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Abstract

We present a sequent calculus for the Intuitionistic Logic of Prag-
matics (ILP) with operators of assertion and conjecture, which is a
conservative extension of ordinary intuitionistic logic and its dual, the
logic of co-Heyting algebras [7]. Our sequent calculus is in the style
of a G31i system [8], where the rules of weakening and contraction are
implicit and where sequents have privileged affine areas. We give a
deterministic cut-elimination procedure for this sequent calculus.

1 Introduction

The aim of this paper is to proof the cut-elimination for the sequent calculus
of the Intuitionistic Logic of Pragmatics (ILP) with assertion and conjec-
ture operators, which has been presented in [1, 3]. ! The motivations for the
logic for pragmatics, its informal interpretations and its models in terms of
a topological and a Kripke-style semantics are given in [1], where it is also
given a proof of the completeness of ILP with respect to Kripke’s semantics
over preordered frames, using an extension of Gédel, McKinsey and Tarski’s
translation of intuitionistic logic into the modal system of S4. The expres-
sions of the language L are either assertive or conjectural. The elementary
expressions - o and # « of L express the assertion and the conjecture that
« is true, respectively; similarly, the usual intuitionistic implication d; D do
is assertive and its dual subtraction d; \ o is conjectural. Their translations
in S4 are:

(Fa) = O« (na)¥ = O«
(6, D )M = O(M — 6M) (0 N )M = O(M A =6M).

'We wish to thank dr Arnaud Fleury for stimulating discussions and many helpful
comments during the preparation of this paper. This research has been partially supported
by MURST COFIN 02 "PROTOCOLLO?”.
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In a sequent calculus for standard intuitionistic logic there are only assertive
formulas and Gentzen’s restriction, which is characteristic of the sequent cal-
culus LJ, requires that at most one formula should occur in the succedent of
any sequent. In a sequent calculus for the dual intuitionistic system, formu-
las are conjectural and the analogue of Gentzen’s restriction applies to the
formulas in the antecedent. Of course, both constraints correspond to the
restrictions on the O-R and <-L rules in the sequent calculus for S4. In [3]
we have presented a sequent calculus for ILP in the style of G3i 8], where
the rules of weakening and contraction are implicit. Here we have assertive
and conjectural formulas, and we use sequents with privileged areas in the
antecedent and in the succedent and also apply a generalization of Gentzen’s
restriction: there can be no more than one formula in privileged position,
i.e., no more than one conjectural formula in the antecedent or one assertive
formula in the succedent. As there are sequent calculi for intuitionistic logic
G3im where Gentzen’s restriction on LJ sequents is relaxed for all proposi-
tional rules, except for the sequent-premise of a D-R, so there is a sequent
calculus FILP for the logic of pragmatics where our restriction is relaxed
[1, 3], making it easier to prove the completeness theorem. Indeed there are
rules that are nvertible in FILP while their counterparts in ILP may not be
invertible. Moreover the system FILP is more concise; for instance, in ILP
we need both rules ACC.6 and ACC.7 (which may be called multiplicative
and additive) as it is shown by the following examples

T = 0,0 Y v v, = v, Y0v, YT
v =39 Y ACCT ;=9 Y v

ACC.6

while only (the multiplicative) one suffices in FILP. We shall not deal with
FILP in this paper.

Since the formulas of our pragmatic language are naturally polarized as
assertive and conjectural, the calculus ILP with its uniform specification of
affine areas® in a sequent is the most appropriate formalism for the presenta-
tion of a deterministic and confluent notion of cut-elimination. Polarization
allows us to avoid non-determinism of the cut-elimination process, which in
conjunction with heavy structural transformations due to implicit weaken-
ing and contraction would make the cut-elimination process non-confluent
(as in the classical sequent calculus LK). Since ILP is a polarized system,
we can find a deterministic algorithm for cut-elimination: in particular, for
commutative reductions the direction of the permutation is determined by

2The privileged areas in a sequent are affine, not linear, because we must allow implicit
weakening in them to have completeness with respect to Kripke’s semantics.



2 THE LOGIC FOR PRAGMATICS 3

the global function of the cut-formulas in the derivation, and depends on the
cut-formula which occurs in the privileged (affine) area of the sequent.

For the proof of the cut-elimination theorem we need to show that the
rules of weakening and contraction are admissible. Some delicate decisions in
the design of the system are required to guarantee this property. In the case
of weakening formulas outside the privileged area this is easily achieved by
introducing the weakening formula in all sequents of the proof-tree up the ax-
ioms; for a weakening formula which is introduced inside the privileged area,
the inference rules where this area becomes empty must allow the introduc-
tion of a weakening formula € [or €] in the antecedent [in the consequent].
Admissibility of contraction is harder to achieve: the proof proceeds by in-
duction on the length of the proof, but it achieves a reduction of contraction
to formulas of lower logical complexity. Notice that as in LJ, contraction
is admissible only in the non-privileged areas. Where a rule of inference is
non-invertible on a sequent-premise, the system has been designed so that an
occurrence of the principal formula occurs in that premise and the induction
hypothesis on the length of the proof can be applied. If an inference rule can
be inverted, then we apply contraction to formulas of lower logical complex-
ity. It should be noticed that this process, regarded as a transformation on
proofs, may considerably modify the structure of the given proof, by pruning
some branches of the proof-tree.

