TOWARDS A LOGIC FOR PRAGMATICS.
ASSERTIONS AND CONJECTURES.

GIANLUIGI BELLIN AND CORRADO BIASI

Abstract. The logic for pragmatics extends classical logic in order to characterize
the logical properties of the operators of illocutionary force such as that of assertion
and obligation and of the pragmatic connectives which are given an intuitionistic
interpretation. Here we consider the cases of assertions and conjectures: the assertion
that a mathematical proposition « is true is justified by the capacity to present an
actual proof of «, while the conjecture that « is true is justified by the absence
of a refutation of a. We give sequent calculi of type G3i and G3im inspired by
Girard’s LU, with subsystems characterizing intuitionistic reasoning and some forms
of classical reasoning with such operators. Extending Godel, McKinsey, Tarski and
Kripke’s translations of intuitionistic logic into S4, we show that our sequent calculi
are sound and complete with respect to Kripke’s semantics for S4.

§1. Preface. The logic for pragmatics, as introduced by Dalla
Pozza and Garola in [7, 8] and developed in [2, 3], aims at a formal
characterization of the logical properties of illocutionary operators:
it is concerned, e.g., with the operations by which we perform the act
of asserting a proposition as true, either on the basis of a mathemat-
ical proof or by empirical evidence or by the recognition of physical
necessity, or the act of taking a proposition as an obligation, either
on the basis of a moral principle or by inference within a normative
system. ! The discipline of pragmatics, first developed in classical
texts of 20th century philosophy and philosophical logic from Austin
[1] to Grice and Searle, and then resulting in a large body of lin-
guistic literature (already conspicuous when the classical book by
Levinson [14] was published) in a complex relationship with seman-
tics and other areas of linguistics, lies at present beyond the scope
of our methods. So far the logic for pragmatics has considered only
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propositional systems, thus has given no contribution to the cru-
cial issue of the reference of individual terms. Moreover the focus
of our current work is on impersonal acts of judgement, leaving the
consideration of speech acts to future developments. More precisely,
our present task is to characterize the abstract behaviour of a few
pragmatic operators, as it is manifested in highly regimented forms
of reasoniong such as mathematical discourse or the foundations of
laws.

Within this range, the consideration of the impersonal operator of
assertion in Dalla Pozza and Garola’s pragmatic interpretation of
intuitionistic logic [7] has given a stimulating insight in the interpre-
tation of intuitionistic and classical connectives, briefly summarized
below. In the light of their approach, this paper begins an analysis
of dualities in intuitionistic logic, in so far as they can be interpreted
as resulting from the relations between an impersonal operators of
assertion and one of conjecture. The technical tools used here are
as ancient as the S4 translation, revisited in the light of Girard’s
sequent calculus LU, but they are perhaps enough to guess some
features of the theory yet to be developed.

The viewpoint of [7] can be sketched roughly as follows. There is
a logic of propositions and a logic of judgements. Propositions are
entities which can be true of false, judgements are acts which can
be justified or unjustified. The logic of propositions is about truth
according to classical semantics. The logic of judgements gives con-
ditions for the justification of acts of judgements. An instance of an
elementary act of judgement is the assertion of a proposition «, which
is justified by the capacity to exhibit a proof of it, if « is a mathe-
matical proposition, or some kind of empirical evidence if « is about
states of affairs?. It is then claimed that the justification of complex
acts of judgement must be in terms of Heyting’s interpretation of in-
tuitionistic connectives: for instance, a conditional judgement where
the assertion of 5 depends on the assertibility of « is justified by a
method that transforms any justification for the assertion of « into
a justification for the assertion of 5.

In modern logic the distinction between propositions and judge-
ments was established by Frege: a proposition expresses the thought

2In this introduction the symbol “a” stands for an arbitrary proposition, not
necessarily atomic; the symbol “p” is specifically used to range among atomic
propositions.
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which is the content of a judgement and a judgement is the act of
recognizing the truth of its content. In Frege’s formalism, “r o”
expresses the judgement asserting the proposition «; only truth-
functional connectives and quantifiers are considered and judgements
appear only at the level of the deductive system. It follows that there
cannot be nested occurrences of the symbol “H” and that truth-
functional connectives cannot be applied to expressions of judge-
ment.

The distinction between propositions and judgements has recently
been taken up by Martin-Lof: in his formalism “« prop” expresses the
assertion that « is a well-formed proposition, and “« true” expresses
the judgement that it is known how to verify . However, it seems
that propositions are given a wverificationist semantics, according to
which in order to give meaning to a proposition we must know what
counts as a verification of it. Indeed, by replacing Frege’s “+ o” with
“a true” Martin-Lof seems to adopt the view that it is impossible
to separate the truth of a proposition from the conditions of its
verification; certainly Martin-Lof theory of types is developed in an
epoché of classical truth, without any reference to it.

Unlike Martin-Lof and in agreement with Frege, Dalla Pozza and
Garola distinguish between the truth of a proposition and the justi-
fication of a judgement, but extend Frege’s framework by introduc-
ing pragmatic connectives and giving them Heyting’s interpretation
while retaining Tarski’s semantics for the logic of propositions. In
their compatibilist approach, classical logic is extended rather than
challenged by intuitionistic pragmatics, the latter having a different
subject matter than the former. Thus the task and the challenge for
Dalla Pozza and Garola’s approach is to characterize the relations
between the two levels: their main tool is the S4 interpretation, due
to Godel [10], McKinsey and Tarski [20] and Kripke [12, 13], which
they regard as a reflection of the pragmatic level on the semantic
one. In this paper we try to show that this elementary tool can
be exploited to trace interesting interactions between classical and
pragmatics connectives.

On one hand, Dalla Pozza and Garola’s framework does appear
quite close to the well-established epistemic approach to philosophy
of mathematics, advocated by Stewart Shapiro [25, 26]. Justification
of judgements depends on knowledge; Kripke’s possible worlds may
be regarded as possible states of knowledge and their preordering
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may correspond to ways our knowledge could evolve in the future.
Having a proof of a now rules out the possibility of « being false
at any future state of knowledge, and the possibility that o may
be false at a future state of knowledge propagates the impossibility
of having a proof of a backwards to all previous states of knowl-
edge. Similarly, having now a proof that « implies 8 rules out the
possibility that at some future state of knowledge a may be true
and 3 false. Notice that this reading explains Godel’s, McKinsey
and Tarski’s and Kripke’s interpretation ( )™ of intuitionistic logic,
which yields (p) = Op and (A D B)M = 0(AM — BM), and
not the other well-known interpretation ( )¢ which yields (p)¢ = p,
(A D> B)Y =0A% — B and (AUB)Y = 0A%vOBC. The following
apparently innocent remark plays an important role here: Kripke’s
monotonicity condition (i.e., persistence in the future of the valu-
ations of atomic formulas) is related to the fact that in the modal
translation ( )™ an intuitionistic atom p is translated as Op. The
epistemic interpretation of Kripke’s semantics can be given an onto-
logical significance: some philosophers have suggested that the right
standpoint of the logic for pragmatics may be a reading of Kripke’s
possible world semantics that would reduce intuitionistic mathemat-
ics to classical epistemic mathematics; presumably, the intensional
notion of a proof would be explained away in an ontology of possible
states of knowledge.

On the other hand, Dalla Pozza insists that the logic for pragmat-
ics is an intensional logic, while Kripke’s semantics for modal logics
suggests an erxtensional interpretation of intensional notions. In the
field of deontic logic Dalla Pozza has successfully applied the inten-
sional status of the pragmatic operator of obligation, in opposition to
the extensional reading of the KD necessity operator, by introduc-
ing a distinction between ezpressive and descriptive interpretations
of norms, which appears to have resolved conceptual confusions [8].
Similarly, Frege’s symbol “” may be regarded here as expressing
the intentionality of an act of judgement, while the S4 modality “0”
would perhaps describe conditions on the states of knowledge which
justify the appropriateness of such an act. Contemporary mathemat-
ical intuitionism is based on game semantics, the typed A-calculus
and categorical logic as much as on Kripke’s semantics; all of these
tools belong to a mathematical treatment of the logic for pragmat-
ics. The fruitfulness of a non-reductionist philosophical view may
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be tested by its capacity to promote a better understanding of their

relations 3.

1.1. Conjectures and assertions. If the logic of assertions is
formalized and interpreted in the proof theory and model theory
of mathematical intuitionism, what are the essential features of an
illocutionary operator of conjecture “#’ and what shall a logic of
conjectures be like, if there has to be a duality between assertions
and conjectures? The following three principles seem a good starting
point of our investigation:

1. the grounds that justify asserting a proposition « certainly suf-
fice also for conjecturing it, whatever these grounds may be;
in other words + @ = # « should be an axiom of our logic of
assertions and conjectures;

2. in any situation, the grounds that justify the assertion ~ o are
also necessary and sufficient to regard # -« as unjustified;

3. pragmatic connectives are operations which express ways of
building up complex acts of assertion or of conjecture from ele-
mentary acts of assertion and conjecture. The justification of a
complex act depends on the justification of the component acts,
possibly through intensional operations.

Notice that in the formula # —a of (2), the negation is classical
negation, not the intuitionistic one: e.g., the conjecture # —a may
be refuted also by evidence that a certain state of affairs a does not
obtain, not necessarily by a proof that there would be a contradiction
assuming that o obtains. The interactions between the semantic and
the pragmatic layers of Dalla Pozza’s system are exploited here in
an essential way.

In our pursuit we are aware of a tradition of dual intuitionistic logic
or Heyting-Brouwer logic, going back to Cecylia Rauszer’s Heyting-
Brouwer algebras [22, 23], which have been taken up in categorical
logic by Lawvere, Makkai, Reyes and Zolfaghari[15, 24] and more
recently reconsidered by R. Gore [11] and T. Crolard [5, 6] in proof-
theory and theoretical computer science, and called subtractive or
bi-intuitionistic (i.e., ordinary and dual intuitionistic) logic. A co-
Heyting algebra is a (distributive) lattice C' such that its opposite C'?
is a Heyting algebra. In C° the operation of Heyting implication
p — q is defined by the familiar adjunction, thus in the co-Heyting

3For instance, there is still something to say even about the different proof-
theoretic properties of the ( )™ and ( )¢ translations.
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algebra C' co-implication (or subtraction) ¢ \ b is defined dually*:

pANqg < r c < bVa
p < g cNb < a

In this tradition the crucial move has been to consider bi-Heyting
algebras, which have both the structure of Heyting and co-Heyting
algebras. The topological models of Heyting-Brouwer logic are bi-
topological spaces, but every bi-topological space consists of the final
sections of some preorder; the categorical models are bi-Cartesian
closed categories (with co-exponents), but unfortunately these col-
lapse to partial orderings (see [6] for a clear summary of the matter).
Since in a bi-CCC (with co-exponents) for every pair of objects A,
B, Hom(A, B) has at most one element, in such a categorical model
of Heying-Brouwer logic it is impossible to define a sensible notion
of identity of proofs.

