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Abstract. Formal pragmatics extends classical logic to characterize the logical
properties of the operators of illocutionary force such as those expressing assertions
and obligations [3, 8, 9] and of the pragmatic connectives which are given an intu-
itionistic interpretation. Here we consider the cases of assertions and conjectures: for
a mathematical proposition a, the act of asserting of « is justified by the availability
of a proof of a, while the act of conjecturing « is justified the absence of a refutation
of a. We give a unitary sequent calculus with subsystems characterizing intuition-
istic and a fragment of classical reasoning with such operators. Extending Godel’s
and McKinsey and A. Tarski’s translations of intuitionistic logic into S4, we prove
soundness and completenss of our sequent calculus with respect to the S4 semantics.

81. Preface. Formal pragmatics, as introduced by Dalla Pozza
and Garola in [8, 9] and developed in [3, 22], aims at a charac-
terization of the logical properties of #llocutionary operators: it is
concerned, e.g., with the operations by which we performs the act of
asserting a proposition as true, either on the basis of a mathemati-
cal proof or by empirical evidence or by the recognition of physical
necessity, or the act of taking a proposition as an obligation, either
on the basis of a moral principle or by inference within a normative
system.

Although some classical texts of 20th century philosophy and philo-
sophical logic (e.g., by Austin and Grice) are very appropriately char-
acterized as contributions to pragmatics, the word “pragmatics” is
often used in a general way to indicate what lies beyond syntax and
semantics in the study of language. Given such a vague and ambigu-
ous usage, it is very hard to provide arguments for the claim that
pragmatics could or should be given a formal treatment; it is much
easier, and a better strategy, to produce a formal axiomatization of
the behaviour of some pragmatic operator and to show that such a



formal system can be used to clarify some confusion and to improve
our understanding of linguistic behaviour. In our view, this is what
Dalla Pozza and Garola’s pragmatic interpretation of intuitionistic
logic has done with respect to the interpretation of intuitionistic and
classical connectives, with potential benefits for related controversies
in the theory of meaning.

The viewpoint of [8] could be sketched roughly as follows. There
is a logic of propositions and a logic of judgements. The former is
about truth according to classical Tarskian semantics. The latter
gives conditions for the justification of complex acts of judgement
from elementary ones, such as assertions. The assertion of a math-
ematical proposition is justified by a proof of it, while some kind
of empirical evidence is needed to justify assertions about states of
affairs. In any case the justification of complex acts of judgement
should be in terms of Heyting’s interpretation of intuitionistic con-
nectives: for instance, a conditional judgement “if « is assertible,
then [ is assertible” is justified by a method that transforms any
justification for the assertion of « into a justification for the asser-
tion of 5.

In modern logic the distinction between propositions and judge-
ments was established in Frege’s system. According to Frege propo-
sitions express the thoughts which are the content of judgements.
The formal expression r o expresses the judgement asserting the
proposition —: such a judgement is the act of recognizing the truth
of its content. Only truth-functional connectives and quantifiers are
considered by Frege, which belong to the logic of propositions; judge-
ments appear only at the level of the deductive system; there are no
connectives to form complex judgements (though the status of hy-
pothetic judgements may be debatable). The distinction between
propositions and judgements has recently been taken up in Martin-
L&f’s theory of types, which formalizes the informal notion of a proof
as a collection of judgements. But here propositions are given an in-
tuitionistic semantics, not a classical one, so that Frege’s expression
of judgement ~ « is replaced by Martin-Lof with « true: the truth
of o cannot be separated from the conditions justifying the assertion
of a. Concerning the logical constants, their meaning is ultimately
determined by the introduction and elimination rules for each con-
stant: these rules of inference relate judgments about propositions
involving the logical constant in question [14, 15].



Thus Martin-Lof theory of types is developed without any reference
to the classical notion of truth: there is an epoché of classical truth,
rather than an argument against it. Perhaps it should be remem-
bered that in his system Martin-Lof has not introduced the notion
of a free-choice sequence, the only construction by Brouwer which
is formally inconsistent with classical logic. In Martin-Lof theory of
types and in G. Sambin’s formal topologies, mathematical objects
are given together with a presentation (e.g., through introduction,
elimination, conversion and equality rules): whenever a mathemati-
cal object is introduced, we immediately know what we do when we
speak about it. The temptation to regard the whole of Martin-Lof
theory of types as belonging to formal pragmatics is strong: certainly
there is no inconsistency in doing so. Martin-Lo6f does not indulge in
the irresistible attitude of those mathematicians, who feel that they
have immediate access to mathematical objects before knowing how
to compute them. But the unrepented mathematician who sticks to
the fatal attraction for classical logic is not proved inconsistent by
Martin-Lof as he is by Brouwer.