In conclusion, the present work is certainly related to the area of research
inspired by J-Y.Girard which aims at the constructivization of classical proof
theory through translations into linear logic. We expect that many facts and
results observed in those computational studies of classical logic may be
reproduced in the context of our intuitionistic logic of pragmatics with dual
operators (see also [4]).

2 The logic for pragmatics

2.1 Language of the logic for pragmatics

Our language L£? is in two levels: there are radical formulas o, o, o1 ...
built from a set of atoms p, p;, ... using the classical connectives =, A V —
and elementary formulas obtained from a radical formula « by prefixing it
with a sign of illocutionary force - and # Here « is a proposition interpreted
according to classical semantics, while the elementary formulas + o and %«
express illocutionary acts of assertion and conjecture. There is an elementary
constant for absurdity A and one for validity \/. The calculus presented here
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is intuitionistic because the radical part of each elementary is regarded as
constant throughout a derivation; a calculus where the inference rules act on
the radical part is considered in [1].

Recall that illocutionary acts can be justified or unjustified: + « is justi-
fied if and only if there is a proof that « is true; unjustified otherwise. # «
is justified if there is no proof that « is false; unjustified otherwise. The ele-
mentary constants /\ and \/ express illocutionary acts that are never justified
or always justified, respectively. Pragmatic expressions (or sentential formu-
las) are built using pragmatic connectives which are given Heyting’s, not
Tarski’s semantics. Indeed pragmatic connectives apply to formulas that can
be justified or unjustified, not to proposition having a truth value. Sentential
formulas are built from the elementary formulas using assertive (or strong)
pragmatic connectives, namely, negation ~, conjunction N, disjunction U,
implication D and subtraction \\, and also conjectural (or weak) connectives,
namely, doubt ~, disjunction Y, conjunction A, implication > and subtraction
.. The grammar is defined thus:

a:=pl|lalaha|laVa|a—al
0 =9 |v|
9 =Fa| NI\ | ~616266n6|5Us|s\¢
vi=wal N[\ | ~6[6=6[6Y6[5A6[6N6

2.2 The sequent calculus for ILP

All the sequents S are of the form

O;¢e=¢;7
where
e O is a sequence of assertive formulas ¥+, ..., ¥,,;
e T is a sequence of conjectural formulas vy, ..., v,;

e ¢ is conjectural and € is assertive and at most one of ¢, € occurs in S.
hence our sequents can have only one of the following three forms

017"70”; v :>; U17"aU'm
01,.,0h; = 0501, 0,
91, ..,Gn ;=5 U1, .., Uny
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The rules of ILP are given in the Appendix.

In this paper we shall assume that in the logical axioms

S.1: logical axiom: S.2: logical axiom:
0,9; = ;7 ;v =;uv7T

the principal formulas are elementary, i.e., 9 = ra and v = #a. It is easy
to prove, by induction on the logical complexity of ¥ and v, that the more
general forms with 9 and v arbitrary are admissible.

3 Preliminaries for Cut-elimination in ILP

3.1 Inversion lemma

We write |, O;¢ = €;T to express the fact that there is a derivation of
O;¢ = ¢; T in ILP where the derivation tree has depth at most n.

We say that a rule of inference R is invertible on the left or right sequent-
premise or in both preserving the depth of the derivation if for every triple of
sequents Sy, S1 and S such that

S Sy S
—OR or 0 !

S S R

whenever +, S then -, Sy or F,, S; or both, respectively.

We want to classify the rules R of ILP with respect to their behaviour
with respect to depth-preserving invertibility. Invertibility fails because a
loss of information occurs in passing from the sequent-conclusion S to a
sequent-premise S;, due to the restrictions on the privileged area: this hap-
pens because

(a) a one-premised rule has is additive (in the terminology of Linear Logic),
like the rules A.7, 8 U-R or

(b) there is an implicit weakening, i.e., a formula € or € occurs in S but is
not in S;, like in the left premise of A.4 D-L.

In both cases it is not difficult to find examples showing that the rule R is
not invertible: for instance in the case of A.4 S may be a logical axiom,
and this property fails for S;, because € or ¢ is missing. Notice also that
the property of invertibility becomes ¢rivial if all the formulas occurring in S
occur also in S;, like in the case of C3.R.
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To facilitate the proof of the admissibility of contraction in the next sec-
tion we distinguish invertibility of the rules that allow contraction in their
principal formula and invertibility of the rules that don’t.

Lemma. The rules of the sequent calculus for ILP can be classified as
follows:

1.

Invertible rules that don’t allow contraction in their principal formula:
A.1,A3,A.5,A.10,C.2,C.5,C.10,C.12, CA.1, ACA.1, ACA.3,
ACA.9,CAA.4,CAA.10,CCA.1,CCA.3,CCA.9, AC.2, ACC.2,
ACC.8, ACC.10, CAC.3, CAC.9, AAC.3, AAC.9, AAC.11.

Non-invertible additive rules that don’t allow contraction in their princi-
pal formula; A.7,8, C.7,8, ACA.6,7, CAA.1,2, CAA.7,8, CCA.6,7,
ACC.4,5, CAC.5,6, AAC.5,6, CAC.11,12.

Rules that allow contraction in their principal formula and are non-
trivially invertible. A.4 right premise, A.6, A.9, C.6, C.9, CA.2, ACA.8
left branch, ACA.10, CAA.3, CAA.9 right branch, CCA.2 left
branch, C.11 right branch, AC.1, ACC.1, ACC.3 right branch, CAC.4
left premise, CAC.10, AAC.10 right branch.