In the framework of the logic for pragmatics, the identification of
the objects of Heyting and co-Heyting algebras must be resisted: we
look for systems which allow us to represent the interaction of the
two structures while keeping them separated. Henceforth we shall
write v for formulas that are conjectures or result from conjectural
connectives and 1 for assertions or result from assertive connectives;
let 6 be either v or 9.

In a Kripke model for bi-Heyting algebras, subtraction is inter-
preted in the dual preordering, thus ¢ \ b is true at some world w if
there is a world w' in the past of w such that ¢ is true and b false at w’
(but remember that in such a Kripke model, the valuations of atoms
are still persistent in the future!). Let us write “C" and “¢ for the
necessity and possibility operators evaluated in the past (dual pre-
ordering), as in (classical) temporal S4: thus the modal translation
()* into temporal S4 yields °

(V1 N\ V)" =@ (V] A —w3).

The question now arises what shall be the modal translation of an el-
ementary act of conjecture #a? Following an “inductivist instinct”,
we may think that a necessary condition for conjecturing « is the
fact of always having seen « true in the past up to now: if we decide

“The overloading of symbols here will not create confusions between meet,
join, Heyting implication on one hand and the classical connectives on the other.
5Obviously here A and — are the connectives of classical logic.



ASSERTIONS AND CONJECTURES 7

that (#«)* =EBa, then (r a)* = O« does not imply (#a)* and thus
our principle (1) fails for this interpretation.

If by analogy with the treatment of subtraction we decide that
(#a)* =9, then principle (1) is fulfilled; but if in a given situation
v is justified, then there is a Kripke model in which « is true in all
possible worlds now and in the future, but perhaps not in the past.
As in that situation we would not be entitled to regard the conjecture
# -« as unjustified, our principle (2) fails for this choice®.

Thus the only extension of Godel’s, McKinsey and Tarski’s and
Kripke’s modal interpretation of intuitionistic logic which is consis-
tent with our principles is the one which translates both assertions
and conjectures in tenseless S4; let

()M = Ca.

In this way the truth of (- @) = O in a given state of knowledge
certainly entails that of (#a)™ = ©a, as required by principle (1);
also the truth of O in a given state of knowledge entails the falsity
of (#—a)M = O—a, as required by (2). It should be stressed that
no assumption of monotonicity or persistence in the future of the
valuations is made here; however, it does follow from the definition
of (#a)™ that conjecturability of « is persistent in the past.

Our choice of the modal translation entails the principle that in any
given situation, the grounds on which a conjecture # « is regarded
as unjustified are necessary and sufficient to justify the assertion
+ mc. This is an identification that some may find too strong and
unintuitive. In the point of view adopted here, the duality between
assertions and conjectures is related to that between necessity and
possibility in S4 and the above identification is forced upon us by
the choice of the modal translation. We may write

(rp)t = n—p and (up)t = +-p

It follows from our previous discussion that we have assertive con-
nectives of implication “O”, conjunction “N” and disjunction “U”
with Heyting algebra structure, on one hand, and the conjectural

6Notice however that if a proof of + o entails the validity of O« in temporal S4
(under an assumption of sondness of the deductive system in which the proof is
presented) then there is no model of temporal S4 in which © « is true. Hence this
stricter interpretation in temporal S4 does support a correspondence between
proofs of + a and refutations of # —a.
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b

connectives of subtraction “\” (where “v; \ v” is to be read “per-
haps v1 and not vy"), weak disjunction “Y” and weak conjunction
“A” with co-Heyting algebra structure, on the other; to these we
add an assertive strong negation “~\ and a conjectural weak impli-
cation “>".

The question arises, what shall be modal interpretation of our dual
intuitionistic logic of conjectures. Here we explore the possibility of
translating both assertive and conjectural connectives into to non-
temporal (tenseless) S4, e.g., letting

(v1 N v)M = O (WM A -

In this way our modal interpretation induces a notion of duality
between assertions and conjectures which is clearly different from
that in Rauszer’s Heyting-Brouwer tradition. For instance, suppose
that v; is unjustified iff ¥; is justified, i.e., ¥; = (v;)* for i = 1,2. If
U1 \ vy is unjustified in the present, then vM A —v! is false in all
future possible worlds and this should be the condition for justifiedly
asserting vy D vi, i..e, ¥y D 9.

A corollary of this choice is the existence of orthogonal negations.
As in bi-intuitionistic logic we can define two negations, namely, the
usual intuitionistic negation “~” and the weak negation “~" (per-
haps not), namely, ~ § =4 \/ \J, (where “\/” is an illocutionary
act which is always justified) 7; here their modal interpretation is

(~ )M = 0O-6M and (~ §)M = O=6M. Tt follows that in our logic
~~9 =9 and AN U=V

The fact that strong and weak negation may act as inverse oper-
ations® is a distinctive feature of the approach adopted here with
respect to Rauszer’s tradition and deserves an additional technical
comment.

Let F = (W, R.S) be a bimodal frame, where R and S are pre-
orders. The forcing conditions for Oa and Ela are given by

“w_”
—

"In Rauszer’s tradition it is customary to use for the usual intuitionistic
negation and “~” for “backwards looking” weak negation. For us “=” is taken
up by classical negation and, obviously, our “~” is different from Rauszer’s “~”;
certainly future improvements on the notations are desirable.

8Strictly speaking, we have four negations, as ~¢ and ~v may be regarded
as orthogonalities, internalizing the (metalinguistic) maps ( ). We reserve the
orthogonality sign for the metalinguistic consideration of the fragments of our

language which exclude mixed connectives.
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w Ik O iff w' Ik « for all w' € W such that wRw';
w IF8 o iff w' IF o« for all w' € W such that wSw'.

As R and S are preorders,
0800 — Oo and QSa -0 Qu
are certainly valid in F. It is easy to see that
(1) Oa — O B0« and (2) OO Ca %

are valid in every Kripke model over F if and only if R = S. Indeed
if S is not a subset of R then, given wSv and not wRv, we set w' IF p
for all w' such that wRw' and v I p: thus (1) with a = p is false in
w. Similarly, if R is not a subset of S then, given wRv but not wSv,
we set w' I p for all w' such that wSw' and v IF p: thus (2) with
a = p is false in w. Thus if (1) and (2) are valid in F, then R = S.
The converse is obvious.

The intuitionistic logic of assertions and conjectures whose modal
translation is into tenseless S4 (i.e., on preordered bimodal frames
with R = S) will be called ILP. Thus the axioms®

(1) V=~ and (2) A~ U= U

characterize the logic ILP. The intuitionistic logic of assertions and
conjectures modally interpreted over temporal S4 (i.e., over bimodal
frames with S = R™') may be called polarized bi-intuitionistic logic
(PBL), in view of the fact that the modal interpretation of subtrac-
tion proper of the tradition of bi-intuitionistic logic is retained, but
formulas are polarized either as assertive or as conjectural, according
to our third guiding principle. The logic PBL could be regarded as
a pragmatic interpretation of Reuszer’s Heyting-Brouwer logic. This
paper is concerned only with the system ILP.

Negations are the first example of mizred connectives, operators
taking conjectures or assumption or both as arguments and yield-
ing conjectural or assertive statement. Our consideration of mixed
connectives is a preliminary recognition of an unknown territory.

As noticed above, since orthogonality maps between conjectural
and assertive formulas yield (+ p)t =# —p and (% p)t =+ —p, they
relate classical negation with the pragmatic operators of conjecture
and assertion. This is not the only case of interaction between the

9Gince 9M = OYM and vM = OvM, notice that (~~ NHM = O- & -O9M
and (AN ’U)M =&-0- &M,
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two levels; in all the following pairs, the formulas have equivalent S4
translation.

Foa #-a #H@—pF) FaA-8) F(aAp) #H(aVP)
~Ha ~Fa Fa-Hp Fax#ip Fankpg HaY #HP

Therefore, for a small fragment of classical logic, reasoning which
makes reference to principles of classical semantics may be lifted to
intuitionistic pragmatic reasoning, and conversely, intuitionistic rea-
soning with pragmatic expressions may be expressed as an assertion
or conjecture of a classical propositional formula (without S4 modal-
ities).

1.2. Potential intuitionism. Another philosophical question con-
cerning the justification of judgements should be mentioned here,
which has recently been raised by Martino and Usberti ([19], pag. 83)
in a discussions of the intuitionistic philosophy of mathematics. Can
we say that proofs have a potential existence, where “possibility is not
understood in the traditional intuitionistic sense as knowledge of a
method” to produce such a proof, but as “knowledge-independent
and tenseless” possibility? Dag Prawitz accepts this possibility:

“That we can prove A is not to be understood as meaning that it
is within our practical reach to prove A, but only that it is possible
in principle to prove A. ... Similarly, that there exists a proof of A
does not mean that a proof of A will be constructed but only that
the possibility is there for constructing a proof of A. ... I see no
objection to conceiving the possibility that there is a specific method
for curing cancer, which we may discover one day, but which may also
remain undiscovered.” ([21], pag. 153-154)

Martino and Usberti use the expression “potential intuitionism” to
indicate the point of view of an intuitionist who believes that proofs
have a potential existence independently of our present knowledge,
and “orthodox intuitionism” for the view that there are no potential
proofs. Martino and Usberti seem to hold that for an “orthodox
intuitionist” intuitive proofs are nothing but acts of knowing, whose
aim is to make a judgement evident and which have no ontologi-
cal status, not unlike free choice sequences, which have no tenseless
identity independently of the acts of choice constituting them.

Martino and Usberti claim that the point of view of potential in-
tuitionism inevitably entails a compatibilist philosophy with respect
to classical logic:
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“once a tenseless notion of provability has been espoused, the com-
mitment to an objective realm of propositions is unavoidable. For,
if the possibility to prove a proposition A is conceived as atemporal,
then A itself becomes an atemporal entity.” ([19], pag.84).

where “proofs and propositions have atemporal existence” means

“the existence of a proof and of a proposition is independent of the
contingent fact that in human history the proof has been found and
the truth or falsity of the proposition has been recognized.”

It follows that the potential intuitionist can understand the law of
potential excluded middle

7 A is potentially true or A is not potentially true”

in its own framework and therefore reconstruct Tarski’s truth defi-
nitions in it.

We cannot discuss Martino and Usberti’s argument here. However,
their characterization of potential intuitionism seems to fit Martin-
L6f’s point of view ([16, 17], see also [18]): what makes a judgement
“a true” evident (and thus justified) is a proof ¢ of «, where the proof
is reified, so that it can be explicitly represented by the primitive
expressions t : « of the formalism. It is a remarkable feature of
his type theory that it axiomatizes an intuitionistic and predicative
notion of what an informal proof is'.

Is there such a thing as a justification of an impersonal act of
conjecture # o, where o is a mathematical statement, other than the
absence of a refutation of o If there is such a thing as a “positive”
justification, can it be inconclusive evidence that we cannot prove
the falsity of a? Even if we stick to the negative characterization,
still we must explain what the “absence of a proof of the falsity of a”
means in the context of the logic for pragmatics. Indeed our goal is
to give a characterization of impersonal illocutionary acts in a logical
theory, which should become the basis of a theory of speech acts by
relativization.