Unlike Martin-Lof and in agreement with Frege, Dalla Pozza and
Garola distinguish between “a is true” and “ r « is justified”, but
extend Frege’s framework and enhance the significance of the distinc-
tion between the logic of propositions and the logic of judgements, by
giving an intuitionistic interpretation of the pragmatic connectives
in the logic of judgements, while retaining classical semantics for the
logic of propositions. This approach suggests compatibility between
classical and intuitionistic point of views: such a thesis cannot be
properly discussed here, but certainly requires further explanations.

It would be clearly a mistake to claim that formal pragmatics set-
tles the philosophical issue of classical realism versus intuitionistic
anti-realism: no formal system by itself can settle a philosophical is-
sue! It would also be wrong to claim that it necessarily presupposes a
compatibilist solution to the controversy. A realist philosopher, tak-
ing advantage of the distinction between semantics and pragmatics,
may claim that classical semantics is the ultimate basis of meaning
and perhaps that humans have immediate access to mathematical
objects independently of their capacity of defining and describing
them. An anti-realist philosopher could accept the system of prag-
matics and claim that the phenomenon of meaning is only captured
by the whole system, reducing the role of classical semantics to that



of an abstract interpretation, which adequately represents meaning
only in particular situations.

As the justification of mathematical judgements relies on proofs, it
follows that proof-theory, the typed A-calculus, categorical logic and
their “semantics” are all drafted in the ranks of formal pragmatics,
as providers of mathematical models of the processes by which we
produce justified acts of judgement. But are we simply giving a new
label to these disciplines? Do they need yet another philosophical
burden?

In our view, the characterization of the distinction between clas-
sical model theory and intuitionistic proof-theory in terms of the
distinction between semantics and pragmatics already achieves two
goals. Omn one hand it makes clear that different criteria of cor-
rectness and achievement apply to these different enterprises: tra-
ditional logic, based upon classically semantics, is ezxtended or inte-
grated rather than challenged by intuitionistic pragmatics, the latter
having a different subject matter than the former. In the same vein,
one may also be able to identify the proper subject matter of sub-
structural logics [3] and explain in which sense they are an extension
or an integration of traditional logic theory. On the other hand, the
problem of the relations between the two becomes more interesting
and intriguing than the mere opposition between the classical and
the intuitionistic philosophies of logic, and gives additional reason of
interest in the mathematical study of the relations between the two.

One direction of the interaction between the intuitionistic prag-
matics of assertions and classical semantics is well-known: it is given
by Godel, McKinsey and Tarski’s translation of intuitionistic logic
in the modal system S4 [11, 18] together with Kripke’s semantics
for S4. In the framework of formal pragmatics, the modal inter-
pretation can be regarded as a reflection of formal pragmatics into
its own semantic level expanded with the S4 modality: the reflec-
tion of + « is the proposition O, which is semantically interpreted
in preordered Kripke models. Dalla Pozza and Garola distinguish
between expressive and descriptive uses of the pragmatic operators,
where the descriptive use refers to the modal translation; in [9] the
framework of formal pragmatics is extended to assertions and obli-
gations and the distinction is made between the expressive use of
the illocutionary operator of obligation and its descriptive use in the
necessity operator of the deontic system KD.



The other direction, the action of classical semantics on intuition-
istic pragmatics is less familiar and deserves further investigations.
In [8] it is remarked that if the pragmatic expressions are evalu-
ated only with respect to the pragmatic connectives and operators,
namely, negation (~), implication (D), conjunction (N) and disjunc-
tion (U), and no analysis is made of the propositional contents of
judgements according to the classical semantics of the propositional
connectives =, —, A and V, then the resulting pragmatic system
ILP is essentially intuitionistic logic. The consideration of classical
reasoning in formal pragmatics emerges in the interaction between
classical propositional connectives and pragmatic connectives: e.g.,
we have that + (a — () pragmatically implies +« D + 3, but is not
implied by it (as we can easily check through the modal translation).
A classification of these relations is already in [8, 9].

But if the constructive nature of the illocutionary operators and
the notion of semantic reflection is to be taken seriously, then we
must ask the following questions: is there is an illocutionary operator
which is dual to assertion “+’, i.e., which stands to “+’ as “O”
stands to “0O0”7 Is the exrpressive use of pragmatic connectives no
more restrictive than the descriptive use? namely, for every modal
expressions « is there a pragmatic expression ¢ such that the modal
reflection M is equivalent in S4 to o? for instance, shouldn’t there
be an expression of the pragmatic language whose modal reflection
is ¢0a?

