size of the given
derivation d of SM in S4, assumed to satisfy conditions (a), (b)
(c) and (d) of the Proposition; in the proof we construct a FILP
derivation d~ of S. We consider the last inference of d, having
classified the inferences in four cases, we indicate how to prove the
inductive step in in each case and give all details only for some
example.
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MIXED CONJECTURAL RULES

connective of type ¥ — v

~-R: (*) ~-L
0,T.9 = 0T~ 0 = 19
0,7 = 0,1T,~49 0,~4, T = 6,7

connectives of type ¥ x v =5 v,v X ¥ = v,9 X ¥ = v,

>-R: (*) >-L:
0,01, Y = 0,6,Y,61 > 5 0, = 6,T 0,60 = T
0,7 = 0,7,d; > b 0,761 =6 = 60,7
A-R: (*) AP-L:
("),T’ = @’,T,50A51,50 @,T’ = @’,T,60A61,61 0,6 = T
0,7 = 0,7, A 0,80 A1, T = ©'7T
Y-R: (*) r-L:
@,T’ = @’,T,51 Y 62,061,902 0,61 = T 0,60 = T
0,T = ©/,7,01Y 2 0,61 Y §,T = 6,7
~-R: (*) \-L:
@,T' = @I,T,51,51 \ d2 @,él,T’ = @',T,(51 N d2 ("),(51 = T,(Sz
0,7 = ©0.7,0, <6 0,01 <0, T = O, 7T

TABLE 7. FILP, mixed conjectural rules

Case 0. If a sequent S is an axiom of one of the forms
I'Nda = Oa,A or I''Ca=Ca,A o T, L =>A o T =>AT

where I' and A are translations of £ formulas, then S is a logical
axiom or an absurdity or validity axiom, respectively, of FILP.
If SM has the form I',0a = <o, A then S is an assumption-
conjecture axiom of FILP.

Otherwise the derivation d has size greater than 1 and we con-
sider the last inference 7 of d. There are four cases:

Case 1. Propositional S4 rules corresponding to invertible prag-
matic rules. This case excludes inferences with principal formula
OvoV Oy, or OvyyAOx; in the succedent or Oyg Ay or Oy VO in
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the antecedent: for instance, the rule corresponding to an inference
V-R with principal formula Oy V Oy is a right mixed assertive
disjunction U-R which is non-invertible.

Subcase 1.1. If the last inference Z has principal formula 9} A
Y1, Yo V1 vy Avy or vy V vy, then the sequent-premises are also
translations of a FILP sequent and we build the derivation d— by
applying

e cither an assertive rule N-R, N-L, U-R, U-L;

e or a conjectural rule A-R, A-L, Y-R, Y-L.
Subcase 1.2. Suppose the last inference 7 has principal formula
Ovo A Oy or Oy V Oy, in the antecedent Oy V Oyp or Oyg A Oy
in the succedent.

If the last inference Z is V-L, then by clause (a) of the Proposition
d has the form

dl,l d2,1
@Ma TIM,/YOa D/YO = TM ®Ma TIMa 11, D’ha = TM
O-L M ~iM M O-L M ~iM M
\/L® XY Oy =Y oM Y™ Oy,= 7T

oM Y™ Oy v Oy, = TM

Let d; and dy the immediate subderivations of d. By applying V-L
to the sequent-conclusions of d; ; and dy we derive a sequent which
is translation of

St @,TI,60,60U61 =T

letting v, = 6;. Moreover s(dy 1)+ s(da) +1 < s(dy) + s(dg) +1 =
s(d) thus we may apply the induction hypothesis and obtain a
derivation of Sy. In a similar way we obtain a derivation of

SQ : 61T1751a60U61 =T
We build the derivation d~ by applying

e a mixed assertive rule U-L.

The cases when 7 is a A-L with principal formula O~y A Ov; or
a V-R [or A-R] with principal formula Oy V Oy [or Oy A O]
are similar and dealt with by an application of

e a mixed assertive rule N-L,

e a mixed conjectural rule A-R [or Y-R].



TOWARDS A LOGIC FOR PRAGMATICS 23

Case 2. Modal rules OL or OR corresponding to invertible prag-
matic rules. The principal formula of such an inference 7 is ei-
ther Of in the antecedent or </ in the succedent, where 3 is =,
Y1 — Y2 or y; A =y, and where 7, v, and 7, are translations of £”
formulas.