How can we produce a conclusive justification of a mathematical
conjecture # «? This would seem very close to proving that there
can be no proof of —«, where the proof of this impossibility must
also be of a mathematical nature. Now such a proof is already a

10Tt should also be mentioned that Martin-Lf does not include in his system
the notion of a free choice sequence, which alone makes it possible to derive a
contradiction from the law of excluded middle.
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justification of the assertion ~F —a. This notion of conjecture,
which is already expressible in Dalla Pozza’s original framework, is
not dual to the notion of assertion, as we would like. But it is also
contrary to intuition. Speaking at the very beginning of the 21st
century, one is justified in conjecturing the truth or the falsity of
(i) Goldbach’s conjecture and also the truth or the falsity of (ii) the
continuum hypothesis: as a matter of fact, as far as we know, nobody
has produced a proof nor a refutation of (i) and also, thanks to Gédel
and Cohen, we know that there can be no proof nor any refutation
of (ii), unless we modify our current understanding of what a set
is. However, it would seem odd to say that we have a conclusive
justification for the conjectures in (ii) and inconclusive justification
for those in (i). Indeed when a mathematical conjecture about (i) is
performed, the aim of this act (its perlocutionary effect) is to produce
the expectation that either a proof or a refutation can be found, and
a conjecture about (ii) is now likely to include a proposal for new
axioms of set theory. In any event, it seems that an act of conjecture
should be regarded as felicitous even if the evidence in favour of its
admissibility is inconclusive.

One may insist that if an impersonal act of conjecture # « is justi-
fied, then it should remain justified when instantiated in any period
of history: after all, the circumstances of the present time are relative
to the persons now living. In this view to say that # « is justified by
the “absence of a proof” must mean that a proof of -« is nowhere
to be found, either now, in the past or in the future. It seems that in
this way one is taking a stand on the issue of the ontological status
of potential profs.

If we take the view that potential proofs exist, we must ask whether
there can be an inconclusive justification of # a. One could take the
following as a definition: # « is justified inconclusively if there is
no proof of the truth of -« but also no proof that there is no proof
of ~a. But in this case, conjecturing o would require that there is
no proof of a, and then it would never be possible to improve our
inconclusive conjecture # « by giving a proof of the truth of a! Of
course, this does not rule out the possibility of admitting potential
proofs and at the same time give a logical status to conjecturing # «
with inconclusive justification: but certainly it shows that we need
to avoid a way of thinking that leads to the above “definition”.
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A solution may come from an improved explanation of what it
means to assert that « is true. We are inclined to say that the
assertion of the truth of « is justified not merely by the ezistence of a
proof of the truth of o, but by the capacity to exhibit an actual prooft
of a: an act of assertion that « is true is felicitous if we can explicitly
produce the pair ¢t : a. Our suggestion amounts to saying that a
formal theory of assertions and conjectures should give formal status
also to proofs. At present we cannot definitely characterize what
constitutes inconclusive evidence for a justified impersonal act of
conjecture; however by contrasting conjectures with assertions in the
refined definition, we can conclude on one hand, that conjecturing is
similar to betting and, on the other, that asserting a without knowing
where to find a proof of « is very close to bad manners.

1.3. Heyting-Bouwer logic and proofs-in-time. Finally, our
thought goes to Cecylia Rauszer and her tradition. There is here a
notion of duality and an interesting mathematical theory which is
not interpreted by our notion of duality between assertions and con-
jectures. Kripke models for Heyting-Brouwer logic are preorderings
which cannot always be trees; thus although o may always be true
in our past, present and future, there are many alternative possible
histories of knowledge where @ would not always be true. This pic-
ture is philosophically challenging: it may provide a more flexible
framework to relativize the picture of a unique, inevitable progress
to truth. Also it seems to incorporate a view which would not be
incongenial to Brouwer, given that he would have denied tenseless
existence to proofs. We cannot develop a pragmatic interpretation
of Reuszer’s Heyting-Brouwer logic here, but we do believe that the
development suggested in this paper, i.e., keeping the structures of
Heyting and co-Heyting algebras separate in their interaction, could
help avoiding some shortcomings of the proof-theory and categori-
cal logic of bi-Heyting algebras. Indeed, in this way the categorical
interpretation of Heyting-Brouwer logic into bi-Cartesian closed cat-
egories becomes unnecessary, thus it becomes possible to axiomatize
a sensible notion of identity of proofs in bi-intuitionistic logic.

§2. The pragmatic language L”.

DEFINITION 1. (Syntaz) (i) The language of the logic for prag-
matics L£LF is based upon an infinite set of propositional letters p,
Po, P1 --.. The radical formulas are built up from propositional let-
ters using the propositional connectives =, A\, V, —; the elementary
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formulas of the pragmatic language are obtained by prefixing a rad-
ical formula with a sign of illocutionary force “+” and “#’ and also
include the elementary constants, /\ and \/, which stand for illocu-
tionary acts which never and always justified, respectively. Finally,
the sentential formulas of L are built from the elementary formulas,
using the pragmatic connectives D, ~, N, U,x, \, ~, Y, A and >.

(i) (Formation Rules) The pragmatic language L£F is the union of
the sets Rad of radical formulas and Sent of sentential formulas.
These sets are defined inductively by the following grammar:

a:=p|alarha|laVa|la—a
b =9 |v
9 =tal NI\ | ~616D6[605[6U5[5\6

ve=wnal NI\ | ~616N6[6Y5[5A5[5>0

We use the letters «, 3, oy, ... to denote radical formulas, 9, 94,
... for assertive expressions and v, vy, ... for conjectural expressions.

1. The intuitionistic fragment L¥ of the language L is obtained
by restricting the class of elementary sentences to those with
atomic radical only, i.e., A\, \/, -p;, and #p;.

2. We write L7+ for the extension of £I¥ with elementary formu-
las of the forms r —p;, #—p;.

3. In the language LT [or LIF%] let £4 [or £4*] be the set of
expressions built up from assertive elementary ones using only
assertive connectives and similarly let £¢ [or £9%] be the set
of expressions built up from conjectural elementary ones using
only conjectural connectives.

DEFINITION 2. (Informal Interpretation) (i) Radical formulas are
interpreted as propositions, with the usual classical semantics.

(ii) Sentential expressions ¥ and v are interpreted as impersonal il-
locutionary acts of assertion and conjecture, respectively. Assertions
can be justified or unjustified, conjectures can be refuted or unrefuted
and we shall make the convention that conjectures are infelicitously
made, i.e., unjustified, precisely when they are refuted, and thus con-
jectures are justified if they are unrefuted.

1. A is never justified and \/ is always justified.

2. F« is justified if and only if a proof can be exhibited that « is true.

Dually, # « is refuted is and only if a proof that « is false can be
exhibited.
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3. 61 D &y is justified if and only if a proof can be exhibited that a
justification of §; can be transformed into a justification of do; it is
unjustified, otherwise. Dually, d; \ &9 is refuted if and only if a proof
can be exhibited that a refutation of d5 can be transformed into a
refutation of Js.

4. 61 6 is justified if and only if a proof can be exhibited that d; is
justified and do unjustified. Dually, §; = Jo is refuted if and only if a
proof can be exhibited that d; is justified and Jo is unjustified.

The explanations of what it means for conjunctions ¥y U [vg A v1]
and disjunctions JgUd; [vg Y v1] to be justified [refuted) readily follow
from conjunction and disjunction of clauses in the metatheory. But
for a justification of vU¥ a proof must be exhibited that v is justified,
together with a justification of ¥; also for a refutation of v Y 1 a proof
must be exhibited that ¥ is unjustified, together with a refutation
of v; similarly for the other mixed cases. Finally ~ § is defined as
d D A\ and —~ ¢ is defined as \/ \.¢.

2.1. Topological interpretation. A mathematical model for the
system LT is obtained through a topological interpretation.

DEFINITION 3. (topological interpretation). Let S be a set, let N,
U and \ be the usual operations of intersection, union and (binary)
complementation defined on the powerset p(S) of S, let (X) be
S\ X and let I: p(S) — p(S) and C: p(S) — p(S) be the interior
and closure operators, satisfying

[(X)CX XCCX)
I(X) CI(I(X)) C(C(X)) € C(X)
XCY=IX)CI(Y) XCY=C(X)CC(Y)
C(X) = (I(X))“ IX)=(C(X))°
A topological interpretation 6* of the full language £” is given by
assigning to each atomic formula P a subset P* of S and then by
proceeding as follows:

V) =4 S N =4 0

(Fra)* =g I(a) (Ha)* =g C(a)

(~ o) =¢ I((6M)9) (~8) = C((6M)°)
(012 8)* =¢ I()°Ud) (BiNd) =¢ C((67)\d)
(Br09)" =g L((07) \ 63)) (01 - &2)* =g C((67)° U )
(01Nd2)* =g T(67) NI(03) (01 Y &) =g C(07) UC(d3)
(BrUd)” =g T(67) UI(d3) (01 A &p)" =g C(67) N C(d3)

2.2. Modal interpretation. Another mathematical interpreta-
tion is obtained through an extension of Godel, McKinsey and Tarski’s
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Op
)\
Va SOOp
7N
p <Op Oop
NS
N OoOp
/
Up

TABLE 1. The modalities of S4

modal translation ( )7 into the logic S4. The language of S4,
Kripke’s semantics and sequent calculus for it are in the Appendix.
The language L£F is translated into S4 as follows:

DEFINITION 4. (S4 translation)

VY =g T N = L
(ra) —y Do (Ha)M =y oo
(~ M =y DM (~OM =g -
(61 D (52)M =df D(é{w — 55\4) (51 N 52)M =df 0(5{\/1 A ﬁdé\/[)
@Giso)™ =g O A=) (G =)M =g O = 6Y)
(91 N ’192)M =df ’19{\/[ A 19%4 (v1 Y ’U2)M =df ’U{w \Y ’Uéw
(’191 U ’192) =df ’19{\/[ \Y 19%4 (’U1 A ’U2) =df ’U{w A ’Uéw
If §; isan v, for 4 =1 or 2, then Ife;isad for ¢ =1 or 2, then
((51 N 52)M =df D(S{M A D(Sév[ (61 Y 62)M =df 06{\4 V Oeé\/"
((51 U 52)M =df D(S{w V Ddé” (61 A 62)M =df 06{\4 N <>6§VI

2.3. Dualities. Notice that of the seven modalities of S4 (see Ta-
ble 1) only three are expressible in usual intuitionistic logic, namely
(rp)7 = 0p (~~ep)” = 000p  (~r-p)” = OOp

In £'P* there is a counterpart to three other modalities of S4:
(up)" = Op  (~oup) = 000p  (~u-p) = OOp

The above topological and modal interpretations suggest the defi-
nition of the following involutory maps between £4% and L. (Re-
member that these are the assertive and the conjectural part of the
pragmatic language L%, the fragment of £ where the radical parts
are negated or non-negated atoms.)