The aim of this paper is to give evidence that a positive answer to
both questions is possible: this requires performing a mathematical
task and making hard philosophical decisions. An act of asserting

+ v is justified by a proof of the truth of «; its dual must be a the act
of conjecturing # a, which is justified by the absence of a proof of
the falsity of . The “modal reflection” of the pragmatic expressions

ra and # « is given by the expressions O and <a, respectively,
of classical S4; in Dalla Pozza’s terminology, “0” and “$” provide
the “descriptive” interpretations of the pragmatic operators of asser-
tion and conjecture. In order to extend the expressiveness of formal
pragmatics, notice that in addition to Godel, McKinsey and Tarski’s
translation of intuitionistic logic into S4, there is also a dual trans-
lation:



(NT =¢ L (N® =4 L

(P)® =4 ©OP (P)° =4 ©OP
((51 D) (52)'3 =df D(&lu — 52I:I) (51 D) (52)<> =df 0(5? — (53)
((51 N (52)I:I =df 51D A 52D ((51 N (52)<> =df (5i> A 5§>
(61 U (52)D =df 51E| \Y 52E| (51 U (52)<> =df 5? V (5§>

These translations correspond to the standard topological inter-
pretation of intuitionistic logic, mapping formulas to open sets, and
its dual, mapping formulas to closed sets. Now we may extend the
system of formal pragmatics in such a way as to have a modal trans-
lation ( )™ and a topological translation extending both the standard
interpretations and their duals. We let

(I—Q)M =y Lo (Ha/)M =4 S

Then we extend the language £F with the connectives which nat-
urally arise in the new context: namely, we have a weak negation
(~), a weak implication (>), conjunction (A) and disjunction (Y),

modally interpreted in S4 as “possibly not ...”, “possibly, ... im-
plies ...”7, “possibly ... and possibly ...”, “possibly ... or possibly
...”7, respectively.

From a technical point of view the first task is to extend the stan-
dard topological interpretation of intuitionistic logic and its dual,
as well as Godel’s [11], McKinsey and Tarski’s [18] interpretation
of intuitionistic logic into S4 by proving the analogue of Kripke’s
completeness theorem [13] for the extended language. In terms of
the topological interpretation, the interest of these connectives lies
in the fact that they represent an interaction of the closed sets on
the open sets and vicecersa; we obtain many types of conjunctions
and disjunctions and significant relations between the implications
and the other connectives. A more abstract mathematical treatment
of the whole matter is clearly needed.!

The second task is to give an account of classical reasoning in the
extended context: here we propose a constructive extension of the
intuitionistic system, which is sound and complete with respect to the
interpretation in S4. This fragment is motivated by the remark that
the following rules preserve validity and are semantically invertible
in the S4 translation:

~Ha Fan -0 ~Fa FasHp HaY HP
F oo FlaApB) Ho H(a — O) #H(aVp)

!The paper by G. Reyes and H. Zolfaghari [23] may help here.



As a consequence, the sequent calculus for our classical fragment has
corresponding left and right rules which are valid and semantically
invertible.

Our proofs of the completeness theorems for the intuitionistic and
classical fragments with respect to Kripke semantics over preordered
frames follows the well-known semantic tableauzr procedure for S4,
which will be quick summarized in Section 2. Hyper-sequents in
the style of Pottinger, Avron and Girard [20, 1, 2, 10] provide a
convenient technical tool for our proof.

The philosophical task of justifying the introduction of the con-
jecture operator is challenging: we need to explain what counts as
a justification of an act of conjecturing, namely, what it means to
say that we have no proof of the falsity of a. The epistemic inter-
pretation of such a condition is quite clear, but uninteresting for our
purpose: to my statement “I have no proof of that the square root
of two is irrational”, you may reply: “Think harder, idiot!” or “Poor
thing, go to the library!”.

More interesting, of course, are the conjectures on which a body
of mathematical knowledge relies. A theorem proved supposing the
Riemann hypothesis may simply be regarded as a hypothetical judge-
ment. But in formal pragmatics the distinction between acts of as-
serting and acts of conjecturing cannot be identified with the distinc-
tion between categorical and hypothetical judgements, as the modal
interpretation relates it to the duality between necessity and pos-
sthility in S4. Following Martin-Lof’s approach, M. Pfening and
R. Davies [19] have recently presented constructive notions of ne-
cessity and possibility based on the distinction between categorical
and hypothetical judgements. The fact that modal notions can be
reconstructed with an epoché of classical possible-world semantics
is very important from the viewpoint of formal pragmatics, but in
our framework we also need to explain how such a reconstruction is
related to the classical semantics of S4.