Rules that allow contraction in their principal formula and are trivially
invertible: A.12, C.3, ACA.5, CAA.6, CCA.11, AAC.2, ACC.7,
CAC.8

Rules that allow contraction in their principal formula and are non-
invertible because of implicit weakening: A.2, A.4 left premise, A.11,
C.1, C.4, C.11 left branch, ACA.2, ACA.4, ACA.8 right branch,
CAA.5, CAA.9 left branch, CAA.11,CAA.12, CCA.10, CCA.2
right branch, CCA.4,5, CCA.8, ACC.3 left branch, ACC.6, CAC.1,
CAC.2, CAC.4 right branch, CAC.7, ACC.9, AAC.1, AAC4,
AAC.7, AAC.8, AAC.10 left branch.

For each rule in cases 1, 3 and 4, the inversion lemma can be stated more
precisely as follows:

e Invertible rules that don’t allow contraction in their principal formula:

if F, ©;=~ ;Y then F, ©,9;=:7T (rule A.4)

and similary for all the other cases
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e Rules that allow contraction in their principal formula and are non-
trivially invertible

if F,912199,0;€¢ = €; T then F,9,,0; € = ¢; YT (A.4right branch)
and similary for all the other cases

e Rules that allow contraction in their principal formula and are trivially
invertible:

if }_n 191 \\ 192,@; € = 61; T then }_n 191 \\ 192,’191,@; € = 61; T (A12)
and similary for all the other cases

Proof. By induction on n. As a typical example we prove the case corre-
spondent to the inversion of the right premise of the rule A.4. Let F, ¥, D
92,0 ; ¢ = € ; T by a deduction D. If D is an axiom then ©¥; D ¥ is not
principal and 9,0 ; ¢ = € ; T is also an axiom. If D is not an axiom and
Y1 D VY9 is not principal, we apply the induction to the premise(s) of the last
rule used. If on the other hand #; D 95 is principal, the deduction ends with

l_”_17913792,®;:> 191,T |_n_1192,®;6 = €I;T
Fn91 D99,05€¢ = €; T

and the subeduction of the right premise leads us to the conclusion. Note
that the inversion lemma doesn’t hold for the left premise. Indeed if 99, D
99,0 ; € = € ; YT was an axiom with principal formula € or € certainly
Y D 99,0; = Y1 ; T would not be an axiom.

3.2 Admissibility of depth-preserving weakening

Lemma.
If F,0;e=¢€;T then F,0,0;e=¢€;7,Y

If F,0;=;T then +F,0;e=¢;7T

Proof. To prove the first proposition it suffices to add ©’ and Y’ to the an-
tecedent and consequent, respectively, of all sequents in the given derivation
of ©;e = €;Y. Obviously, this transformation preserves the depth of the
derivation.

For the second proposition, we want to add € or ¢ in the endsequent.
Working our way upwards, for each rule we rewrite the sequent-premises
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adding € or ¢, if possible, if € or €, respectively, occurs in the sequent-
conclusion. Eventually, we either find a rule where € or € occurs in the
conclusion but cannot be added to one or both premises or we reach an
assertion-conjecture axiom. In any cases the axioms and rules of inference
remain valid and the depth of the given demonstration is preserved.

We shall write d{©’ ;= ; Y’} for a derivation with conclusion ©,0"; ¢ =
€ ; Y, Y obtained by applying depth-preserving weakening (dp-weakening)
to a deduction d with conclusion © ; ¢ = ¢ ; T Analogously we shall
write d{;e = €} for a deduction with conclusion ©; ¢ = €'; T obtained by
applying dp-weakening to a deduction d with conclusion © ; = ; T

3.3 Admissibility of depth-preserving contraction

The rule of contraction is inadmissible for formulas occurring as € or €' in the
privileged part of a sequent: these are conjectural formulas in the antecedent
and assertive formulas in the succedent. For formulas which do not occur in
the privileged part we need to prove the admissibility of contraction preserv-
ing the depth of the derivation tree. The proof is by induction on the depth
of the given derivation. If neither contraction formula is principal in the last
inference, then we apply the induction hypothesis to the sequent-premise(s).
Otherwise, the induction step depends on whether or not the last inference Z
is invertible preserving the depth of the derivation tree. If the last inference is
a non-invertible or trivially invertible inference, then the principal formula of
T occurs also in the sequent-premise(s) and then we can apply the induction
hypothesis to the sequent-premise(s). Otherwise Z is a non-trivially invert-
ible inference, and we can invert the (ancestor of the) contraction-formula
d occurring in the sequent-premise(s), obtaining a derivation of lower depth
than the given one; then we can applying contraction to the immediate sub-
formulas of § and the inductive step is concluded by applying the same rule
of inference as 7.

Lemma.

1. ifH, 9,9,0;¢e = €;T then -, 9,0;e = ¢; T
2. if, ©;e=€;YT,v,vthent, ©;e = €;T,v

Proof.By induction on n. We consider the first assertion; the second is
treated symmetrically.