DEFINITION 5. (Duality)
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Hp
N
/‘ ~AHD
SN
P ~H=p ~F-p
N
N ~~Fp
N
Fp

TABLE 2. Asserting and conjecturing

'_

(I—p)J_ :df ’H—|p (’Hp)J_ :df I——|p
VM~ =4 A N> =4 V
(291 D) ’192)L =df 29%‘ AN ’19% (’U1 AN ’UZ)J_ =df ’Ué‘ D) ’UlL
(91 \\’192)J‘ =df ’195‘ >~ 19{‘ (v1 > 'UQ)J_ =df ’U%‘ \\’Uf‘
(’191 n ’192)J‘ =df ﬁf‘ Y ’19%‘ (’U1 Y ’U2)M =df ’Uf‘ n ’Ué‘
(’191 U ’192)J‘ =df ﬁf‘ A ’195‘ (’U1 A ’UQ)J_ =df ’Uf‘ U ’Ué‘

LEMMA 1. For all ¥ € LA* and all v € LCF, we have
(9 = =(9M) and (V)M = = (v™M).

Clearly (+ p)*M = O—p = =Op = —(+ p)™. Assuming 9; M =
—IM ) we have (9; D 9)*M = (¥ N I9H)M = O(WM A —9fM) =

OWM A -9 = -0 — 9)) = =(9; D ¥2)M, and similarly for
all inductive cases.

83. Sequent calculus for the logic of pragmatics. The se-
quent calculus for the logic of pragmatics presented here is gigantic;
it includes two very familiar systems, a couple of intriguing fragments
and also a wilder bunch of mized assertive and conjectural rules.

1. Technically, the classical logic of proposition seems to live a life
of its own in the underlying radical part of the system. For a “de-
scriptive interpretation” of assertive and conjectural expressions
we need to extend classical logic to an S4 modal system, which
is formalized by a standard Gentzen system with a complete
semantic tableax procedure, briefly summarized in Appendix
I. Modal expressions of S4 are not considered here as radical
parts of other assertive and conjectural expressions, although
this would certainly be possible.
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2. The intuitionistic logic of assertions and conjectures is formal-
ized by a sequent calculus ILP, which contains only rules for
the pragmatic connectives, leaving the radical part constant.

3. The interaction between the radical part (logic of propositions)
and the pragmatic level (logic of judgement) is studied for a frag-
ment of the classical language in a system which we shall call po-
larized classical CLP. The calculus is classical in the sense that
it expresses interactions of the pragmatic level with the underly-
ing classical logic. Classical propositions « (possibly containing
classical connectives) are polarized positively or negatively, as
follows: positive formulas are conjunctions of positive formu-
las and negative formulas are disjunctions of negative formulas,
starting from positive and negative atoms, while negation ex-
changes polarity. If a classical o formula can be polarized pos-
itively, then there is an intuitionistic assertive formula 1 such
that =+ «; is provable in CLP if and only if = ¥J; is provable
in ILP; similarly, if o can be polarized negatively then there
exists a conjectural v such that =; # « is provable in CLP if
and only if =; v is provable in ILP.

The calculus ILP for the Intuitionistic Logic for Pragmatics is a sys-
tem of type G3i in the classification of Gentzen systems by Troes-
tra and Schwichtenberg [27], where the rules of weakening and con-
traction are implicit. Gentzen’s familiar restriction for intuitionistic
sequents is generalized, by using sequents with privileged areas in
the antecedent and in the succedent and by requiring that each se-
quent must contain at most one privileged formula. The inspiration
here is Girard’s unitary system [9], which contains fragments for the
formalization of classical and intuitionistic reasoning, although our
motivations are very different. The cut-elimination theorem for ILP
has been proved by [4], where the standard proofs of admissibil-
ity of depth-preserving contraction, depth-preserving weakening and
context-sharing cut for G31i systems (cf. [27], chapters 3 and 4) are
extended to ILP.

Within the intuitionistic sequent calculus ILP in (2) we may dis-
tinguish the following:

(i) its restriction to the assertive fragment £# of the pragmatic lan-
guage L£F, which is just the intuitionistic propositional calculus;

(ii) its restriction to the conjectural fragment £, which is part of
a proof-theoretic account of co-Heyting algebras.
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(iii) The remaining part of ILP (mized assertive and conjectural)
attempts a more general characterization of forms of reasoning
combining assertions and conjectures.

DEFINITION 6. All the sequents S are of the form

O;¢e=¢;7
where
e O is a sequence of assertive formulas 91, ..., U,,;
e T is a sequence of conjectural formulas vy, ..., v,;

e ¢ is conjectural and €’ is assertive and at most one of €, € occurs

in S.

The rules of ILP are given in the Appendix II. The main result of
this paper is the following theorem:

THEOREM 1. The intuitionistic sequent calculus ILP without the
rules of cut is sound and complete for Kripke’s semantics over pre-
ordered frames (i.e., the modal interpretation in S4 is sound and

faithful). The finite model property holds for ILP.

In order to prove the completeness theorem for ILP, we reduce the
problem to the completeness of S4 and use the “semantic tableaux”
procedure for S4 given in Appendix I. More precisely, given an ILP
sequent S of the form © ; ¢ = € ; T we consider its modal trans-
lation S™, namely OM, M = ¢™ TM and apply the “semantic
tableaux procedure” to SM. If SM is falsifiable, in a finite number of
steps the procedure yields a Kripke model M on a preordered frame
which falsifies SM, and it is regarded as a countermodel for S. Oth-
erwise, SM is derivable in the sequent calculus for S4 and we must
show that S is derivable in ILP. We find it convenient to introduce
an auxiliary system FILP equivalent to ILP and to prove that if
SM is derivable in the sequent calculus for S4 then S is derivable in
FILP.

84. FILP. The auxiliary system FILP of Full Intuitionistic Logic
of Pragmatics generalizes intuitionistic sequent calculi with multiple
succedent, such as the systems G3im in [27] or the logic FILL (Full
Intustionistic Linear Logic) by De Paiva and others (from which we
take the acronym). As FILL relaxes the intuitionistic restriction on
the succedent, so in FILP the distinction between two areas in the
antecedent and sucedent of sequents is removed and the restriction



20 GIANLUIGI BELLIN AND CORRADO BIASI

on the pair €, € is relaxed whenever this is possible from a logical
point of view. In this way, FILP retains exactly those restrictions
on the sequent-premises S of its rules which are needed for SM to
preserve the restrictions on the modal inferences O-R and <-L of S4.
Because of its closeness to sequent calculus for S4, the system FILP
may have an independent interest in the logic for pragmatics.

The rules of the sequent calculus FILP are given in Appendix III.
In our tables for ILP and FILP, the rules marked with an asterisk
(*) are those for which it is not possible to relax the restriction on
the sequent premises.

LEMMA 2. A sequent ©,Y" = ©O' Y is derivable in FILP (with-
out cut) if and only if Fg, OM Y™ = O™ TM js derivable in S4
(without cut).

The “only if” part is left to the reader. To prove the “if” part, let
d be a derivation in S4 of a sequent S™, where S is a FILP sequent.
Given a sequent derivation d and a formula-occurrence « in a sequent
S in d we can define the notion of ancestor [descendant] of o in d as
usual and so it is clear what it means to say that a formula 5 in a
sequent S is traceable to a formula « in a sequent S’, when S’ occurs
above S. To simplify the proof we make some assumptions on the
structure of d which are summarized in the following proposition.

PROPOSITION 1. Let S be a FILP sequent. If SM is derivable in
the sequent calculus for S4, then there exists a derivation d of SM
with the following properties:

(a) Let T be an application of V-L [A-R]. If the principal formula

of T is Oy V Oy [Oy1 A O, then the inference immediately
above T on both branches is O-L [O-R] with principal formula
the active formula of .
Similarly, let T be an application of A-L [V-R]. If the principal
formula of T is Oy A Oy [Oyg V Oys], then the two inferences
immediately above T are applications of O-L [O-R] and descen-
dants of thewr principal formulas are active in Z.

(b) Let T be an application of O-L [O-R] and let B = =y or y1 — 72
or 1 A —ya. If the principal formula of T is OfF [Of), then the
inference ' immediately above I is an application of —-L or
—-L or A-L immediately below an inference —=-L [--R or —-R
or A-R immediately below a —-L] respectively, and the principal
formula of T' is the active formula 8 of T.
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(c) Let T be an application of O-R [O-L] and let B = —y or y1 — 2
or 1 A\ —yy. If the principal formula of T is Of [Of], then the
inference I' immediately above T is an application of = — R or
—-R or A-R immediately below an inference ~— L [=-L or —-L
or A-L immediately below a —-L] respectively, and the principal
formula of T' is the active formula B of T.

(d) Let T be an application of V-R, N-R, N-L, V-L with principal
formula B of the form
(I) Ovp A Oy in the antecedent or Oy, V Oy in the succedent;
(IT) Oy V O in the antecedent or Oy A Oy, in the succedent.
Then the sequent-conclusion of I has the form

IL,OT, OA, A = A, O, OA I

where I1, II' are pairwise disjoint sequences of atoms and where
A and A" are sequences of formulas of the form (I) or (II).

The proof of the proposition can be obtained by implementing
conditions (a), (b), (c) and (d) as a search-strategy in the “semantic
tableaux” procedure.

If d is a sequent derivation, the size s(d) of d is 1 plus the number
of inferences in d (not counting exchange and weakening rules). The
proof of the lemma is by induction on the size of the given derivation
d of SM in S4, assumed to satisfy conditions (a), (b) (c) and (d) of
the Proposition; in the proof we construct a FILP derivation d~ of
S. We consider the last inference of d, having classified the inferences
in four cases, we indicate how to prove the inductive step in each case
and give all details only for some example.

Case 0. If a sequent SM is an axiom of one of the forms
INda = Oa,A or I''Ca = Ca,A or Il => A o T = AT

where I' and A are translations of £F formulas, then S is a logical
axiom or an absurdity or validity axiom, respectively, of FILP. If S¥
has the form I',Oa = <a, A then S is an assumption-conjecture
axiom of FILP.

Otherwise the derivation d has size greater than 1 and we consider
the last inference Z of d. There are four cases:

Case 1. Propositional S4 rules corresponding to invertible pragmatic
rules. This case excludes inferences with principal formula O~V Ov,
or Oyy A Oy, in the succedent or Oy A Oyp or Oy V Oy in the
antecedent: for instance, the rule corresponding to an inference V-R
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with principal formula Ov,V O~ is a right mixed assertive disjunction
U-R which is non-invertible.

Subcase 1.1. If the last inference Z has principal formula 9} A 9
9V IV vl AuM oor v} v v, then the sequent-premises are also
translations of a FILP sequent and we build the derivation d~ by
applying

e cither an assertive rule N-R, N-L, U-R, U-L;

e or a conjectural rule A-R, A-L, Y-R, Y-L.
Subcase 1.2. Suppose the last inference Z has principal formula OyyA
Oy, or Oy V Oy, in the antecedent Oy V Oy or $Oyp A O in the
succedent.