To say that a act of conjecturing # « is fully justified is to say that
a proof of =« does not exist, independently of the subjective epis-
temic state of the individual making the assertion. Obviously, for
the classical logician, this view is unproblematic. From an orthodox
intuitionistic standpoint, the statement that a proof of —a does not
exist is only understandable if we have a method to derive a contra-
diction for the hypothesis of the existence of a proof of —a: but this



is already justification for the assertion ~ r —«. Thus in this view
the expression # « is meaningful only as a characterization of an
empirical epistemic state and has little mathematical or logical con-
tent. The issue at stake here is whether we can say that proofs have a
potential existence, where “possibility is not understood in the tradi-
tional intuitionistic sense as knowledge of a method” to produce such
a proof, but as “knowledge independent and tense-less” possibility
([17], pag.83). Professor Prawitz accepts this notion of possibility:

“That we can prove A is not to be understood as meaning
that it is within our practical reach to prove A, but only
that it is possible in principle to prove A [...]. Similarly,
that there exists a proof of A does not mean that a proof of
A will be constructed but only that the possibility is there
for constructing a proof of A. [...] I see no objection to
conceiving the possibility that there is a specific method for
curing cancer, which we may discover one day, but which
may also remain undiscovered.” ([21], pag. 153-154)

We conclude that our extension of formal pragmatics to conjectures
(and to weak connectives) presupposes the philosophical standpoint
called potential intuitionism by Martino and Uberti, i.e., the belief
that proofs have a potential existence, independently of the contin-
gent fact that we have discovered or will ever discover them.

Although the notion of a conjecture may appear of limited interest
in the representation of mathematical reasoning, conjectures play an
essential role in other forms of reasoning which are good candidates
for applications of formal pragmatics. An example is legal reasoning.
To charge somebody with a crime is to make a conjecture, while to
find somebody guilty is to make an assertion: thus a trial may be
regarded as a conventional procedure in which a conjecture may be
transformed into an assertion. We would not be able to give a formal
account of what a trial is without the notion of a conjecture.

In the presupposition of innocence before the conclusion of a trial
and in a guilt verdict at the end of it conjectural and assertive forces
play a formal, conventional role which does not depend on the degree
of certainty associated with the evidence. Consider the sentence

“On Sunday, April 26 1998, Monsignor Juan Gerardi Coned-
era, Auxiliary Bishop of Guatemala City, was killed by a
member of a paramilitary death squad”.



and the scenarios in which it could have been stated 2. Such a
sentence or its Spanish translation, could have occurred (a) in a
communication by the murder himself to his boss immediately after
the act, (b) in the statement in which the paramilitary group Jaguar
Avengers claimed responsibility for the murder, (¢) during the trial,
in a statement by the prosecutor (d) during the trial in a statement
by one of the defendants, had one of them confessed, (e) in the
courtroom, when the guilt sentence was read by one of the judges,
(f) in a discussion in the US Senate, e.g., in a statement by Vermont
Senator Patrick Leary, when a declassified US Defense Intelligence
Agency document revealed that one of the defendants, Col. Byron
Disrael Lima Estrada had taken Military Police training at the US
Army School of the Americas (SOA).

Had statement (a) been recorded, e.g., from a cellular phone con-
versation, it would provide direct evidence of the facts, while state-
ment (e) relies on a complex system of information retrieval for its
evidence. During the trial, the statement (d) would have had the
peculiar pragmatic property of providing legal evidence to its own
truth, while statement (c¢) would have relied on existing evidence.
But notice that the process of weighting evidence for and against a
case during the trial presupposes that the charge is still a conjecture.
On the other hand, if a trial has been conducted according to proper
procedure and a guilt sentence has been issued, then a statement of
guilt is an assertion no matter what degree of certainty is assigned
to the evidence, in particular whether or not evidence came from a
confession.

In conclusion, the illutionary forces of statements (a)-(f) would
have been very different; in each statement, the speaker might have
had several intentions and done several things with his words. Never-
theless, the legal setting provides a simplified arena where assertions
and conjectures play a clear and crucial role. For this reason, le-
gal reasoning may provide a fruitful field of application for formal
pragmatics and constructive modal logics.

§2. Modalities, pragmatic operators and connectives. The
propositional part of the pragmatic language £” (which corresponds

2The scenarios are fictional, but based on real events; among other sources
in the media, see http://www.peacehost.net/soaw-w/gerardi.html and
http://leahy.senate.gov/press/199804/980428 .html
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TABLE 1. The modalities of S4

to the language of propositional logic) is extended with the modal-
ities “0” and “®” to a modal language £™, which is classically in-
terpreted through Kripke’s possible-worlds semantics. The modal
systems of interest in the framework of formal pragmatics are K,
KD and S4. We recall the definitions of the syntax and semantics
of these systems in the Appendix 7. We also recall the well-known
semantic-tableaux procedure proving the soundess and completeness
theorem for these systems: details of this procedure are needed in the
proof of the soundness and completeness theorems for the pragmatic
sequent calculus in section 5.