Suppose ¢ = O(6M A —6)). By clause (b) in the Proposition,

d has the form
dip

di1 M T, = O(M A =6M), A
T = 6M OMA-6M),A  T,= —6M oM A=), A
R T = oM A3l o (01 A oM, A
T = oM A—o0M), A
where T' = O™, Y™ and A = @M Y™, The endsequents of dia
and of d; » are translations of FILP sequents and s(d; 1) < s(d),

s(d12 < s(d) hence we can apply the inductive hypothesis and
obtain the desired derivation d~ by applying \-R.

If the principal formula of Z has another form 0Of to the left or
& to the right, we proceed in a similar way, using

either the assertive rules ~-L, D-L, ~L;

or the conjectural rules ~-R, >-R, \-R;

or the mixed assertive rules ~-L, D-L, \-L;

or the mixed conjectural rules ~-R, ~-R, \-R.

Case 3. Modal rules O-R or O-L corresponding to non-invertible
pragmatic rules. The principal formula of such an inference 7 is
either O in the succedent or < in the antecedent, where 3 is —v,
1 — Y2 or y; A =y, and where v, 7; and 7, are translations of £”
formulas.
Let o8 = (61 A =637). By clause (c) in the Proposition , the
derivation d has the form
dy1
Or, 6M = 6M oA
Or, 6M | —6M = oA
ar, sM A —vlf = oAM
ar, 0(5{\/] A _|5é\/[>7 = TM

A-L
O-L
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where OI' = O™ and ©¢A = Y™ and the desired derivation d~ is
dy 4
@, 0 = 52, T
0,6 N by, = T
If the principal formula of Z has another form 0Of in the succedent
or &f in the antecedent we proceed in a similar way, by applying
one of the following rules:

~-L

the assertive rule ~-R or D-R or ~-R;

e the conjectural rule ~-L or >-R or \-L;

e the mixed assertive rule ~-R or D-R or “-R;
e the mixed conjectural rule ~-L or >-L or \-L.

Case 4. Propositional rules corresponding to non-invertible prag-
matic rules. The remaining cases are those of inferences whose
principal formula 3 has one of the following forms:

(I) Oy A Oy in the antecedent or Ovy V Ov; in the succedent;
(IT) 9V Oy in the antecedent or Oyy A Oy, in the succedent.

where 7y and 7, are translations of £F formulas. By clause (d) of
the Proposition, we may assume that the endsequent S of d has
the form

I,Or, OA", A = A, O, A I

where II, IT' are pairwise disjoint sequences of atoms and where A,
A’ are sequences of formulas of the form (I) or (/7). We consider
the part d of d which is below all applications of O-R or <-L: thus
d is a tree whose leaves are either axioms, or sequents of the form

Sy ar, o, = ©A or O = Oay, CA

In each branch B of d below an S; we find an application of weak-
ening with conclusion SZ and then a sequence 73, ..., Z; of appli-
cations of V-R, A-R, V-L, or A-L, whose principal formula 3 is (an
ancestor of a formula) in A or in A’. Among these S4 inferences we
are searching for one which may be relevant for our desired FILP
derivation. We consider the inferences Z;, of a branch B starting
with j = 1. Let S;o [and S; ] be the sequent-premises of Z;. We
have the following cases:

(a) B = Oy V Oy, and B is not traceable to ay, i.e., ay is an
ancestor neither of Oy, nor of Ov;. In this case we remove
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S;o and the inference Z; and replace [ for the pair Ovy,, Oy
in S;f. Similarly, if 8 is Ov9 A Ovp and is not traceable to ay.

(b) S = OyyAO%, is not traceable to ay. We remove the inference
7; and replace § for the Ov; which occurs in S/, for i = 0 or
1. Similarly, if 8 is Oqg V O; and is not traceable to ay.

(¢) B = DOy V Oy and f is traceable to ay. In this case we say
that the search has found a relevant inference.

(d) B = Oy A Oy, is traceable to ay through the active formula
O, and also the active formula Oy _; is traceable to some
in some other leaf Sy of d. In this case also we have found
a relevant inference and we consider (nondeterministically) a
branch B’ which starts from such Sy. Similarly, in the case of
B = v VO and Oy and Oy, are traceable to ay, ayr.

(e) B = Oy A Oy, is traceable to o, through the active formula
Ov; but the active formula Ov,_; is not traceable to the ay
in any other leaf Sy of d. In this case we consider (nondeter-
ministically) a branch B’ which starts from such a Sp.

Notice that in each branch B the search may find a relevant infer-
ence only once, and also that steps (a), (b), (e) reduce the size of
d: thus in the end any branch contains at most one inference Z;
and the resulting derivation d’ has size not greater than d.