If the last inference 7 is V-L, then by clause (a) of the Proposition
d has the form

dl,l d2,1
O-1. ®M7 TIM, 0, DfYO = TM O-1, ®M7 TIMa V1, D,Yla = TM
@Ma T,Ma Df)/() = TM @Ma T,Ma DrYla = TM

V-L

®Ma T,M7 DfYO \ D’Yla = TM

Let d; and dy the immediate subderivations of d. By applying V-L
to the sequent-conclusions of di; and dy we derive a sequent which
is translation of

St @,TI,50,50 Uor=7T

letting 6} = ;. Moreover s(d; 1)+s(d2)+1 < s(dy)+s(d2)+1 = s(d)
thus we may apply the induction hypothesis and obtain a derivation
of S;. In a similar way we obtain a derivation of

S2: @,TI,51,50U51 =7

We build the derivation d~ by applying
e a mixed assertive rule U-L.

The cases when 7 is a A-L with principal formula Ovyy A Oy, or a
V-R [or A-R] with principal formula G V Oy [or Oy A Oq] are
similar and dealt with by an application of

e a mixed assertive rule N-L,

e a mixed conjectural rule A-R [or Y-R].

Case 2. Modal rules OL or OR corresponding to invertible prag-
matic rules. The principal formula of such an inference Z is either
0Op in the antecedent or </ in the succedent, where 5 is =y, 71 — 72
or v, A =y, and where v, ; and 7, are translations of £ formulas.
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Suppose OB = O(6M A —631). By clause (b) in the Proposition, d
has the form
dio

dia M. T, = O(0M A=6M), A
T = 6M OEMA-GM),A " T,=—6M O(6M A -6M), A
T = M A=, O(0M A =60, A
T = oM A -6M), A
where T' = @M Y™ and A = @' Y™, The endsequents of d; ;
and of d;, are translations of FILP sequents and s(di1) < s(d),

s(dy 2 < s(d) hence we can apply the inductive hypothesis and obtain
the desired derivation d~ by applying \-R.

A-R

If the principal formula of Z has another form Of to the left or
<& to the right, we proceed in a similar way, using

either the assertive rules ~-L, D-L, \-L;

or the conjectural rules ~-R, >-R, \-R;

or the mixed assertive rules ~-L, D-L, \-L;

or the mixed conjectural rules ~-R, ~-R, \-R.

Case 3. Modal rules O-R or O-Lo corresponding to non-invertible
pragmatic rules. The principal formula of such an inference Z is
either OF in the succedent or &f in the antecedent, where 3 is —v,
A1 — 2 or v A =y, and where v, 7, and 7y, are translations of £”
formulas.

Let o8 = O(6M A —6}). By clause (c) in the Proposition , the

derivation d has the form
dy,1

ar, 64 = 6}, 0A
OT, 6M, =60 = OA ﬁ/;
Or, 6M A =6 = OA '<> .
Or, O(6M A =6M), = OA
where OI' = O™ and OA = Y™ and the desired derivation d~ is
diq
0,01 = 09, T
0, 01\ (52, =7
If the principal formula of Z has another form Of in the succedent
or Of in the antecedent we proceed in a similar way, by applying
one of the following rules:

~-L

e the assertive rule ~-R or D-R or x-R;
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e the conjectural rule ~-L or >-R or \-L;
e the mixed assertive rule ~-R or D-R or “-R;
e the mixed conjectural rule ~-L or >-L or \-L.

Case 4. Propositional rules corresponding to non-invertible prag-
matic rules. The remaining cases are those of inferences whose prin-
cipal formula 5 has one of the following forms:

(I) O A Oy in the antecedent or Oyy V Oy, in the succedent;
(IT) Oy V Oy in the antecedent or Oy A Oy, in the succedent.

where v, and ; are translations of £” formulas. By clause (d) of
the Proposition, we may assume that the endsequent S of d has the
form

ILOT, OA, A = A, 00", OA,IT'

where II, II are pairwise disjoint sequences of atoms and where A,
A’ are sequences of formulas of the form (/) or (II). We consider
the part d of d which is below all applications of O-R or <-L; thus d
is a tree whose leaves are either axioms, or sequents of the form

Sy ar, o, = ©A or Oo' = Oay, OA

In each branch B of d below an Sy we find an application of weakening
with conclusion Sj and then a sequence 71, ..., Z; of applications of
V-R, A-R, V-L, or A-L, whose principal formula 3 is (an ancestor of
a formula) in A or in A’. Among these S4 inferences we are searching
for one which may be relevant for our desired FILP derivation. We
consider the inferences Z;, of a branch B starting with j = 1. Let
Sjo [and S;1] be the sequent-premises of Z;. We have the following
cases:

(a) 8 = Ov,VO7y and B is not traceable to ay, i.e., ay is an ancestor
neither of Oy, nor of Ov,. In this case we remove S;( and the
inference Z; and replace (3 for the pair Ovp, Ov; in Sj. Similarly,
if B is Oy A Op and is not traceable to ay.

(b) B = Oyy A Oy, is not traceable to ay. We remove the inference
Z; and replace 3 for the Ov; which occurs in S/, for i =0 or 1.
Similarly, if 8 is Oy V Oy and is not traceable to ay.

(c) B = Oy Vv DOy and S is traceable to ay. In this case we say that
the search has found a relevant inference.

(d) B = Oyy A O is traceable to «p through the active formula
Ov; and also the active formula Ov,_; is traceable to some ap
in some other leaf Sy of d. In this case also we have found
a relevant inference and we consider (nondeterministically) a
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branch B’ which starts from such Sp. Similarly, in the case of
B = O V Oy and Oy and Oy are traceable to ay, ayp.

(e) B = OyyADO~y, is traceable to a;, through the active formula O,
but the active formula Ov;_; is not traceable to the ap in any
other leaf Sy of d. In this case we consider (nondeterministi-
cally) a branch B’ which starts from such a Sy.

Notice that in each branch B the search may find a relevant inference
only once, and also that steps (a), (b), (e) reduce the size of d: thus
in the end any branch contains at most one inference Z; and the
resulting derivation d’ has size not greater than d.

We apply the induction hypothesis to the premises of the O-R or
O-L occurring in the remaining branches of d. We have three cases:
(i) Case (c) succeeds: the desired derivation d~ is obtained by an
application of U-R or of A-L;
(ii) Case (d) succeeds: the desired derivation d~ is obtained by an
application of N-R or Y-L.
(iii) otherwise: since « is an ancestor of a formula in GA or OIY we
are back to Case 3.
This concludes the proof of the Lemma.
4.1. Equivalence of ILP and FILP. If © = ¢, ..., 9,,, we
write UO for ¥, U...Ud,,; similarly, we write AT for vy A ... A vy;
notice that generalized associativity holds for both U and A.

LemwMmA 3. If
0,7 =067
1s derivable in the sequent calculus for FILP, then
0 ;= AT >ue;T

1s derivable in the sequent calculus for ILP.

The proof is by induction on the length of the given FILP deriva-
tion d. It is a lengthy exercise, whose details can be found in
[4], including proofs of admissibility of depth-preserving contraction,
depth-preserving weakening and context-sharing cut for ILP. Here
we consider only one case.

Let d end with an application of the N-L rule of type ¥ x v — 1,
corresponding to the ACA.4 rule
0,9Nuv,¥,v, T =06"7T
0,9Nv ,T'=0"7T
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By inductive hypothesis we have an ILP derivation d} of
0,9Nv,Y; = (AT Av)DUO;T

In ILP we have the following derivation d*

s AY =5 AT
1= AT D>ue’; AY’ ;U = v ue'; = ue';
;= v D (AY DUO’); AT ;= v D (MY DU);v ue’; = AY D Ue’;
;= v D (AT DU’ ); AY Awv ue';= v D (LAY D Ue");

(AT Av) D UO;= v D (AT D Ue');

Writing 6 = AY' D UO, and applying cut; to df and d* we obtain
a derivation di* of ©,9 Nwv,¥;= v D §;T. Hence we obtain the
following ILP derivation:

0,9Nv,d,%v=;T,v

& ACA A o 0 = 0. v 6,0,9Nvd;= 6T
0,0N0v,0;= v > 5T 56,0000~ 5T -
0,9Nv,¥;=67T
0,9Nv;= 67 ACA5

§5. Sequent calculus for polarized classical £F. We would
like to characterize interactions between the radical part and the
pragmatic part of our logic for pragmatics. Such extensions of the
intuitionistic logic of pragmatics may or may not extend the expres-
sive power of the logical system, but certainly exhibit interesting
properties of our logic.

We are looking for an extended system CLP, which like ILP is
sound and complete with respect the semantics of S4, with a set of
inference rules that modify the radical part of pragmatic sentential
expressions in a compositional way, inferring formulas with a more
complex radical part from simpler ones. In the system polarized CLP
presented here we consider only cases in which the S4 translation
remains invariant with respect to the interactions between classical
and pragmatic connectives. More precisely, we look for illocutionary
operators @, @ and 0" and a pair of connectives o and e, where o
is classical and e is pragmatic, such that

(O(a1 0 )M = (O'ar)M e (0"ax)™

When such a relation holds, we are able to establish a strict cor-
respondence between these forms of “classical” reasoning and their
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intuitionistic counterparts. As pointed out in the introduction, this
holds in the following cases'!:

Foa #-a #H@—pF) F(aA-8) F(aAp) #H(aVP)
~Ha ~Fa Fax=-Hp Fax#Hp FankEB HaY HP

In the sequent calculus polarized CLP of table 3, the left and right
rules preserve validity and are semantically invertible in the S4 trans-
lation; therefore the soundness and completeness theorem with re-
spect to the semantic interpretation in S4 are particularly easy. Here
we shall deal only with a cut-free sequent calculus for our classical
fragment.

identity rules
logical azxiom: logical aziom:
Fp,O; = rp; T ©; #Hp =; T, Hup

structural rules

exchange: exchange:
0,91,92,0" ;¢ = €; T 0,;¢e =>¢; T,u,v, Y
0,92,91,0" ;¢ = € ;T O;€e => €; YT vyv, Y

logical rules

right assert-negation: left assert-negation

O; Ha =; T O;¢e=>¢€; T, Ha

O; =>r-a; T Fae,0 ;¢ = ¢ ;7

right hyp-negation: left hyp-negation

O,Fra;e=>¢€; 7T O;=>ra; T

;¢ =>¢; T, Hoa O; H-a =; T

right assert-and: left assert-and:
O;=>*ra; T O;=>*+-8;7T O,ra,"B;e =€, 7T

O; =>r(anp); T O,-(a@anB); e => €; T

right hyp-or: left hyp-or
O;¢e =>¢€; Ha,#B,T O; Ha =; T O; #p =; 7T
O;¢ = ¢€; #H(aVP),T 0; #H(aVB) =; 7T

TABLE 3. Polarized classical sequent calculus

"Here we leave out the cases of weak implication and strong subtraction, as
their classical counterparts are definable in terms of conjunction, disjunction and
negation.
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DEFINITION 7. Let us consider two copies of our infinite set of
propositional letters, one positive pg, py, ..., the other negative p, ,
Piy----

(i) Consider the following grammar for radical formulas
P = pt| -N| PAP
N = p | -P| NVN

(ii) Consider the sublanguage of £f where elementary pragmatic
expressions are generated by the following rules:

Y =+P v = #N.