It is easy to see, e.g., by using the semantic procedure in the Ap-
pendix 7, that there are only seven “modalities” in S4 (including no
modality), the ones in Table 1: indeed, these modalities are idem-
potent (e.g., OOp is provably equivalent to Op and <OOCOOY is
provably equivalent to ¢O<p); moreover applying negation to Table
1 yields a symmetry along the horizontal axis together with a sub-
stitution of —p for p. Next consider the well-known translation of
intuitionistic logic into S4, which we now interpret in the framework
of the pragmatic language £ as a translation of the sentential for-
mulas with atomic radical only and with assertive illocutionary sign
only:

(ra)” = Da (61D8)° = 007 —»d;) ~6° = 0(=67)
(61UG)” = 67V (61N&)° = 6T Ay
Notice that of the seven modalities of S4 only three ever occur in
the translation, namely

(Fp)':' = Op (kap)u = O0Op (NI—_|p)D = OCp
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TABLE 2. Asserting and conjecturing

This is not surprising, given that Heyting’s interpretation of intu-
itionistic connectives is in terms of informal provability also for the
atomic sentences. But in the framework of potential intuitionism it
makes sense to reason also with the presupposition that an atomic
sentence p may be conjecturally asserted, in symbols # p; partial
justification for such a conjectural assertion is the belief that p may
be irrefutable. Similarly, it make sense to doubt of an assertion (con-
jectural or not), in symbols ~ §; partial justification for doubt is the
belief that there may be no method to prove that the committments
made by ¢ could be met. If the operator of conjectural assertion
and the connective of doubtful negation are acceptable, then we can
extend also the above ()" translation to a translation ( ) as follows:

()Y = Oa  (~HM = O(=6M)
and we give a pragmatic counterpart to three other modalities of S4:

(#p)" = Op  (~~up)™ = 000p  (~n-p)¥ = OOp

§3. The pragmatic language L”.

DEFINITION 1. (Syntaz) (i) The language £” is built from an in-
finite set of propositional letters p, po, p1 ... using the propositional
connectives 0, A\, V, —; these expressions are called radical formulas.
The elementary formulas of the pragmatic language are obtained by
prefixing a radical formula with a sign of #llocutionary force “” and
“2’. There is only one elementary constant for absurdity, namely



A\. Finally, the sentential formulas of LT are built from the elemen-
tary formulas and the constant A, using the pragmatic connectives
~, N, U, D, ~, >, A and Y.

(ii) (Formation Rules) The pragmatic language L£” is the union of
the sets Rad of radical formulas and Sent of sentential formulas.
These sets are defined inductively by the following grammar:

a=p|l-a|laha|laVa|a—al
§ =19 |v|
9 =tFal \| ~56[6D6[6n5|6U0|

vi=wal \| ~0[6-6|6Y5[5A05|

(iii) The formulas « are called radical formulas. The formulas § are
called pragmatic sentential formulas; amonge these, - a, #«, /\ are
called elementary, the formulas ¥ are assertive and the formulas v
are conjectural.

We use the letters a, 8, ay, ... to denote radical formulas, n, 7,
...... to denote elementary sentential formulas, 9, ¥4, ... to denote
assertive sentences and v, vy, ... to denote conjectural sentences.

The intuitionistic fragment of the language L is obtained by re-
stricting the class of elementary sentences to those with atomic rad-

ical only:
N\ Fp  up

DEFINITION 2. (Informal Interpretation) (i) Radical formulas are
interpreted as propositions, with the Tarskian classical semantics, as
usual.

(ii) Sentential expressions are interpreted as follows:

1. o and # « are interpreted as illocutionary acts of assertion
and conjectural assertion, respectively. All such acts are re-
garded as impersonal, i.e., making abstraction from the specific
attitudes of the subjects of such acts. Illocutionary acts can be
“justified” (J) or “unjustified” (U); by extension, so are also the
corresponding elementary sentential expressions.

2.+« is justified if and only if there is a proof that « is true; it is
unjustified otherwise. + « is an assertive expression.

3. # « is justified if there is no refutation of «, i.e., no proof
that « is false; it is unjustified otherwise. # « is a conjectural
expression.



4. ~ § is justified if and only if there is a proof that ¢ is unjustified;
it is unjustified otherwise. ~ § is an assertive expression.

5. ~ ¢ is justified if and only if there is no proof that ¢ is justified;
it is unjustified otherwise. ~ § is a conjectural expression.

6. 61 D 09 is justified if and only if there is a proof that a justifi-
cation of ; can be transformed into a justification of ds; it is
unjustified, otherwise. d; D d9 is an assertive expression.

7. 01 > 0y is justified if and only if there is no proof that 4, is
justified and d, is unjustified; it is unjustified, otherwise. d; > 9o
is a conjectural expression.

8. Let 9, and 1, be assertive expressions; then the assertive ez-
pression ¥ N Yy is justified if and only if both ¥ and 9, are
justified; it is unjustified otherwise. Similarly, 19, U1, is justified
if and only if either 91 or 9, is justified.