We apply the induction hypothesis to the premises of the O-R
or <-L occurring in the remaining branches of d. We have three
cases:

(i) Case (c) succeeds: the desired derivation d~ is obtained by an
application of U-R or of A-L;
(ii) Case (d) succeeds: the desired derivation d~ is obtained by an
application of N-R or Y-L.
(iii) otherwise: since « is an ancestor of a formula in GA’ or OIY
we are back to Case 3.

This concludes the proof of the Lemma.

4.1. Equivalence of ILP and FILP. If © = ¢4, ..., 4,,, we
write UG for ¥, U...U1,,; similarly, we write AY for vy A ... Awvy;
notice that generalized associativity holds for both U and A.

LEmmA 2. If
0, 7=0,T
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18 derivable in the sequent calculus for FILP, then
0 ;=AY D>Ue;T
18 derivable in the sequent calculus for ILP.
The proof is by induction on the length of the given FILP deriva-

tion d. It is a lengthy exercise, whose details can be found in [5].
We consider only one case.

Let d end with an application of the N-L rule of type ¥ x v — 1,
corresponding to the ACA.4 rule

0,9Nv,d,v,T =67
0,9Nv ,T"=0"7T
By inductive hypothesis we have an ILP derivation of dj
0,9Nv,Y; = (AT Av)DUO;T

In TLP we have the following derivation d*

s AY =AY
1= AT > ue’; AY’ TV =3 v ue’; = ue’;
;= v D (AY DU’ ); AY ;= v D (MY DUO);v ue’; = AT D ue’;
;= v D (AY DUO'); AY v Ue's= v D (LY D Ue’);

(AT Av) DUO ;= v D (AT DUO');

Writing § = AY' D UO, and applying cut; to df and d* we obtain
a derivation di* of ©,9 Nwv,¥;= v D J; Y. Hence we obtain the
following ILP derivation:

0,9Nv,d,%v=;T,v

dr* ACAd = o= 0. o 6,0.0Nvd;= 6T
0,900,205 5T 5,0.000ti= 5T
0,9Nv,¥;,= 67T
0,9Nv;=4§;T ACA5

§5. Sequent calculus for classical £LF. We are looking for
a set of inference rules that modify the radical part of pragmatic
sentential expressions in a compositional way, inferring formulas
with a more complex radical part from simpler ones. Once again,
the guideline is given by the S4 translation. As suggested in the
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preface, we look for illocutionary operators @, O’ and O” and a
pair of connectives o and e, where o is classical and e is pragmatic,
such that
(Oa1 0 a))™ = (O'ar)™ o (0"az)

When such a relation holds, then we are on a good path to find a
sequent calculus where both the left and right rules preserve validity
and are semantically invertible in the S4 translation. A set of rules
satisfying our requirements is given in the following table 8: this
is a fragment of classical reasoning for which the soundness and
completeness theorem with respect to the semantic interpretation
in S4 can be easily proved.

right assert-negation: left assert-negation
O; Ha =; T O;e¢e=¢€; 7, Ha
O; = Fr-oa; T Faa,0 ;¢ = ;7
right hyp-negation: left hyp-negation
O,ra; =; 7T O;=ra; T
0;=;7T, #-oa 0; H-oa =; T
right hyp-impl: left hyp-impl:

O, ra;e = €Y, Hla—fB), HB O;=>ra; T O;HE =; T
O;¢ = ¢; 7T, H{a—pf) 0; H(a—pB) =>; T
right assert-subtract: left assert-subtract:

O;= ra; T ;xS =; 7T 0, (aA-B), ra; e = ¢ ;Y, uf
O; = Flan-p); T O, "(aAN-B);e = ¢; T

right assert-and: left assert-and:
0;=Fra; Y ;= +r3;7 O, ra, FB;e = €Y
0; = r(@Ap); T O, F(aANB); e = ¢€; T
right hyp-or: left hyp-or
O;¢ = ¢ Ha HBT O; Ha =; T 6; B =; T
O;¢=¢; H(aVP),T O, H(aVp); =; T

TABLE 8. Classical sequent calculus

DEFINITION 6. (i) Consider the following grammar for radical
formulas:
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P = p| -N| PAP| PA-N
N = p| -P| NVN| P=N

(ii) Consider the sublanguage of £ where elementary pragmatic
expressions are generated by the following rules:

¥ = +rP v = HN.

Let us call such a language the basic classical language.

(iii) The basic classical sequent calculus is system of sequent calcu-
lus for classical logic where sequents are restricted to elementary
formulas in the basic classical language, i.e., sequents have one of
the forms

FQyeeny FQyp 3 = Fa HP1L, ..., Hn

'_al’---,'_am; H/B::>; H/Bl""7H/6n
where the o, o are of the form P and the 3;, 5 are of the form N.