Let us call such a language polarized classical language.

(iii) The polarized classical sequent calculus CLP is system of sequent
calculus for classical logic where sequents are restricted to elementary
formulas in the polarized classical language, i.e., sequents have one
of the forms

FQy ooy b QU 3 = Fay HPB1,. o, 1y

FQyeee s F Q3 HB =5 #HB1,..., Hp

where the «;, o are of the form P and the 3}, 8 are of the form IN.

THEOREM 2. The polarized classical sequent calculus CLP is sound
and complete with respect to the modal interpretation in S4.

To prove the theorem, notice that in the semantics of S4 there is a
countermodel to the translation of the sequent-conclusion if and only
if there is a countermodel to the translation of at least one sequent-
premise. Notice also that when a rule is inverted an obvious measure
of complexity of the sequents always decreases from the sequent-
conclusion to the sequent-premises. For CLP sequents consisting
of elementary formulas whose radical is in the polarized classical
language, there is always a rule in the sequent calculus which can be
applied, until we reach an axiom with atomic radical or a sequent
falsifiable in the S4 interpretation where all elementary formulas
have atomic radicals. Therefore the proof-search procedure and the
completeness theorem in the case of polarized CLP are completely
straightforward.

Consider the following translation ( )/, which maps the radical part
of an expression + P or #N to a formula in £F:
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") =4 rop;
() =4 Hp;
(-N)! =4 ~(N) (PAP) =4 PInP,
(-P)! =4 ~@®) (NVN)Y =4 N/ yN.

THEOREM 3. Let S be a sequent consisting of elementary formulas
in the polarized classical language. Then S is derivable (without cut)
in polarized CLP if and only if ST is derivable (without cut) in the
ILP.

Given a (cut free) derivation d in polarized CLP, if d is a logical
axiom, then its principal formulas have atomic radical part which are
also principal formulas of axioms of ILP so d can be transformed into
the required ILP axiom by choosing the context which is required
by the ( )! translation. Suppose the last inference of d is a right [or
left] rule for assert-negation: since the active formula has the form
# «, by definition 7(ii) o must a (possibly molecular) negative for-
mula and the translation of the radical part of the principal formula
is (—a)! =~ (a)’; thus the inductive step is concluded by applying
a right [or left] rule for ~ to the derivation given by inductive hy-
pothesis. Suppose the last inference of d is a right [or left] rule for
hyp-negation: since the active formula has the form r ¢, @ must be
positive and we have (—a)! = ~(a!) and we conclude the inductive
step by applying a right [or left] rule for ~. The cases of assertive
conjunction and conjectural disjunction are easy.

Conversely, notice that if a sequent has the form S?, then its for-
mulas will only contain elementary formulas of the form + p (where p
is positive) or #p (where p is negative), conjectural negation ~ and
assertive conjunction N applied to translations of positive formulas,
and negation ~ and conjectural negation applied to translations of
negative formulas. Moreover, a cut-free proof d of S will only con-
tain rules for these connectives. Thus by replacing a CA.1 or CA.2
rule with right or left assert-negation, AC.1 or AC.2 with right or left
hyp-negation, the rules A.5 or A.6 with right or left assert-and and,
finally, the rules C.9 and C.10 with right or left hyp-or we succeed
in any case to perform the inductive step as required.

§6. Conclusion: work in progress. Finally, after wading through
a long stretch of ancient-style proof-theory, it is rewarding to catch
at least a glimpse into forthcoming work on the modern proof-theory
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of the logic for pragmatics, namely, a natural deduction system with
term assignment for our logic ILP of assertions and conjectures. To
this aim it is convenient to develop a natural deduction system for
polarized bi-intuitionistic logic PBL and to look into a pragmatic
interpretation of Heyting-Brouwer’s logic. We are concerned only
with the fragment of the language £ given by the grammar

b =19 |v|
9 =Fp|\/ [9D9[9NI] ~v|
v 2=Hp|/\|U\U|UYU| ~ 1 |

In the case of ILP, the duality ( ) can be extended from formulas
to proof-terms, but can also be taken as an explicit orthogonality
operator. For instance, in the case of a weak negation left we can
write
O, =1t:9; 7T
O;tt:i~nd = 7T

Terms and co-terms are defined from variables x and covariables a
according to the grammar

t=x| % |zt |tt]| <t,t> |mot|mt|ct

c:=a|* |dac|cc| <c,e> | me|me|th
To the usual a-equivalence, [-reductions, n-reductions we need to
add only the equations

ttt = t, ct=ec.

Using orthogonalities, every sequent © ; = 9 ; Y can be labelled
either as
~T0; = 1t:9 or cthiAd = Y, ~0

It does not seem that this computational interpretation of ILP could
lead us into a new land.

The case of PBL is more challenging. In a sequent calculus for
this system the right O and left \ rules must be restricted
O, ¥1; = U2 ;v =5 v, T

and
O; = DY T O;viNvy =; T

i.e., T [©] cannot occur in the sequent-premise of a right O [left \]
rule. Here negations cannot be dealt with as orthogonalities and the
task of defining proof-terms for the dual intuitionistic fragment is
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non-trivial. We need a term assignment for a multiple-conclusions
one-premise natural deduction system. This requires

(i) a treatment of contraction right, with an assignment of a lists
of terms £ to each conclusion v;

(ii) the use of the inl (), inr () constructors and of the casel (),
caser ( ) destructors for terms resulting from Y introduction
and Y-elimination, respectively;

(iii) a use of continuations to deal with the introduction of a new
conclusion resulting from the rule \-introduction;

(iv) the introduction of control terms of the form postpone (z :
¢') until (¢) to deal with the removal of a conclusion in an
application of the rule \-elimination.

The term assignment to the rules for subtraction is as follows:

~ N-intro: .
y:e Ft:Y £ Zzivg H 'Y
y:e F t:T,#: 7, continue from(z) using(¥) : vy \ vy
~-elim: o
yrebu: Y, 0 v\ vy z:vg B w0 0

y:eb w:T,u : Y, postpone(z :: ') until(f) : @
Notice that a redez is a control term of the form

postpone (z :: ') until (continue from (z) using (¢)): e

It is reduced by substituting each term ¢; of the list £ : vy for z in
each term r; of lists ' : vy and «’' : T and then substituting each
term 7;{t;/x] : v thus obtained for z in each term in ¢ : Y.

We conjecture that in this way a purely intuitionistic calculus of
continuations can be obtained that is isomorphic to the simply typed
lambda calculus: to any refutation x : v - £ : e there corre-
sponds a proof I+ (£)* :~ v, to every reduction sequence 3 = £, £y,
.., £, there corresponds a reduction sequence 3+ = ¢+ ¢, ... ¢+
and /3 terminates in a normal form if and only if 3+ does. Details of
these technical results are contained in a forthcoming sequel to the
present paper.

In conclusion, we are now in position to compare the systems ILP
and PBL in a new light. It seems that we have a reasonable philo-
sophical account of ILP as a logic of the illocutionary operators of
assertion and of conjectures. From a mathematical point of view,
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the computational interpretation of PBL promises interesting and
fruitful results. Since ILP can also be formalized in PBL by adding
the axioms

Y =~~~ and ANV =V

these mathematical results can also be exploited in the study of ILP.
Thus any progress in the understanding of the Heyting-Brouwer logic
may contribute to the development of the logics for pragmatics.
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§7. APPENDIX I.The modal language and the semantics
for K and S4.

DEFINITION 8. (Syntaz) (i) The language £™ is built from an in-
finite set Atoms of propositional letters py, p1 ... using the propo-

sititonal connectives —, A, V, —; and the modal operators O and
O.

(ii) (Formation Rules) The expressions of the language L™ are given
by the following grammar, where p ranges over Atoms:
a:=p|L|T|-a|laha|aVa|a—a|Oa| o |
7.1. Frames and Kripke models.
DEFINITION 9. (Frames and Kripke models) (i) A frame is a pair
F = (W,C) where
e W is a set (of “possible worlds”);

e C C WxWisarelation (the “accessibility relation” between
possible worlds).

(ii) A Kripke model is a triple M = (W,C,IF) where F = (W,C) is
a frame and IFC W x Atoms is the forcing relation, usually written
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in infix notation: w IF p means “p is true in the possible world w”
and w Iff p means “p s false in the possible world w”.

(iii) The relation IF is extended to a relation I C W x L™ ac-
cording to the following rules:

1. wlf L and wlF T, for all w € W;

w Ik~ iff w I «;

wlk (aAp)=V iff wlF aand w - f;

wlk (aV p)iff wlk aor wlk g;

w I (@ — B) iff either w | a or w I+ B;

w Ik O iff w' IF « for all w' € W such that w' C w;
7. wlk Co iff w' IF o for some w' € W such that w' C w.

> O W N

If I and A are sequences of formulas in £™, then the sequent ' = A
is true inw € W iff w - (AT = V A).

(iv) We say that a formula « is valid in a model M = (W,C,IF),
in symbols Eu «, iff for every w € W we have w IF «. Similarly,
given a sequent S = I' = A we say that S is valid in M iff for every
we W, S is true in w.

(v) We say that a formula « is valid in a frame F iff for every M
over F we have =, a. Similarly, a sequent S is valid in a frame F
iff it is valid in every Kripke model over F.

(vi) A formula « [a sequent S| is valid in the system K iff o [S] it is
valid in all Kripke models M.

(vii) A formula « [a sequent S| is valid in the system S4 iff o [S] is
valid in all preordered frames, i.e., all frames where the accessibility
relation C is reflexive and transitive.

7.2. Sequent calculi G3c, K and S4. Gentzen-Kleene’s se-
quent calculus G3c for classical propositional logic (cfr.[27], p. 77) is
given by the sequent-axioms and rules of inference in Table 4. Notice
that the rules of weakening and contraction are implicit.

DEFINITION 10. (i) Given a notion of semantic validity, a rule of
S,
7 n

the sequent calculus preserves wvalidity if for every in-

S

stance of the rule, the sequent conclusion S is valid whenever the
sequent-premises Sy, ..., S, are all valid; a rule is semantically in-

vertible if for every instance of the rule the sequent-premises are all
valid whenever the sequent-conclusion is valid.
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PROPOSITION 2. (i) The rules of the system G3c preserve validity
and are semantically invertible for any modal semantics;
(i) the modal rules for the systems K and S4 preserve validity and
are semantically invertible in the semantics of the system K and S4,
respectively;
(#3) the rules of weakening preserve validity but are not semantically
invertible.

7.2.1. Semantic Tableaux procedure for K. The “semantic tableaux”
procedure decides whether a sequent S is valid in the semantics for
K by building a refutation tree labelled with sequents and with S at
the root; if S is valid, then it return a derivation of S in the sequent
calculus for K; if S not valid, it returns a counterexample M which
refutes S.

DEFINITION 11. (semantic tableaux procedure) Start with tree 7o
consisting of the root S; at stage n + 1, for every leaf S’ of the tree
T, check whether the sequent S’ matches the conclusion of a rule of
inference (in some given order, e.g., checking the one-premise rules
first). If yes, invert that rule; otherwise, the leaf in question is a
sequent of the form

pi,--- Pk, DF,OOQ, s 7<>am = DIBI’ Ty D/B’na OAaqla -5 qe (T)
Rewrite the sequent () as a hypersequent as follows:

= [P, Pk = q1y--- 540 - [OT, Oy = OA]L..[OT, = 0;, CA]...