9. Let v be a conjectural expression; then the assertive expressions
vMY and YN v are justified if and only if there is a proof that both
v and 19 are justified; they are unjustified otherwise. Similarly,
vUd and YU v are justified if and only if there is a proof that
either v or ¥ is justified.

10. Let v; and vy be conjectural expressions; then the conjectural
erpression v1 A vy is justified if and only if both v; and v, are
justified; it is unjustified otherwise. Similarly, vy Y vy is justified
if and only if either v, or vy is justified.

11. Let 19 be an assertive expression: then the conjectual expressions
Y A6 and 0 A 9 are justified if and only if there is no proof
that either ¥ or 0 is unjustified; they are unjustified otherwise.
Similarly, ¥ Y 6 and 6 Y 9 are justified if and only if there is no
proof that both ¥ and ¢ are unjustified.

3.1. Topological interpretation. A mathematical model for the
system L? is obtained through a topological interpretation.

DEFINITION 3. (topological interpretation). Let S be a set, let
N, U and ( )¢ be the usual operations of intersection, union and
complement defined on the powerset p(S) of S and let I : p(S) —
©(S) and C : p(S) — p(S) be the interior and closure operators,
satisfying

I(X)CX XCC(X)
I(X) CI(I(X)) C(C(X))cC
XCY=IX)CIY) XCY=C(X)CCy)
C(X) = I(X))° and I(X) =



A topological interpretation 6* of the full language £F is given by
assigning to each atomic formula P a subset P* of S and then by
proceeding as follows:

(N =a 0

(ra)* =g I(a*) (Ha)* =4 C(a)

(~0) =g I((6*)°) (~8)* =g C((6"°)
(01D 8) =g L()CUH))  (b1>=8) =4 C((67)°Ud)
(61Nd2)* =g I(67) NI(3) (61 A d2)" =g C(67) NC(d3)
(1Ud2)" =4 I(67) UI(63) (61 Y d2)* =4 C(6]) UC()

Remark. Another translation ( )** would be possible with the same
clauses for the elementary formulas, for negation and implication,
but with the following clauses for conjunctions and disjunctions:

((51 N (52)** =df I((SI* N 55*) ((51 A (52)** =df C((ST* N (5;*)
BLUG)™ =g L@ ULY) (0.7 8&)™ =g C@1U&E)

This amounts to defining new pragmatic connectives, which diverge
from the standard meaning of intuitionistic disjunction and of its
dual, conjectural conjunction, in the extended system. A motivation
for introducing a new assertive disjunction, corresponding to the
translation ( )**, would be the desire to make “ either ~a or ~+a”
a valid principle of ILP. Clearly for “potential intuitionism” either
there is a proof of « or there isn’t one; therefore, it would seem that
we would be justified in asserting this fact in general. We follow the
translation ( )* in the rest of this paper, leaving the issue of new
connectives open to further investigation.

3.2. Modal interpretation. Another mathematical interpreta-
tion is obtained through an extension of Godel, McKinsey and Tarski’s
modal translation ( )° into the logic S4, where the notion of va-
lidity and wvalid consequence in the Kripke semantics for S4 give
semantical counterparts of the pragmatic notions of p-validity and
p-consequence. The modal translation 6 of the full language £” is
as follows:

DEFINITION 4. (S4 translation)



WY =y 1
(ra)" =4 Da (a)¥ =g Oa
(~OM =4 O-6M (~OM =g O-M
((51 D) 52)M =df D((S{W — (Séw) ((51 b (52)M =df <>((5{VI — (5%4)
('191 N ’192)M =df ’19{\4 A 19%4 (’U1 A ’U2)M =df U{VI A ’Uéw
@no)M =4 9 AOuM (wANM =4 VM AOYM
(vNY)M =df OvM A 9M (9 X v)M =df S9M A M
(U1 N ’UQ)M =df D’U{V[ A D’Ué\/[ (’191 A ’192)M =df O9M A 019%/[
(291 U ’192)M =df ’19{\/[ V ‘199/[ (’U1 Y ’UQ)M =df ’U{M V ’Uéw
Wuu)M =4 M voOoM (wYy )M =4 oMy oM
(UM =4 OoMyv 9M @Y v)M =4 O9Mv oM
(’U1 U ’UQ)M =df D’U{V[ \Y D’U%/[ (’191 Y ’192)M =df 019{\/[ \Y 019%/1

§4. Sequent calculus for the pragmatic language £”. The
sequent calculus presented here is unitary in the sense that it con-
tains fragments which formalize classical and intuitionistic reasoning,
respectively: the classical fragment contains rules which modify the
radical part of the principal formula in the sequent-conclusion; on
the contrary, in the rules of the intuitionistic fragment the radical
parts are regarded as atomic and remain unchanged throughout the
derivation. As a corollary of this fact, the subformula property holds
for the intuitionistic fragment, but not for the classical system; for
the classical system considered here a weaker property holds, namely,
the subformula property for the radical parts.