Let D a deduction of lenght n + 1 of ¥,9,0;¢e = €'; Y. If ¥ is not principal
in the last rule applied in D, apply the induction to the premise. If 9 is
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|| Logic Rule || Invertibility |

A.2 NO

A4 only right premise
A.6 YES

A.9 YES

A.11 NO

A.12 YES(trivial)
C.1 NO

C.3 YES(trivial)
C4 NO

C.6 YES

C.9 YES

C.11 AAC.10 only right premise
CA.2 YES
ACA.2 NO
ACA.4 CAA5 NO
ACA.5 CAA.6 YES(trivial)
ACA.8 only left premise
ACA.10 YES
CAA.3 YES
CAA.9 only right premise
CAA.11 CAA.12 NO
CCA.2 only left premise
CCA.4 CCA5 NO
CCA.8 NO
CCA.10 YES
CCA.11 YES(trivial)
AC.1 YES
ACCa YES
ACC.3 only right premise
ACC.9 NO
ACC.6 CAC.7 NO
ACC.7 CAC.8 YES(trivial)
CAC.1 NO
CAC.2 NO
CAC4 only left premise
CAC.10 YES
AAC.1 NO
AAC.2 YES(trivial)
AACA4 NO
AAC.7 AAC.8 NO

Table 1: Invertibility for rules that allow contraction on the principal formula
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principal in the last rule applied, we distinguish cases (here we consider only
three).

Last rule used is A.2

Fp~d,~19,0; = 95 T
Fpii~ ¥, ~ 19,0 ;e =€ T

we apply the inductive hypothesis to the premise, obtaining
Fo~ 9,0, = 9, T
from which, using A.2
Fagi~ 9,0 56 = €5 T
Last rule used is A.4

}_nﬁlDﬁg,ﬁlDﬁg,@;i 191,T l_nﬂ13192,192,®;6 = GI;T
l_n+11913192,1913192,@; € = €; T

By applying the inversion lemma to the right premise we obtain
Fpe,920 ;6 = € ;T

by applying now the inductive hypthesis to both premises we have, for
the right premise
Fpn920 e = ;T

and for the left premise
'_n'lgl 3’192,@; = ’191 3 T
The rule A.4 finally allows us to obtain the conlusion

F,t D1,0; = 91; T Fpn12,0:¢e = € ;T
I_n+11913192’®; € = 6’; T

Last rule used is A.9

Fn©,90U0,0 ;€ = ;T F,0,9U0,0 ;¢ = ¢; 7T
l_n—}-l @,ﬁoUﬁl,ﬁ()Uﬁl ; € = 6'; T
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By applying the inversion lemma to both premises we obtain for the

left premise

Fno1©,00,% ;¢ = €53 T F1 001,09 ;¢ = €5 T
F,O,0Ut,0; ¢ = €; 7T

from which, using the inductive hypothesis on the left premise we obtain
Fn10,00; € = €51 (1)
for the right premise we have

Fno1©,90,015 ¢ = €53 T F1 00,015 = €5 T
F,O,0Ud,01; ¢ = ;T

from which, using the inductive hypothesis on the right premise we
obtain
Fno1©,015 ¢ = €51 (2)

using the rule A.9 with premises (1) and (2) allow us to obtain the
conclusion

Frno1©,90; e = ;7 FH,10,9;¢ = ;7T
Fn©,9 U e = €; T

4 Cut-elimination for ILP

Given a derivation containing applications of the Cut rule, another derivation
of the same sequent without applications of Cut (Cut-free) can be found.
An immediate consequence of the cut-elimination theorem is the subformula
property. Indeed every rule but Cut has the property that the sequent-
premises consist of subformulas of the conclusion and as a consequence in
a cut-free derivation d of ©;¢ = ¢; Y all the formulas occurring in d are
subformulas of the formulas in ©U(e or €)UY. Animportant consequence of
this theorem is the following: the full system ILP is a conservative extension
of the ordinary intuitionistic fragment (based upon assertive connectives) and
its dual (based on conjectural connectives).

4.1 Admissibility of "context-sharing" Cut

A rule of Cut is additive or context-sharing if the same sequences of formulas
occur in the two premises and in the conclusion with the exception only of the
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cut-formulas and of formulas occurring in the privileged areas. For instance,
the context-sharing rule cut; has the form

O;=9;7 9,0;€¢ = €; 7T
O;€e =>¢€¢; 7T
Lemma For all systems close under dp-weakenig, any proof-tree with in-
stances of Cut may be transformed into a proof-tree with instances of context-
sharing Cut only. Hence eliminability of Cut is a consequence of eliminability

of contex-sharing Cut .
Proof. It sufficies to take a topmost instance of Cut in the proof-tree, e.g.,

0;=9;7 3,0 ;e = €; Y
0,0/ e = €; 1,1

After replacing the subdeduction d; and dy of the premises with d;{©’ ;=
: X'}, dof{© ;= ; T}, we apply now a context-sharing Cut to these two new
deductions and obtain a new deduction with the same conclusion ©,0'; ¢ =
€ ; T,Y’. Thus proceeding in this way we may successively replace all the
istances of Cut with a context-sharing Cut throughout the derivation. In
our Cut-elimination proof we will use cut; and cuty in the context-sharing
version.