(1)
We call this step a disjunctive ramification. Now there are three
cases:

(a) the sequent py,... ,pr = qi, ..., ¢ is valid, because p; = ¢; for
some ¢ < k, j < £ or because p; = L for some ¢ < kor ¢; =T
for some j < £: in this case the sequent (1) is a logical aziom or
a falsity axiom or a truth axiom and the procedure halts on this
branch, which is closed.

(b) otherwise, if (1) is not an axiom and m = 0 = n, then the
procedure halts on this branch leaving it open;

(c) otherwise, (1) is not an axiom and m + n > 0: in this case the
procedures branches by inverting the <-L or O-R rules in the
remaining m + n sequents of the hypersequent.

DEFINITION 12. We define inductively what it means for a refu-
tation tree 7 to be closed (starting from the leaves):

e a logical axiom, a falsity axiom or a truth axiom is closed;
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e if 7 results from 7y by a one-premise inference rule, then 7 is
closed iff 7y is closed;

e if 7 results from 7y and 7 by a two-premises inference rule, then
T is closed iff 7y and 7 are both closed;

e if 7 ends with a hypersequent and results from 7, ..., Tp1pn by
a disjunctive ramification, then 7 is closed iff at least one 7; is
closed, for 2 < m + n.

Fact 1: The semantic tableax procedure for K terminates.

Fact 2: If a refutation tree T with conclusion S s closed, then we
can obtain a derivation of S in the sequent calculus for K as follows:

e for each disjunctive ramification branching from a sequent of the
form (f) with subtrees 71, ..., Tpy1n, first we prune 7 by selecting
a closed subtree 7, by removing the others and the hypersequent
notation; the endsequent of 75, has the form OI', Ca = A
or OI' = DOa, CA and now we apply weakening to obtain the
sequent (T).

Fact 3: If a refutation tree T with conclusion S is open, the we can
construct a Kripke model M which refutes S:

e for every two-premises logical rule, if the sequent-conclusion is
open, then we select one of the sequent-premises which is open.
In this way we eventually obtain a tree 7' where all branches
are open.

e Consider all fragments of branches (i, ..., (8, obtained from
7' by removing every hypersequent and every conclusion of a
modal inference;

(7) identify §; with a possible world w;;
(#7) put w; C w; if and only if the lowermost sequent of 3; is the
premise of a KR occurring immediately above a sequent S* of
the form (f) and S* is the uppermost sequent of 3;;
(731) let w; IF p; if and only if p; occurs in the antecedent of a
sequent S* of the form (f) and S* is the uppermost sequent of
Bi-
From facts 1-3 we obtain the following theorem:
THEOREM 4. The semantic tableaux procedure for K is sound and

complete with respect to the semantics of K. The system K has the
finite model property.

7.2.2. Semantic Tableaur procedure for S4. In the case of S4 the
procedure is modified by inverting the O-left and <-right in the same
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way as the propositional rules, but we must deal with the fact that in
this way the procedure may enter infinite loops. The first problem
is that the O-left and <-right rules could be iterated forever with
the same principal formula. It is enough to mark the modal formula
which is principal formula of such an inference and remove the mark
later when some O-right or O-left rule is inverted; in other words we
take modal rules of the forms

O left: O right:
aara@amiAaM DFiOA,OA
Oa,I', 00 = A,0A Or' = O, CA
<& left: <& right:
Or, a = OA I00 = A, a,0a, CA
Or, Ga = A I,00 = A, Ca, OA

A disjunctive branching in S4 has the form

Or, a; = CA ar = g;,0A
:>[H:>H’]1 1[D_P70ai :>_<>A PR [D_P7:>Dﬂ17%] 1V7/Sm1v] <n

IL, O, Oay, . .. , Oam = 0B, ... ,0B,, OA, I

where IT = p1,... ,px and II' = q1,... , qo.

The second source of non-termination is the fact that in general an
inversion of the O-left and of the <-right rules increases the logical
complexity of the sequent instead of reducing it. However, since
the procedure satisfies the subformula property and there is only a
finite number of modal subformulas in any given sequent, eventually
on any branch the procedure must invert a O-right or <-left rule
with a sequent-conclusion S such that the same rule with the same
sequent-conclusion S had already inverted at some point below in
the refutation tree (here we consider sequents S modulo exchange
and contraction). Let < Z,Z’ > be such a pair of inferences, where
7' occurs above Z. In this case we identify the sequent-premise of
7' with the sequent premise of Z and the procedure stops on that
branch. Notice that as a consequence of such a gluing there will be
a loop in the transitive closure of the accessibility relation C of the
countermodel constructed in Fact 3. Other details are left to the
reader. It follows that



38 GIANLUIGI BELLIN AND CORRADO BIASI

THEOREM 5. The semantic tableaux procedure for S4 is sound and
complete with respect to the semantics of S4. The system S4 has the
finite model property.
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SEQUENT CALCULUS G3c FOR CLASSICAL LOGIC

aTIOMmS:

falsity azxioms:

truth axzioms:

p,I'=A,p 1L,T=A I'=AT
right exchange: left exchange:
= Aa8 A o g, T"= A
'= A B a A [,8,a,T"= A
right —: left —:
a,'= A '=>Aa
'=s A -« —a, ' = A
right A: left A:
F'=Aa T'= A8 a,8,T= A
' Ajang aApg,T = A
right —: left —:
Ila=g,A 'sAa BT=A
I'=sa-—p,A a—3,T=>A
right V: left v:
'=A0,8 al'=>A B, T=A
'=s Aavp aVvpIl=A

EXTENSION TO MODAL SYSTEMS

weakenings

ar,oa = <©A
I, 0T, O, CA! = OI, OA, I

Or = Oa,CA

I,07, OA! = Oq, 00, OA,IT

where II, II' are sequences of atoms.

modal rules for K

K-O-rule: K-O-rule:
I'=saA Ta= A
Or = Oa,©A ar, oa = A

modal rules for S4

O left: O right:
a,0a,T = A ol = «,CA
Oa,T'= A Or = Oa,CA

<& left: <& right:
Or,a = ©A I'=s A, Ca,a
ar, oa = ©A = A%a

TABLE 4. Sequent calculi for K and S4
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APPENDIX II: The rules of ILP

identity rules

S.1: logical aziom: S5.2: logical aziom:
3,0; = 9; T O;v =; T,v
S.8: absurdity axiom: S.4: absurdity axiom: S.5: assertion-conjecture:
ONie= ;T ;AN =57 Fa,05€ = €; T, %a
S.6: validity axiom: S.7: validity axiom:
@;:V;T @;6=>6';T,\/

S.8: cuty: S5.9: cuty:
0;=>9;7 9,0 ;¢ => ;1 O;¢ = €;Tv ;v =1
0,0 ;e = ;YT 0,0/;¢ = €; YT,Y
structural rules
S5.10: exchange: S.11: exchange:
0,91,92,0 ;¢ = ;T 0,;¢e =€ Y,u,v,Y
0,92,91,0 ;e = €; 7T O;¢ = ¢; T,v,v1, 1’

TABLE 5. ILP, identity and structural rules
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ASSERTIVE LOGICAL RULES

connective of type ¥ — 9

(*) A.1: right negation: A.2: left negation:
0,9;=; 7T ~93,0; => 9; T
0;,=>~9;7 ~9,0;¢ = ;Y

connectives of type 9 x ¥ — ¢

(*) A.3: right D: A.4: left D:
0,91 ;= 92; T % DY2,0; = %15 T 92,0 ;¢ = ¢ ;T
®;=>191:)192;T ’1913’192,@;6=>6';T
A.5: right N: A.6: left N:
@,:>T91,T @,:>192;T 190;191:@);6:>61;T
O; = ¥Nd; T YoN1,0;¢ = ;T
A.7,8: right Ut: A.9: left U:
O;= 9;7T 99,0;€¢ = €:; YT 91,0;€¢ = ;7T
O; = JU¥; T YoUY,0;€¢ = ;T
for i = 0, 1.
(*) A.10: right~ A11: left~ A.12: left~
O;=> ;7T 92,0 ; =: T 91\02,0,91; = 02; T 91x92,0,91;¢ = ;T
O; = Yindy; T J192,0 ;€ = €; T Y192,0;€¢ = € ;T

TABLE 6. Sequent calculus for ILP, the standard fragment
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CONJECTURAL RULES

connective of type v —» v

C.1: right ~: (*) C.2: left ~:
O;v =; T ~v 9; =; T,v
O;¢e =>¢€; T, ~v O; ~v =;7T

connectives of type v X v = v

C.3: right »: C.4: right »:
Q¢ = € v, T,u1>=v2 O; v =; T,v,v1 > V2
O;¢ = ¢; T,v1>1v2 O;€¢ = ¢; T,v1> v
(*) C.5: left »:

0;=;"Tu Qv =; T
O;vi=vy =; T

C.6: right A: C.7,8: left A:
O;¢ = ;5 YT, O;¢ = ;T u O;v;, =>; 7T
O;¢ = ¢; YuAlv O;viv =>; T
for i =0, 1.
C.9: right Y: C.10: left Y:
O;¢ = ¢€; T, v, O;vi =; 7T O; vy =; 7T
O;¢ = ¢; T,v1 Y O;viYve =; T
C.11: right ~: (%) C.12: left ~:
O;¢e = ¢€;T,u O; va =; T,v1Nv2 O; v =; T,v
O;€e = ¢€; T,vrNv O; vivvy =5 T

TABLE 7. Sequent calculus for ILP, the dual fragment
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MIXED-TYPE NEGATIONS

connective of type v — 9

(*)CA.1: right ~: CA.2: left negation,
O;v=>;7T ;e = €; T
O;,=>~uv; T ~v,0;¢ = ¢; 7T

connective of type ¥ —» v

AC.1: right ~: (*)AC.2: left ~:
0,9;¢e = ¢€; 7T 0= 9;7T
O;¢e = ¢€; YT, ~9 O; ~¥ =; 7T

MIXED-TYPE SUBTRACTIONS

connective of type ¥ x v —» ¥

(*) ACA.9: right~- ACA.10: left ~
0;=9;7T O;,v=;7T 9,0;¢ = €; T,v
O; = JIwv; T INv,0;€¢ = ;T

connective of type v x ¥ — ¢

(*) CAA.10: right ~ CAA.11: left~- CAA.12: left~
0;=;Tw 9,0; =; 7T vn?,0 ;0 =5 Y vN3,0; = J9; T
O; = uv9; 7T vy, 0O ;¢ = ¢ ;T vN,0O e = ;T

connective of type v X v — ¥

(*) CCA.9: right~: CCA.10: left N CCA.11: left N
0; =T, O;v: =2; T viNv,0; v =; T,v2 vinv,0; ¢ = €5 T,v