Here it is convenient to discuss the two fragments separately: we
shall give the general definitions of a sequent and the identity and
structural rules of the calculus first, then the two parts whose union
generates the full unitary system for assertive reasoning.

DEFINITION 5. All the sequents S are of the form

O;¢e=¢;7
where
e O is a sequence of assertive formulas ¥4, ..., J,,;
e T is a sequence of conjectural formulas vy, ..., vp;

e ¢ is conjectural and €’ is assertive and at most one of €, € occurs

in S.



S.1: logical aziom:
9 = J;

S.3: falsity axiom:
@,/\; e = €7

S.6: cut;:
O;=9:;7 9,0 ;e = € ;Y1

S.4: falsity azxiom:
0; /\ =; 7T

identity rules

S.2: logical axiom:
U = v

S.5: assertion-conjecture:
Fa; = Ha

S.7: cut,:
O;¢=¢;Tv ;v =1

0,0;¢e¢ = ¢€¢; 71T,

S.8: exchange:
0,91,99,0" ;¢ = ;T

0,99,91,0" ;¢ = ;7T

S.10: contraction:
9,9,0; e=> ;Y

3,0;¢ = ;Y

S.12: weakening:
O;¢e =€ 7T

0,0 ¢ = ¢; T,

structural rules

S.9: exchange:
O,;¢ = €; T,v,v, T

O;¢ = ¢; T, u,uv, Y

S.11: contraction:
O:¢ = ;00,71

O;€¢ = ¢€;v,7T

S.13: weakening:
O;¢e=> €7

9,0;¢ = ;T
S.14: weakening:
O;=>;7T
O;=>9;7T

O:;¢e=¢;T,v

S.15: weakening:
O;=>;7T
O:;v =; T

TABLE 3. The sequent calculus for £, structural rules

§5. Sequent calculi for intuitionistic £F. It is also convenient
to present the sequent calculus for intuitionistic pragmatic reasoning
as extensions of the standard system.

1. The standard system is the fragment restricted to the assertive
formulas with atomic radicals. This is just intuitionistic logic
formalized in a sequent calculus with focalized hyper-sequents.

2. The dual of the standard system is the fragment restricted to
the conjectural formulas with atomic radicals.

3. The system ILP extends the union of the standard system and
of its dual with all possible connectives transforming pairs of



logical rules, connective of type 9 —

A.1: right negation: A.2: left negation:
0,9; =>; 7T ~194,0; = 9; 7T
O;=>~39; 7 ~9,0; =;7T

logical rules, connectives of type ¥ x ¥ — 9

A.8: right Dy,: A.4: left D:
0,9,; = 99; T 91 D99,0; = 91 ; T 99,91 D199,0 ;¢ = € ; T
O;=> 9,D9; T P DU2,0;¢ = ;T
A.5: right N: A.6: left Ny :
O;= 9; 7T O;= 19; 7T 0,9,% ;€ = ;7T
;= dhnit; T O,%NY% ;¢ = ;7T
A.7,8: right UL : A.9: left U:
O; = 9:;7 0,9 ;€= ¢€¢;YT O,91;¢ =7
O; = U ;T 0,%Ut ;e = ;T
for i =0, 1.

TABLE 4. The standard (assertive) fragment of ILP

assertive or conjectural formulas into assertive or conjectural
formulas.
Namely, in ILP we have the following connectives:
e all negations ~ §, ~ ¢, for § = ¥ or v;
e all assertive implications §; D d,, assertive conjunctions d; N do
and assertive disjunctions d; U do, for §; = 9J; or v;, and 7 = 1, 2;
e all conjectural implications d; > do, conjectural conjunctions
01 A 09 and conjectural disjunctions §; Y &y, for 6; = ¥; or v;,
and ¢ =1, 2.
The sequent calculus for intuitionistic pragmatic reasoning ILP is
the formal system given by the rules in Tables 4, 5, 6 and 7 together
with the structural rules of Table 3.