Notations:
e Given a deduction d let last(d) be the last rule used in d.
e The logical complezity of a formula ¢ is the number of pragmatic con-
nectives it contains; thus
— |n| = 0 for n =F «, #a oppure A;
— |80 0 61| = |0o| + |01] + 1 if o is a binary connective;
— |0 6] =1d| + 1 if o is a unary connective.

e The rank of a application of a Cut rule with cut-formula § is |§| + 1.

e The cut-rank of a deduction d is the maximal rank of the applications
of Cut within it. Hence if d; [and ds] are the subdeductions of the
premises of last(d) then

0 if last(d) is the identity axiom
(d) = cr(dy) if last(d) is a unary rule
= mazx[cr(dy), cr(ds)] if last(d) is a binary rule
(d)

d
maz[|0| + 1, cr(dy), cr(ds)] if last(d

is a cut withc ut-formula ¢
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e The depth of a deduction d is its depth as a tree. More precisely, we
have the following inductive definition, where d; [and ds] are the deriva-
tion(s) of the sequent-premises of last(d) (immediate subderivations):

0 if last(d)=axiom
|d| < |di]| +1 if last(d)=unary rule
max(|di|, |do]) + 1 if last(d)=binary rule

e The level of a Cut having as immediate subdeductions d; and dy is
defined as the sum of the depths d; and d,.

4.2 Cut Elimination Theorem

Theorem. All application of the Cut rules, except for those with elementary
cut-formulas occurring in an axiom S.5, are eliminable in a ILP deduction.

Proof. Our strategy is to consider the Cuts whose rank is equal to the
rank of the whole deduction, and among these to remove the Cuts which are
highest in the proof-tree, hence the ones of a lowest level. To implement this
strategy it sufficies to show how to replace a subdeduction d of the form

0;=9;7T 9,0;€¢ = €; 7T
O;e¢e=¢;7

having er(d) = |9|+1 with a new deduction d' having the same conclusion but
cut-rank strictly lower: cr(d’) < cr(d). Note that the inequality is strict only
if we proceed by successively deleting Cuts with maximal rank and minimum
level. The proof uses a main induction on the cut-rank and a subinduction
on the level of the Cut at the bottom of d. We have four different reductions.

4.2.1 Axiom reductions

The reduction steps of this form apply when one premise of a Cut is an
axiom. These reductions lower the cut-rank by removing the Cut itself. We
consider the cases of our axioms, with the exception of the Axiom S.5 which
is a non-logical axiom and it is not reduced.

Axiom S.1

9,0:= 9:T  0.0.0:c= T
9,0;e =€ T

cuty
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using dp-contraction on the right premise we have that -, 9,9, 0;¢ =
€; Y implies I, ¥,0;¢ = €;YT. We can take the latter as the new
deduction d’. The cut-rank of d' is now strictly lower than || + 1 and
the Cut has been deleted. Analogue considerations for the axiom S.2.

Axiom S.4
di

@;6:>'61;T,/\ KA =57
O;e=¢€; T

cuty

We have three subcases:

(i) the cut-formula is principal in the left sequent-premise, thus d; is a
logical axiom S.1 where € is A: we are back to the case of an axiom
S.1, and the reduction yields the right sequent-premise (which is the
same as the sequent-conclusion);

(ii) the cut-formula is not principal in the left sequent-premise, and d;
is a logical axiom S.1, S.2 or an absurdity axiom S.3, S.4, or a validity
axiom S.6, S.7: the reduction yields the sequent-conclusion regarded
as an axiom of the same nature as the left sequent-premise.

(iii) otherwise, d; ends with an inference whose principal formula is
different from the cut-fomula A: we apply a commutative reduction
described below.

Notice that in cases (i) and (ii) the cut-rank is lowered, because a Cut
has been deleted with cut-rank | A |+ 1 = 1.

The case where the right sequent-premise is an absurdity axiom S.3 and
the cut-formula A is eliminated using cut; is similar, but in subcase
(ii) d; can only be an axiom S.3 or S.7.

The treatment of validity axioms is dual to that of absurdity axioms and
is omitted.

4.2.2 Commutative reductions

Commutative reductions permute a Cut inference above another inference;
they apply when a sequent-premise of a Cut is the conclusion of a rule whose
principal formula is different from the cut-formula and (an ancestor of) the
cut-formula occurs in the sequent-premise. These reductions don’t change
the cut-rank of the proof, but reduce the level of the Cut; by iterating them,
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eventually we come to a situation where the cut-rank can be lowered either
by a symmetric reduction or an axiom reductions or a weakening reduction.

Sometimes there are different ways of lowering the level of a Cut, by
permuting it above an inference either in the left or in the right imme-
diate subderivation; since the cut-elimination process requires structural
transformations such as dp-contraction and weakening reductions, the non-
determinism of commutative reductions may make the cut-elimination pro-
cess non-confluent (as in the classical sequent calculus LK). However, since
ILP is a polarized system, we can find a deterministic algorithm for commu-
tative reductions. For ¢ = 0 or 1, let d; be the subderivation which end with
the sequent-premise where the cut-formula occurs in the privileged area: (a)
we always permute first the Cut above the inferences in d; whenever possi-
ble, and then (b) we permute the Cut above the inferences in di_; if possible.
Here we consider the case of commutation of Cuts cut; and cut, with an
application of the rule A.4 which illustrate the two cases.