THEOREM 2. The basic classical sequent calculus is sound and
complete with respect to the modal interpretation in S4.

To prove the theorem, notice that in the semantics of S4 there is
a countermodel to the translation of the sequent-conclusion if and
only if there is a countermodel to the translation of at least one
sequent-premise. For sequents consisting of elementary formulas
whose radical is in the basic classical language, there is always a
rule in the basic sequent calculus which can be applied, until we
reach a sequent where all elementary formulas have atomic radicals.
Therefore we can apply the semantical procedure of section 6.2.2
to the translations of the sequents.

Consider the following translation ( ):

P =4 rp ifP = p

(N)? =4 #up ifN = p
(—|N)P =qf ~ (NP) (P A P)P =gf PP N PP
(-P)P =4 ~(PP) (NVN)P =4 NPYNP

P->N)F =4 PP-NF) (PA-N)F =, PPNP)
where the conditions P := p and N := p in the first two rules
refer to the productions of the grammar generating the radical
formulas.
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THEOREM 3. Let S be a sequent consisting of elementary for-
mulas in the basic classical language. Then S is derivable in the
classical sequent calculus if and only if ST is derivable in the intu-
ittonistic sequent calculus.
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§6. APPENDIX I.The modal language and the seman-
tics for K and S4.

DEFINITION 7. (Syntaz) (i) The language £™ is built from an in-
finite set Atoms of propositional letters pgy, p1 ... using the propo-

sitional connectives =, A, V, —; and the modal operators O and
.

(ii) (Formation Rules) The expressions of the language L™ are
given by the following grammar, where p ranges over Atoms:

a:=p|L]|T|-a|lara|aVa|a—a|Oa| Ca |

6.1. Frames and Kripke models.
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DEFINITION 8. (Frames and Kripke models) (i) A frame is a pair
F = (W,C) where
o W is a set (of “possible worlds”);
e L C W xW is arelation (the “accessibility relation” be-
tween possible worlds).

(ii) A Kripke model is a triple M = (W, C,IF) where F = (W, C)
is a frame and IFC W x Atoms is the forcing relation, usually
written in infix notation: w IF p means “p is true in the possible
world w” and w If p means “p is false in the possible world w”.

(iii) The relation IF is extended to a relation IF C W x L™
according to the following rules:

1. wlf L and wlF T, for all w € W;

w k- iff w lfF o

wlk (aAp) =V iff wlk a and w - j;

wlk (aV p)iff wlkaor wlk g

w Ik (o — B) iff either w | o or w I+ B;

w Ik O« iff w' IF « for all w' € W such that w' C w;
7. wlF Ca iff w' Ik o for some w' € W such that w' C w.

ARl

IfI" and A are sequences of formulas in £™, then the sequentT’ = A
is true inw € W iff w I (AT — \V A).

(iv) We say that a formula « is valid in a model M = (W,C,IF),
in symbols = a, iff for every w € W we have w I a.. Similarly,
given a sequent S = I' = A we say that S is valid in M iff for
every w € W, S is true in w.

(v) We say that a formula « is valid in a frame F iff for every M
over F we have =, a. Similarly, a sequent S is valid in a frame
F iff it is valid in every Kripke model over F.

(vi) A formula « [a sequent S] is valid in the system K iff a [S] it
is valid in all Kripke models M.

(vii) A formula « [a sequent S| is valid in the system S4 iff « [S] is
valid in all preordered frames, i.e., all frames where the accessibility
relation C is reflexive and transitive.

6.2. Sequent calculi G3c, K and S4. Gentzen-Kleene’s se-
quent calculus G3c for classical propositional logic (cfr.[29], p. 77)
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is given by the following sequent-axioms and rules of inference.
Notice that the rules of weakening and contraction are implicit.

DEFINITION 9. (i) Given a notion of semantic validity, a rule
yee s S
of the sequent calculus 5 % preserves wvalidity if for every

instance of the rule, the sequent conclusion S is valid whenever
the sequent-premises S, ..., S, are all valid; a rule is semantically

inwvertible if for every instance of the rule the sequent-premises are
all valid whenever the sequent-conclusion is valid.

PROPOSITION 2. (i) The rules of the system G3c preserve va-
lidity and are semantically invertible for any modal semantics;
(#i) the modal rules for the systems K and S4 preserve validity and
are semantically invertible in the semantics of the system S4;
(#1) the rules of weakening preserve validity but are not semanti-
cally invertible.