O; = vivve; T vV1IN02,0 ;¢ = ;7T VINU2,0;6¢ = ;T

connective of type ¥4 x v » v

ACC.9: right \: (*) ACC.10: left ~:
O; = 9; T,9\v O;v =; YT, d\v 0,9; =; T,v
O;¢e = ¢€¢; T,9\v O;I9\v =>; 7T

connective of type v X ¥ = v

CAC.10: right \: (*) CAC.11: left \: (*) CAC.12: left \:
O;¢ = ;v 9,0;¢ = ;T O;v=;7T 0;=>9; 7T
O;¢ = ¢; T,o\9 O;vN9 =; 7T O;vNY9 =; 7T

connective of type ¥ x ¢ —» v

AAC.10: right \: (*) AAC.11: left
O; = Y1; 1,91\ 92,0 ;¢ = € ; 7T, 0,9 ; = ¥2; T
O;e = ¢; T,91 N9 O; N =; T

TABLE 8. Mixed-type negations and subtractions
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MIXED-TYPE ASSERTIVE LOGICAL RULES

connectives of type 9 x v — ¢

(*) ACA.1: right D: ACA.2: left D:
0,9; =; T,v IDv,0; =9; T IDv,0;v =; T
0;=9vDv; T YDOv,0;€¢ = €; T
(*) ACA.3: right N: ACA.4: left N: ACA.5: left N:
0;=9;7 0;=;v,Y INu,0Y;v=>;T INv,OY;e=> ;7T
0; = d9nv; T INv,® ;¢ = ;T YNv,0;€¢ = €¢; T
(*) ACA.6: right U:  (*) ACA.7: right U: ACA.8: left U:
0;=>9;7T 0;=>;uvT 9,0;€¢ = ¢; Y YUv,0;v =; 7T
0; = JUv; T O; = JdUv; T JUv,O;¢ = ¢ ; T

connectives of type v x ¥ — ¢

(*) CAA.1: right D: (*) CAA.2: right D: CAA.3: left D:
;= 9;7 ;v =;7T ;e = € T,v 9,0 = ;T
O;=>uvdD9; T 0;=>vD>9; 7T vOD$,0O;€e => €; T
(*) CAA.4: right N: CAA.5: left N: CAA.6: left N:
0;=;uv7T 0;=9;YT vnNd0,9;v =;T vNIO0,9;¢ =>¢€; 7T
0;=>vnd; T vN,0 ;¢ = €; T vN$,O ;e = € ;T
(*) CAA.7T: right U:  (*) CAA.8: right U: CAA.9: left U:
0;=9;7T 0;=;uv7T vUd,0; v =; 7T 9,0;¢ = ;7T
O; =>vUd; T O; =>vUd; T vUd,0;¢e¢ = €; T

connectives of type v x v = 9

(*) CCA.1: right D: CCA.2: left D:
O; vi = ; T,vs 0;¢e = €; T,u v1 Dv2,0 ;v = ; T
O; = vidDu; T v1 Dv2,0 ;¢ = ;T
(*) CCA.3: right N: CCA.4,5: left N:
0; =, vy, T 0; =; v,T O,voNv1; v =; 7T
O; = voNuvi; T O,voNvi; e = €; T
for i =0, 1.
(*) CCA.6, 7: right U: CCA.8: left U:
0; =; v, T voUv,®;v0 =; T wvwUv,0; v1 =; 7T
O; = vyUuvr; T vUv1,0;€¢ = ;T
for i =0, 1.

TABLE 9. Mixed-type assertive logical rules
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MIXED-TYPE CONJECTURAL LOGICAL RULES

connective of type ¥ x v »> v

ACC.1: right »: (*) ACC.2: left »:
0,9;¢ = € ; Y,v 0, =>9; T Qv =; T
O;¢e=>¢;T,9>v O;9>v =>;7T
ACC.8: right A: (*) ACC.4: left A: (*) ACC.5: left A:
O;=>9;T,9Av O;¢e=>¢€; T,v 0,9; ;7T O;v=>;7T
O;¢ =>¢€; T, 9 v O;9Av =; 7T O;%Av =; Y
ACC.6: right Y: ACC.7: right Y: (¥)ACC.8: left Y:
O;=>9;uv,T,9Yv ©O;e=¢;v,T,9Yv ©9;=;7T O;v=>;7T
O;¢e =>¢;T,9Yw O;¢e =>¢; T, 9Yv O;9Yv =; 7Y

connective of type v x ¥ —» v

CAC.1: right »: CAC.2: right »: (*) CAC.3: left »:
0;=49; T,u=19 O;v =>; Tuv>19 0, =; T 9,0; =>; 7
;e =>¢€e;Tv-9 0O;e=>¢€; Tvrd O;v>=9 =; 7T

CAC.4: right A: (*) CAC.5: left A:  (*)CAC.6: left A:
O;¢= €T, O; = 9; T,ord ;v =;7T 0,9; =; 7T
O;¢e =>¢€¢; T, ord O;vAd =; T O;vAd =; 7T
CAC.7: right Y : CAC.8: right Y: (*) CAC.9: left :
0;=9; T,v,vYd ©O;¢=¢€;T,v,vyd ©O©;v=;7T 0,9; =>; 7T
O;€e =>¢€;T,oYd O;€e => ¢€; ToYd O;vYd =; 7T

connective of type ¥4 x ¥ - v

AAC.1: right »: AAC.2: right »: (*) AAC.3: left »:
0,91; = Y2, T,091 =92 ©,01;¢ = €;T,91>9 0, =9; 7T 92,0 = T
O;¢ = ¢; YT, 9 >0 O;¢ = ¢€; 1,0 =10 O; %9 =; 7T

AAC.4: right A: (*) AAC.5, 6: left A:
O; = P; T,90A ©O; = 91; T,9 At 0,9i; =; T
O;¢e = €; YT,9 A O; %At =; T
for i =0,1.
AAC.7,8: right Y : (*) AAC.9: left Y:
O; = ¥9;; T,90 Y, 0,9;=>;T 03 ;=>;T
O;¢ = ¢; T,9Yh O;dYh =; T
for i =0, 1.

TABLE 10. Mixed-type conjectural logical rules
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APPENDIX III: The rules of FILP

identity and pragmatic axioms

logical axiom:
5,0,7 = 45,07

absurdity azxiom: assertion-conjecture: validity aziom:

O,A T = &1 ra6T = 6. T, 0,1 = 0,\/,T

structural rules
left exchange: right exchange:
607790’1917617TI = ®I7T GaTI = ®,7T07U03U1a’r1

@0,,!91’,190’@1”1"1 = @’,T ®7TI = ®,1T01U17U0aT1

TABLE 11. FILP, identity and structural rules
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ASSERTIVE LOGICAL RULES

connective of type 9 — ¢

(*) ~R: ~L:
0,9 = 7T ~9,0,7 = 9,07
@,T’=>~19,(9’,T Nﬁvga’rl = e’aT

connectives of type ¥ x 4 — 9

(*) >-R: o-L:
0,9 = 9, T 91 D92,0,Y = 91,0, T 92,91 D92,0,T = 67T
0,T = 91 D19.,0,7T 91 D292,0,T = 0,7
-R: N-R:
6,7 = 9,,0,T 6,7 = 9,07 90,91,0,Y = @', T
0,T = 91N9,0,T Y NJ1,0, T = ,7T
U-R: -L:
0, = 9,91,0, Y 90,0, = 0,7 91,0,T = 0,7
0,T = JU¥,,0",7T 9o UY1,0,Y = 0,7
(*) ~eR: ~eL:
0 = ¥,Y 92,0, = T 190\\191,190,("),T’ = ﬁl,@’,T
0,7 = 91\92,0"7T Yox91,6,7T = 0,7

TABLE 12. Sequent calculus for FILP, the standard fragment
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CONJECTURAL RULES

connective of type v — v

~-R: (*) ~-L:
0,Y v = 0.,7,~v e = T
0,7 = e,1T,~v 0,~v, T = 6,71

connectives of type v x v - v

>-R: (*) >-L:
0,Y v1 = O,Y,vs,v1 > v2 0, => T,u O, = T
0,YT = O, ,T,v; > v 0,T v vy = O'T
A-R: A-L:
0,T = 0,7T,v 0,Y = 0,Y,un 0,v0,v1, YT = ©,7T
0,T = 0,T,v90 A v1 O,v9 Av1, T = O'T
Y-R: Y-L:
@,TI = @’,T,Ul,UQ @,Ul,T’ = @’,T @,’UQ,T’ = @I,T
60,7 = ©,7T,v1 Y v O,v1 Y, T = ©,7T
~-R: (*) ~-L:
@,T' = @’,T,vl,vl\vz ("),UQ,T’ = @',T,’Ul N\ V2 @,Ul = T,Ug
@,T' = @’,T,’Ul\’UQ (‘),’Ul \’Uz,T' = (“)',T

TABLE 13. Sequent calculus for FILP, the dual fragment
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MIXED ASSERTIVE RULES

connective of type v — 9

(*) ~R: oLt
0,v = T ~v,0,T = 0,07
@,T’i’“’l},@’,ﬂr NU1®7T' = e’1T

connectives of type 9 x v > d,v x ¥ = J,vxv—>I

(*) O-R: O-L:
0,01 = 6,7 31 242,0,T = ©,6,7 02,61 D 62,0, 7 = O, 7T
0,7 = § DJ,0,7T 61 062,06, 1T = 0,7
(*) N-R: N-L:
0 = 6,7 O = 56,7 80,61,00 N 31,0, Y = O, 7T
0,Y = 61 N6,060,7T d NI, 6, T = 6,71
(*) U'-R: U-L:
0 = 6,7 J0,00U 41,0, T = O, 01,00U61,0, Y = O, 7T
0,7 = §HUIH, T 0U01,0,Y = 0,7
(*) ~<R: N
0 = 6,1 62,60 = T Jo01,0,60, Y = 5,0,
0,T = §1\02,0,7T dox01,0,7 = ©,7T

TABLE 14. FILP, mixed assertive rules
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MIXED CONJECTURAL RULES

connective of type ¥ — v

~-R: (*) ~-L
0,Y.9 = 0,7, ~9 0 = 719
60,7 = 0,7, ~49 0,~4, T = 6,7

connectives of type ¥ x v =5 v,v X ¥ = v,9 X ¥ = v,

R (*) =L
0,01, Y = 0,6,Y,61 > 5 0, = 6,T 0,60 = T
0,T = 0,7,§ > b 0,761 =6 = 0,7
A-R: (*) ALt
0,T = ©,7,d A d1,d0 6,T = 0',7,80 Ad1,d 0, = T
0,T = 0, ,7,j A 0,0 A6, T = ©'7T
YR (*) YL
@,T’ = @’,T,51 Y d2,01, 02 0,61 = T 0, = T
0,T = ©/,7,01Y 2 0,01 Y4, Y = 0,7
~-R: (*) ~-L:
@,T, = @,,T,51,51 \ d2 @,51,T’ = @',T,61 N 92 @,(51 = T,éz
0,7 = 0,7, \ 4§ 0,01 N0, T = 6,7

TABLE 15. FILP, mixed conjectural rules