A.4 — cuty Case (a):

- do : doa
Y1 D1, 0; = 9; T 192,@,=>19,TA4 d1
Y1 D1, 0; = 9,7 )

P, D 19,0 = €T .

ut1

t
V1 D Yy,05e= €T Ut
reduces to
D doa {01 D Va3 } D di{da; =3}
dor{91 D 9g;=:} V2,91 D92,0; =9, T 9,495,091 D9,0;e= €57 .
91 D Ug,01 D U2,0;= 915 T 99,91 D U2,0:¢ = ¢ T

%1 D o, 3’192,@;6:>61;T

using closure under dp-weakening to obtain the weakened versions
of dg1, dgo and d;. To obtain the desired conclusion we apply dp-
contraction:

if F, 0 D9, D99,0;e=€;YT then F, Y D1¥y,0;e=€;7T

Case (b): If ¥ does not occur in the sequent premise of the last inference

of dy, then
S dy L dio
2 do 3,9 D 19y,0;= 9; T 19,192,@;6:>6';TA4
W D, 0; =T 19,1913192,6;6:>e’;'fcut ’
1

V1 D 99,0;e= €Y

A4
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reduces to

: do{D; =1} s din{D;=:} s do{92; =3} D dip{ 5=}
52,0;= 9T 9,0%,0;= 9;; Y et 922,02 9T 0,95,0,0;e= €T
52 0:= 9; T ' G2,91 D 09,056 = ¢; T

P91 D V¥2,91 D V2,05 = GI;T

cuty

A4

where we write “O” for ¥; D 99 and “D?” for ¥; D U, 91 D Vs.

Finally, using dp-contraction, from k,, ¥ D 9,91 D ¥9,0;¢ = ;7T
we obtain F, 91 D ¥9,0;¢e = ¢; Y.

A .4 — cuty Case (a):

S dy P
do Y91 D 99,0;= ;T 1¥5,0;0= T
91 D 1Y9,0;e=€;T,v 1913192,@;U:>;TC

P DU, 0;e= €T

A4

U,tg

reduces to

D do{do; =3} D dip{91 D25 =5}

s dy {9 D 993 =1} 99,0,0;e = €¢;T,v 99,D,0;v =T

91 D 99,91 D 99, 0;= 913 T ¥9,91 D ¥2,0;€ = €; T
91 D P2, 3192,9;€=>€';T

cuto

A4

Case (b): If v does not occur in the sequent premise of the last inference
of dl, then

: dos : dos
V1 D 199,0;=0;Tv 199,056 = €T, v S dy
Y D 199,0;e= €T, v A4 91 D 09, 0;0 =Y
91 D 1,0;e=¢€; Y ¢

UtQ

reduces to

D doy D df : dpy L df
02,0;= 9;T,v D2,0;v=7T : 99,0,0;e = €;T,v 99,D,0;v=;7T
01D P9, 01 D 09,0, = 9, T 2 B9,91 D 02,056 = ;T
1913192,1913'(92,@;6:}6’;T

cuty

A4
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where dy; = do1 {1 D V2= ), dog = doa{V1 D Vo5 =3}
di = di{dy; =3}, di = di{dh D 9535}

4.2.3 Symmetric reduction

These reductions apply when both cut-formulas are the principal formula
of the last inference in both immediate subderivations. In order to achieve
determinism of the cut-elimination procedure, when the given Cut is replaced
with new Cuts, including more than one Cut of lower rank, we must fiz
the order in which these new Cuts occur: on one hand, a Cut with the
same rank must obviously occur highest (in this way its level is reduced); on
the other hand, Cuts of lower rank may be applied (from top down) in the
typographical order of the occurrences of the new cut-formulas a subformulas
of the given cut-formula, if the latter is assertive, and in the reverse order if
the given cut-formula is conjectural, as it is shown in the examples below.

A.4-A.3
D dy D dy D ds
91,0;= 05 T 5 H D1, 0;=9Y1; T 1¥5,0;¢ e’;TA4
;=Y DUy YT 1913192,@;6:>e’;Tcut '
O;e=¢€;T !
reduces in
a
0,01;=> 997 A L dy
O;= % DIy YT T D Y9,0;= 9; Y cut d1
0;= ;T 0,9 = 9, Y . L ds
0;= 99T cu 195,06 = €Y cut
Oe= €T !

the cut-level on ¥; D 95 has been lowered from |d;|+max(|dz|, |ds|)+2
to |dq|+]|d2|+1. The two new Cuts introduced have cut-rank |J5|+1 and
|91] + 1 both lower than the removed Cut with cut-rank |, D 95| + 1.

ACC.1-ACC.2
do dy dsy
9,0;e=¢; T, v 0;= 9T 6;uv=;7T
@;e:>e’;T,19>-UACC'1 @;19>—U:>;TcutACC'2
2

O;e=€; Y
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in this case we do not introduce a new Cut of the same rank:

- do D do{9; =3}

tdy 9,0,e=>€T 0 19,@;1):>;Tcut

0;=09;Y 9,0;e =Y 2
O;e=¢€;T cuty

4.2.4 'Weakening reductions

These reductions directly delete the Cut and also part of the derivation;
they apply when a cut-formula is introduced by an implicit weakening in
the privileged affine area of a sequent-premise of the Cut. The significant
new cases are those in which the other sequent premise is either an axiom
where the cut-formula is not principal (case i) or is a consequence of a rule
of inference where the cut-formula is the principal formula (case iv).

R — cut,
:
6;61:;T1R D dy
O; =97 9,0 ;€ = ;7T
O;¢ = ;7T

cuty

There are four cases:
Case (i): dy is a logical axiom S.1 with principal formula ©: then we
are back to an axiom reduction and the given derivation reduces to

-
O:6=;71;
O;e= ;7T B
Case (ii): dy is an axiom S.2, S.3, S.4, S.6 or S.7: then dy and the
Cut inference are deleted and the conclusion is an axiom of the same
nature as d;.