6.2.1. Semantic Tableaux procedure for K. The “semantic tableaux”
procedure decides whether a sequent .S is valid in the semantics for
K by building a refutation tree labelled with sequents and with .S
at the root; if S is valid, then it return a derivation of S in the
sequent calculus for K; if S not valid, it returns a counterexample
M which refutes S.

DEFINITION 10. (semantic tableaux procedure) Start with tree 7o
consisting of the root S; at stage n+ 1, for every leaf S’ of the tree
7, check whether the sequent S’ matches the conclusion of a rule
of inference (in some given order, e.g., checking the one-premise
rules first). If yes, invert that rule; otherwise, the leaf in question
is a sequent of the form

Pi,--- 7pk7DF7 <>0517-" 7<>am = Dﬂla--' 7D5n7<>A7q17--- »qe (T)
Rewrite the sequent () as a hypersequent as follows:

=[Py Pk =y -e- 5 q] .- [O0, Cay = CA] L. [OT, = Dﬂj,OA]...
(1)

We call this step a disjunctive ramification. Now there are three

cases:

(a) the sequent pi,...,px = qi,-..,¢e is valid, because p; = ¢;
for some 7 < k, j < £ or because p; = L for some 7 < k: in
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this case the sequent (1) is a logical aziom or a falsity aziom or
a truth axiom and the procedure halts on this branch, which
is closed.

(b) otherwise, if (f) is not an axiom and m = 0 = n, then the
procedure halts on this branch leaving it open;

(c) otherwise, (1) is not an axiom and m+n > 0: in this case the
procedures branches by inverting the <-L or O-R rules in the
remaining m + n sequents of the hypersequent.

DEFINITION 11. We define inductively what it means for a refu-
tation tree 7 to be closed (starting from the leaves):

e a logical axiom, a falsity axiom oy a truth axiom is closed;

e if 7 results from 7y by a one-premise inference rule, then 7 is
closed iff 7y is closed;

e if 7 results from 7y and 7, by a two-premises inference rule,
then 7 is closed iff 7y and 7 are both closed;

e if 7 ends with a hypersequent and results from 7, ..., Tiin
by a disjunctive ramification, then 7 is closed iff at least one
7; is closed, for : < m + n.

Fact 1: The semantic tableax procedure for K terminates.

Fact 2: If a refutation tree T with conclusion S is closed, then
we can obtain a deriwvation of S in the sequent calculus for K as
follows:

e for each disjunctive ramification branching from a sequent of
the form (f) with subtrees 71, ..., Tyyn, first we prune 7
by selecting a closed subtree 7, by removing the others and
the hypersequent notation; the endsequent of 7, has the form
or,oa = <A or OI' = 0Oa,<OA and now we apply
weakening to obtain the sequent (7).

Fact 3: If a refutation tree T with conclusion S is open, the we
can construct a Kripke model M which refutes S:

e for every two-premises logical rule, if the sequent-conclusion
is open, then we select one of the sequent-premises which is
open. In this way we eventually obtain a tree 7/ where all
branches are open.
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e Consider all fragments of branches i, ..., 3, obtained from
7' by removing every hypersequent and every conclusion of a
modal inference;

(¢) identify f3; with a possible world w;;

(1) put w; C w; if and only if the lowermost sequent of §; is
the premise of a KR occurring immediately above a sequent
S* of the form () and S* is the uppermost sequent of ;;
(1) let w; IF p; if and only if p; occurs in the antecedent of a
sequent S* of the form () and S* is the uppermost sequent

of Bl

From facts 1-3 we obtain the following theorem:

THEOREM 4. The semantic tableauzr procedure for K is sound
and complete with respect to the semantics of K. The system K
has the finite model property.

6.2.2. Semantic Tableauzr procedure for S4. In the case of S4
the procedure is modified by inverting the O-left and <-right in
the same way as the propositional rules, but we must deal with the
fact that in this way the procedure may enter infinite loops. The
first problem is that the O-left and <-right rules could be iterated
forever with the same principal formula. It is enough to mark the
modal formula which is principal formula of such an inference and
remove the mark later when some O-right or <-left rule is inverted;
in other words we take modal rules of the forms

a left: O right:
a,r,@,@:}A,D_A DF?Q,OA
Do, T, 86 = A,0A O = O, ©A
<& left: <& right:
Or, o = OA I,00 = A a,0a,CA
ar, da = 0A [,00 = A, Oa,OA

A disjunctive branching in S4 has the form



TOWARDS A LOGIC FOR PRAGMATICS 35

ar, a; = ©A ar =>ﬂj,<>A
= [[I=1I],...,[0r, ¢a; = ©A],..., [O0, = 08, 0A],Vi<m,Vj<n
11,00, Cay, . . . , Oam = 0OF1, ... ,08,, CA, TI

where Il = p1,... ,px and II' = q1, ... , qo.

The second source of non-termination is the fact that in general
an inversion of the O-left and of the O-right rules increases the
logical complexity of the sequent instead of reducing it. However,
since the procedure satisfies the subformula property and there is
only a finite number of modal subformulas in any given sequent,
eventually on any branch the procedure must invert a O-right or
O-left rule with a sequent-conclusion S such that the same rule
with the same sequent-conclusion S had already inverted at some
point below in the refutation tree (here we consider sequents S
modulo exchange and contraction). Let < Z,Z' > be such a pair
of inferences, where 7' occurs above Z. In this case we identify
the sequent-premise of Z' with the sequent premise of Z and the
procedure stops on that branch. Notice that as a consequence of
such a gluing there will be a loop in the transitive closure of the
accessibility relation C of the countermodel constructed in Fact 3.
Other details are left to the reader. It follows that

THEOREM 5. The semantic tableauz procedure for S4 is sound
and complete with respect to the semantics of S4. The system S4
has the finite model property.
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SEQUENT CALCULUS G3c FOR CLASSICAL LOGIC

aTIOMmSs:

falsity azioms:

truth azioms:

p,I'=A,p 1,I'=A I'=AT
right exchange: left exchange:
'=AapB,A o, B, I"= A
'=s AB a,A' r,6,a,T"=A
right —: left —:
a,T'= A '=s A«
= A -« —a, = A
right A: left A:
'sAa T=AR a, 8,0 = A
' Aang aAB,T = A
right —: left —:
Na=g,A 'sAa BT=A
I'=a—=43A a— BT =A
right V: left Vv:
'=Aa0,8 a,l'=>A B,T=>A
'=> Aavp aVvpl'=A

EXTENSION TO MODAL SYSTEMS

weakenings

ar, < a = ©A
I1,0r, Ca, CA! = OV, OA,IT

O = Oa,<©OA

I,07, A’ = Oa, 00, OA, I

where II, II" are sequences of atoms.

modal rules for K

K-O-rule: K-O-rule:
I'=ao,A Ta= A
Or = Oa,©A ar, oa = A

modal rules for S4

O left: O right:

o, 00, = A ol = «,CA
O, = A Or = Oa,CA
<& left: <& right:
Or,a = ©A I'= A Ca,a
ar,oa = <©A s A a

TABLE 9. Sequent calculi for K and S4
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APPENDIX II: The rules of ILP

identity rules

S.1: logical aziom: S.2: logical aziom:
9,0; = 9; T O;v =>; v
S.3: absurdity axiom: S.4: absurdity axiom: S.5: assertion-conjecture:
@,/\;e=>e';'r @;/\i;'r Fa,©5¢e = €Y, Ha
S.6: validity axiom: S.7: validity aziom:
@;:>\/;T ®;e=>e';'r,\/

S.8: cuty: S.9: cuty:
O;=9;7T 9,0 ;e = € ;0 O;¢e=¢€;Tv Qv =17
0,0; ¢ = ; T, 0,0; ¢ = ; YT,Y
structural rules
S.10: exchange: S.11: exchange:
0,91,92,0" ;¢ = ;T 0,;¢ = ¢; T,v,v,Y
0,92,%1,0" ;e = ;T O;¢ = €¢; T,v,v, Y’

TABLE 10. ILP, identity and structural rules
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ASSERTIVE LOGICAL RULES

connective of type ¥ — ¢

(*) A.1: right negation: A.2: left negation:
0,%; =; 7T ~9,0; = 9; T
O;=>~9;7 ~9,0;¢ = ;T

connectives of type 9 x ¥ — ¢

(*) A.3: right D: A.4: left D:
0,9 ;= ¥9; 7T P91 D92,0; = 915 Y 92,0 ;¢ = ¢ ; Y
O; = ¥ D9; T 91 092,00 ;¢ = €; T
A.5: right N: A.6: left N:
O; = v; 7T O; = ¥v; T 190,’191,@;6=>6’;T
O; = %hnNd; T YoN1,0;¢ = ;T
A.7,8: right U: A.9: left U:
O;= 9%;7T 90,0;€¢ = ;YT 91,0;¢ = ;Y
O; = UM ; T YoU%1,0;5¢ = ;Y
for i =0, 1.
(*) A.10: right~ A11: left~ A.12: left~
O;= Y91; 7Y 92,0 ; =: T P1\02,0,91; = P2; T 91x92,0,91;¢ = ;T
O; = JixV2; T Y192,0 ;¢ = ;T P192,0 ;¢ = ¢ ;T