Case (iii): otherwise, if the last inference of d; does not have ¥ as
principal formula, then we are back to a commutative reduction.

Case (iv): finally, if 9 is the principal formula of the last inference of d;,
say an application of ACA.4 with ¥ = ¢¥'Nv’ and with sequent-premise

@
9,9,0 ;5 v
9,0 ; €

"=
7T ACAA
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then the derivation reduces to

s do{9'; =3}
: do 9,0 561 =31y dll
Cdy 06 =71, 9.0; = 97T 9,9,0 ;v =T
06 =7, 0; = 9;T 9,00 =; 7T ,
©; = ;T ;v =; 7T cut
culg

O;¢e = €;7T

The inference cut] has lower level that the given cut;, while cut|; and
cuts have lower cut-rank.
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5 Appendix

S.1: logical axiom: S.2: logical axiom:
0,9; = 9;7 O;v =>;vu7Y
S.83: absurdity axiom: S.4: absurdity aziom: S.5: assertion-conjecture:
@,/\;eiel;l’ @;/\:>;T O, ra; =; Ha T
S.6: validity aziom: S.7: validity axiom:
@;:>V;T ®;€:>e';T,V
S.8: cuty: S.9: cut,:
0;=>49;7T 9,0 ;e = ;Y O;€¢ = ¢€; T ;v = T
0.0 = ¢€; 1T, 0,0 = ¢; T, Y
S.10: exchange left: S.11: exchange right:
0,91,99,0" 5 e= ;T O;e= €; T,v,v9, Y

0,92,91,0" ; € = € ; Y O;e=> €; T, u,v, Y

Table 2: ILP, identity and structural rules
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logical rules, connectives of type 94 — 4

A.1: ~R: A.2: ~L:
0,9; =; 7T ~94,0; = J4; 7T
O;=>~9; 7T ~13,0;e=>¢€¢;T

logical rules, connectives of type ¥ x 9 — 9

A.3: DR A4 OL:
0,015 = 925 T P9 D99,0; = U1 ; T 99,0 ¢ = ;T
O; = 9 D9; 7T 91 D099,0 ;¢ = €¢; T

A.5: NR: A.6: NL:
O;=>9;7T O;=> 9; 7T 0,9,91;€¢ = ;7T
O;= 9hnNnidy; T O,9%Nd ;e = ;7T

A.7,8: UR: A.9: UL:

O; = ¥;7Y 0,9 ;¢ =>¢;YT 0,91;¢e=¢€;7T
O; = JUd; T O,%Ut ;e = ;7T
fori=0,1.

Table 3: ILP, the assertive fragment.
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logical rules, connectives of type v — v

O;,v=>;7T ~v 0 =; T,v
O;e= ;T,~v O;~v =; 7T

logical rules, connectives of type v x v = v

C.3: =R: C.4: =R:
;¢ = €¢;v,T,v1=v2 O; v =; T,v9,01 > U2
O;¢ = ¢€; T,u>v9 O;e=¢€; T,u1 > v
C.5: »L:

O;=;"Tu O;vg =; 7T
O;vi>=v2 =; 7T

C.6: AR: C.7,8: AL:
O5¢e=¢€;T,0 O;e=¢;T,u O;v; =: 7T
O;¢ = ¢; T,ug Avy O;vAivy =; T
for: =0,1.
C.9: YR: C.10: Y L:
O:¢e = €¢; T,u,09 O;v =: 7T O;vy =3 7T
O;¢ = ¢; T, v1 Yy O;viYu =; 7T

Table 4: ILP, the conjectural fragment.
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logical rules, connectives of type v — ¥

CA.1: right negation: CA.2: left negation
O;v=;7T ;e = €; T,v
O; =>~v; Y ~v,0;€e = €; T

logical rules, connectives of type ¥ x v — ¥

ACA.1: DR: ACA.2: DL:
0,%; =; T,v Y4DOv,0; =>9; T 9Dv,050v =; T
O;=>9D>v; 7T IDv,0;e=>¢€; Y
ACA.3: NR: ACA.4: NL: ACA.5: NL:
0;=>9;7T 0;=>;0v,T 0d9nv,d;v =;T OINvd;e=€;T
O; = J9Nnv; YT 0,9Nve=>€; Y 0,9Nv; e = ;T
ACA.6: UR: ACA.7: UR: ACA.8: UL:
0;=49;7T 0;=;0u7T 0,9;¢e => ;T 0,9Uv; v =>; T
O;=>JdUv; T 0O;=JUv; T 0,9Uv;e = €¢; Y

logical rules, connectives of type v x 4 — 9

CAA.1: DR: CAA.2: DR: CAA.3: DL:
0;=49;7T O;v=;7T Qe = ¢€;T,v 9,0;e => ;7T
O;=>vdYd; T O©;=>0vd1D9;7T vO23,0;¢e = ;Y
CAA.J: NR: CAA.5: NL: CAA.6: NL:
0;=;07T O0;=9;T Ouvndd;v=;T Ouvndd;e=¢€;7T
O;=>vnNnd; YT O,vNY;e= ;€Y Q,vNd; e = €; 7T
CAA.7: UR: CAA.8: UR: CAA.9: UL:
0;=;0v7T O;=>9;7 O,vUd v =>;T 0,9;¢e = ;7T
O;=vUud; T O;=vUd; T O,vUd; e = €; T

logical rules, connectives of type v x v — 9

CCA.1: DR: CCA.2: DL:
O; v =; T, Q¢ = €¢; T, v1 Dv2,0 500 =; T
O; > vyDve; Y V1 Dv2,0 ;€ = €¢; Y
CCA.3: NR: CCA.4,5: NL:
0; =35 v, T 0; =;u,T O,vpNuvy ;v =5 T
;= vNuv; T O,vgNwvy ;€= ;€Y
CCA.6,7: UR: CCA.8: UL:
O;=>;uv,T O,v1Uvy; v1 =3 T O,uUve; v = 5 T
O; = vUu; T O,uyUve ;e=>¢€; T