TABLE 11. Sequent calculus for ILP, the standard fragment
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CONJECTURAL RULES

connective of type v — v

C.1: right ~: (*) C.2: left ~:
O;v=;7"T,~v 0; =; T,v
O;¢=>¢€¢; T, ~v O; ~v=>;7T

connectives of type v x v = v

C.3: right »: C.4: right »:
O;¢ =€ v, T,oi=v2 O; 01 =; Y,u2,01 > v2
O;¢ = ¢; T,v1 02 O;e = ¢; T,v1 v

(*) C.5: left =:
O;=;Tun Qv =>; T
O;vi>vy =; Y

C.6: right A: C.7,8: left A:
O;¢ =€ T O;¢e=¢€; T, O;vi =; T
O;¢ = ¢; YT,uoAvr O; vAivy =; T
for i =0, 1.
C.9: right Y: C.10: left Y:
O;¢ = € Y, v1,v O;v = 7Y O; vy = T
O;¢ = ¢€¢; T, v Y O; viYvy =; T
C.11: right ~: (¥)C.12: left \:
O;¢ = ¢€; Y,u O; v =; T,v0\ V2 O; v =; YT, v
O;¢ = €¢; T,vrNv2 O;viNvy =; T

TABLE 12. Sequent calculus for ILP, the dual fragment




40 GIANLUIGI BELLIN

MIXED-TYPE NEGATIONS

connective of type v — 9

(*)CA.1: right ~: CA.2: left negation,
O;v=>;7T ;¢ = ¢€; T
O;=>~v; 7T ~0,0;¢ = ¢; 7T

connective of type ¥ — v

AC.1: Tight ~: (*)AC.2: left ~:
0,9;¢ =57 0, =9;7
O;¢ = ¢; YT, ~9 O; ~¥ =; 7T

MIXED-TYPE SUBTRACTIONS

connective of type ¥ x v — ¥

(*) ACA.9: right~: ACA.10: left~
0;= 97T O;v =7 9,0 ¢ = € T,v
O; = dinxv; T PNv,0; ¢ = ;T

connective of type v x ¥ — ¥

(*) CAA.10: right ~- CAA.11: left~ CAA.12: left~
0;=;"Tw 3,0; =; 7T va,0; 0 =5 Y v,0; = 9; T
O; = uv9; T vNY,0O 5 ¢ = ;T vN,O e = ;T

connective of type v x v — 9

(*) CCA.9: right~.: CCA.10: left~ CCA.11: left~
O;=;"Tun O; v =37 viNw,0; v1 = T,o1 vinw,0; ¢ = €5 T,0

O; = vivve; T V12,0 ;¢ = ;7T VINV2,0; ¢ = ;7T

connective of type ¥ x v - v

ACC.9: right \: (*) ACC.10: left \:
O; = 9; T,9\v O;v =; T,9\v 0,9; =; YT,v
O;¢ = ¢; T,9\v O;9\v =; 7T

connective of type v X ¥ = v

CAC.10: right \: (*) CAC.11: left \: (*) CAC.12: left \:
O;¢ = ;T 9,0;¢ = ;T O;v=;7 O;=>9; 7
O;¢ = ¢; T,o\9 O;vNY9 =; 7T O;vN9 =; 7T

connective of type 4 x ¢ —» v

AAC.10: right \: (*) AAC.11: left ~:
O; = Y1; T,91 N 92,0 ;¢ = € ; 7T, 0,9 ; = ¥2; T
O;¢e = ¢; 1,9\ O; N =; T

TABLE 13. Mixed-type negations and subtractions
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MIXED-TYPE ASSERTIVE LOGICAL RULES

connectives of type ¥ x v — 9
ACA.2: left D:
ID0v,0; =>9; T IDv,05v =; T
IDOv,0;€¢ = €; T
ACA.5: left N:
INv,@,9;¢ = ;T
YNv,0;¢ = ;T