Table 5: ILP, assertive mixed rules
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5 APPENDIX
logical rules, connectives of type ¥ — v
AC1: right doubt: AC.2: left doubt
0,9;¢e =>¢€;7T 0;=> J;7T
O;e=> €e; T,~9 O; ~d =; 7T
logical rules, connectives of type 4 x v = v
ACC.1: -R: ACC.2: ~L:
0,9;¢ => €; Tv 0;,=>9; 7T ;v =>; 7T
;e = ¢€e; T, d>v O;9%>v =>; 7T
ACC.3: AR: ACC.4: AL: ACC.5: AL:
0;=>9; T,9Av O;¢e => ;5 T,v 0,9; =>; 7T O;v=>;7T

;¢ = ¢€; T, 9Av O;%Av =>;T O;9%iv =>; 7T

ACC.6: YR: ACC.7: YR: ACC.8: YL:
0;=>9;T,uv,9Yv O;¢=¢€;T,v,9yv 0,9;=>;7T O;v=;T7T
O;e=e; T,9Yw ;¢ = €¢; T,9Yvv O;9Yv =>; 7T

logical rules, connectives of type v x 4 — v

CAC.1: -R: CAC.2: ~L: CAC.3: ~L:
O0;=>9;T,v=9 O;v=;Tv=9 06;=;Twv 4,0; =>; 7T
O;e=¢€; T,o=9 0O;e=¢€; T,vo=9 O;v-9 =; 7T

CAC.4: AR: CAC.5: AL: CAC.6: AL:
O;e=¢€;T,v O;=9; Toid O;v =57 0,9; =; 7T

O;vAid =; T O;vAid =; 7T

O;¢e = ¢; T,ord

CAC.7: YR: CAC.8: YR: CAC.9: YL:
O;=9; T,u,oYyd ©O©;¢=¢€; Tv,oyd O;v=;7T 0,9; =>; 7T
O;e=>e; T,oYd O;¢ = €¢; T,ovd O;vYd =; T

logical rules, connectives of type ¥ x ¥ —» v

AAC.1: =R: AAC.2: ~L: AAC.8: =L:
0,91; = Y; T,91 =092 0,915 = €; 1,00, 0; =9,; T 92,0 ; =; T
Oe=>e€; 1,9 =99 O = €; Y, =1 O; =09 =; 7
AAC.: AR: AAC.5,6: AL:
O; = %; Y,% A O; = dy; T, LD 0,9 ;=>;7
O; it =Y

O;e=¢€; 1,9 A

AAC.7,8: YR: AAC.9: YL:
O; = Y9 ;%Y %Hh,T 0,%;=>;7T 0,91;=>;7T

O;e=¢; 9 Y H,T O; %Y =; 7T

Table 6: ILP, mixed conjectural rules
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A.10: \R:
O, =19 ; 7T P92,0;=; T

Strong subtraction

A.11: \L:
91\ 92,01,0; = y; T

A.12: \L:

91\ 92,801,005 e=> €5 T

@;#191\\192;’1‘

Hh\%2,0;€e = €; T

Hh\92,0;€e = €; 7T

ACA.9: \R: ACA.10: \L:
0;=>9;7Y O;v=>;7 9,0;e=> €; v
0; = I9\v; Y I\v,0;€ = €; T
CAA.10: \R: CAA.11: \L: CAA.12: \L:
0;=;"Tv 3,0; =>; 70 v\4,0;v =; 7Y v\%,0; =9 T
O;=>v\% T v\,0;€e => ;T v\94,0;e = ¢€; 7T
CCA.9: \R: CCA.10: \L: CCA.11: \L:
0;=;T,u O5v=5 T vi\v2,0;v =5 T,a vi\v2,0;€ = €; T,

@;:>’U1\\’U2;T

O; v =; YT,u1 Nvy

v \ 02,0 ; e=>€; T

Weak subtraction

C.11: \R:

O;¢ = ;5 v,T

vl \ 02,0 ; e=>¢€; Y

C.12: \L:

O;5v1=; T,

O;€e = €e; YT,v1\ve O;viNvy =; T
ACC.9: \R: ACC.10: \L:
0; = J; T,9\v O;v=; T, 9\v 0,9; =; T,v

O;€¢ = €; YT,9\v

CAC.10: \R:
O;e=>¢€; T,v

0 .,%e=>¢€; T,

CAC.11: \L:
Ou=>; 7T

O;9\v =>;7T

CAC.12: \L:
0; =7

Oe=¢€; T,o\Y

(CIRTANEVEE S |

AAC.10: \R:

0; = d1; 1,09\

92,0 ;e =>¢€; T

O;uvNd =; 7

AAC.11: \L:
@,191; :>'l92; Y

O;e=¢; T,9 N1

O; NP =; 7T

Table 7: ILP, subtractions