(*) ACA.1: right D:
0,%; =; T,v
0;=9Dv; T

ACA.4: left N:
dNv,0,9%; v =; T

INv,0®;¢ = ;T

(*) ACA.3: right N:
O;=9;7T 0;=;0v7T
O;= d9Nnv; T

ACA.8: left U:
9,0;¢ = ;Y YUv,0;v =; T

YUv,O ;¢ = €; T

(*) ACA.6: right U:  (*) ACA.7: right U:
0;=49;7T 0;=;0v7"T
O; = Juv; T O; = YduUv; T

connectives of type v x ¢ — 9

CAA.3: left >
;¢ = € T,v 9,05 = ;Y

vO$O; e = €; T

(*) CAA.2: right D:
;v =>;7T
0;=>vD>9; 7T

(*) CAA.1: right D:
0;=9;7T
O;=>vD>9; 7T

CAA.6: left N:
vN3,0,9;¢ = ;Y

vN$,B ;e = € ;T

CAA.5: left N:
vN9,0,9; v =; T

vNY,0 ;¢ = ;T

(*) CAA.4: right N:
O;=;0v7"T O;=9;7T

O;=>vnd; T

CAA.9: left U:
U300 =T 9,0;¢ = ;7T

vU9,0;¢ = ;T

(*) CAA.8: right U:
0; =>;0v7T
O;=>vUd; T

(*) CAA.7: right U:
;= 9;7T
O; =>vUd; T

connectives of type v x v — 9

CCA.2: left O:
0;¢ = €; T,u v1 Dv, O v =5 Y

V1 DV2,0 ;€ = ¢ ;Y

(*) CCA.1: right D:
O; v =; YT,u
(C] ;= U1 D V2 ; T

CCA.4,5: left N:

(*) CCA.3: right N:
O,voNv1; v =; T

0; =; vy, T O;=;uv,T
O; = voNuvi; T O,voNvi; e = ;T
for i =0, 1.
(*) CCA.6, 7: right U: CCA.8: left U:
0; =, v,7T voUv1,0; v =; T vUv,0; v =; 7T
vUv1,0;€¢ = ;T

O; = viUvy; T
for i =0,1.

TABLE 14. Mixed-type assertive logical rules
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MIXED-TYPE CONJECTURAL LOGICAL RULES

connective of type ¥ x v = v

ACC.1: right »: (*) ACC.2: left »:
0,9;¢ = €; Y,v 0, =>9; T Qv =; T
O;¢ = ¢; T, 9w O;9-v =>;7T
ACC.8: right A: (*) ACC.4: left A: (*) ACC.5: left A:
;= 9; T,9Av O;¢=>¢€;Tv 0,9;=>;7T O;v=;7T
O;¢ = ¢; T, 9Av O;%Av =; 7T O;%Av =; Y
ACC.6: right Y: ACC.7: right Y: (¥)ACC.8: left Y:
O;=>9;u,T,9Yv ©O;e=¢;0v,T,9Yv ©9;=;7T O;v =T
O;¢ = ¢;T,9Yw O;¢ = ¢;T,9Yv O;9Yv =; 7Y

connective of type v x ¥ — v

CAC.1: right »: CAC.2: right »: (*) CAC.3: left »:
0;=49; T,uo=19 O;v =>; Tv>19 0, =; T 9,0; =>; 7Y
O;¢e=>€;Tv-9 0O;€e=>¢€; T v O;v>=9 =; 7T

CAC.4: right A: (*) CAC.5: left A:  (*)CAC.6: left A:
O;¢ = €T, O; = 9; T,oArd ;v =;7T 0,%; =; 7T
O;¢ = ¢€¢; T,ord O;vAY =; T O;vAY =; 7T
CAC.7: right Y : CAC.8: right Y : (*) CAC.9: left :
0;=9;T,v,oYd O;¢=¢€;T,v,vYd O©;v=;7T 0,9; =; 7T
O;¢ =>¢;T,oYd O;¢ => ¢€¢; TvYd O;vYy =; 7T

connective of type ¥4 x ¥4 —» v

AAC.1: right »: AAC.2: right >: (*) AAC.3: left »:
0,91; = Y92, T,91 =92 ©O915¢ = €;T,91>9 O, =9; 7T 92,0 = T
O;¢e¢ = ¢€; T, 9> O;¢ = ¢€; Y, 0> O; =9 =; 7T

AAC.4: right A: (*) AAC.5, 6: left A:
O; = Y1; T,9% At O; = ¥1; 1,9 At 0,9 ; =; 7T
O;¢e¢ = ¢ ; T,9Ah O; YAt =; T
for i =0,1.
AAC.7,8: right Y : (*) AAC.9: left Y:
O; = ¥ ; T,9 Y, 0,%;=>;7T 0,%;=;7T
O;¢ = ¢; T,9YHh O; Y =Y
for i =0, 1.

TABLE 15. Mixed-type conjectural logical rules