The sequent calculus ILP is quite large. There are 15 identity and
structural rules (including the falsity rules, a rule relating assertions
and conjectures and two cut-rules), and 74 logical rules. Among
the logical rules, 9 are in the standard (assertive) fragment and 10



logical rules, connective of type v — v

C.1: right doubt: C.2: left doubt
O;v=>; 7T, ~v 0O, =; Tv
O;=;7T,~v O; ~v=;7T

logical rules, connectives of type v x v - v

C.8: right =g C.4: right =«
O;€¢ = v, T,y =v9 O v =; T,vg,0; = vy
O;¢ = ¢e; T,u1 =19 O; =; T,v > vy
C.5: left »:

O;=;"Tu O =; T
O;vir-ve =; 7T

C.6: right A: C.7,8: left AL:
O:¢e = €; T, O:¢e = €; T, O;v;, =, 7T
O;¢ = €; T,v9Av; O;vAivy =; 7T
fori =0,1.
C.9: right Y - C.10: left Y :
O;¢ = €; T, v,0 O;v; =2; 7 O; vy =; 7T
O;¢e = €¢; T, Y O;viYv =; 7T

TABLE 5. The dual (conjectural) fragment ILP

in its dual (conjectural fragment), and 55 additional (mixed) rules.
Rules for binary connectives having one sequent-premise are either
multiplicative or additive: e.g., A.3: right D,, is multiplicative and
the rules A.7,8: right U, are additive.

THEOREM 1. The intuitionistic sequent calculus ILP without the
rules of cut is sound and complete with respect to the modal inter-
pretation in S4.

Given a sequent S of the form

O;¢e=¢€;7



logical rules, connective of type v — 4

CA.1: right negation: CA.2: left negation
O;v=;7T ~v,0;¢ = €¢; T,u
O;=>~v; T ~0,0;€¢ =>¢e; Y

logical rules, connectives of type ¥ x v — 9

ACA.1: right Dy, : ACA.2: left D:

0,9; =; T,v 9D0v,0; =>49; T IDv,0;v =; T

O;=>9Dv; 7T 9Dv,0;=; 7Y

ACA.3: right N: ACA.4: left Ny : ACA.5: left Ng:
O;=>09;7T O;=>;0v,T 06,J%;v=;7T 0,9;¢e = ¢€¢;7T

O;=>9Nnv; T 0,9Nv; =>;T O,dJdNv;e = €;7T
ACA.6: right Uy:  ACA.7: right Ug: ACA.8: left U:
0;=49; 7T 0;=;07T 0,9;¢e =>€¢;YT O;0v=;7T
O; = JdUv; T O;=IJUv; T 0,9Uv;e = ;Y

logical rules, connectives of type v x 9 — 9

CAA.1: right Do,: CAA.2: right Dg: CAA.3: left D:
0;=>9;7 O;v=>;7 vD19,0;€e = €; T, J,vD9,0;e = ;T
O;=>vD9; YT O©;=>0vDY;7T v293,0;€e => €; 7T
CAA.4: right N: CAA.5: left Nyy: CAA.6: left N,:
0;=>;0v7 O;=>9;T 06,9;v=;7T 0,9;¢e =>¢€;7T
O;=>uvnNd; Y O,vNd;=;T OwvNd;e = €;7T
CAA.T: right Uy:  CAA.8: right U,: CAA.9: left U:
0;=>;0v7"T O;=9;7T O;v=;T 0,9;¢e=¢€;7T
O;=>vUud; T 0O;=>0vUd; T O,vUd ;e = ;Y

logical rules, connectives of type v x v — 9

CCA.1: right D, CCA.2: left D:
O; v =; YT, v1 Dvy,0; € = € ; T, v1 DU2,0 ;0 = ; T
O;=>uvyDuv; Y V1 Dv2,0 ;€ = € ; T
CCA.3: right N: CCA.4,5: left NE:
0;=; v,7Y 0; =;v,T O;v;, =; 7T
O; = vNu; T O,upNuy; =; T
for 1 =0,1.
CCA.6,7: right Ui: CCA.8: left U:
0;=;uv,Y O;vi, =2;T O; v = ;7T
O; = vwUu; T ©,v1Uv; =5 T
for i =0,1.

TABLE 6. ILP, 27 additional mixed-to-assertive rules




logical rules, connective of type ¥ — v

AC.1: right doubt: AC.2: left doubt
0,9;¢e => ;T~9 0,=>9;7
O;¢ = €;Y1,~9 O; ~9 =;7

logical rules, connectives of type ¥ x v = v

ACC.1: right »p,: ACC.2: left »:
0,9;¢ = €¢; T,uv,9>v 0;,=>9; 7T O;v =; 7T
O;€¢ = €; T, 90 O;9>v =>; 7T
ACC.3: right A: ACC.Y: left Aq: ACC.5: left Aq:
0;=49;7T O;¢ = €; T 0,9; ;7T 0,;v=;7T
O;€¢e = €; T, 9Av O;9%Av =;T O;div =>;7T
ACC.6: right Y, : ACC.7: right Y4: ACC.8: left Y:
0;=49; Tv O;¢=>€;Tv 0,9; =>; 7T O;v=;7T
O;=;YT,9Yv ©O;e=¢;YT,9Yv O;9Yyv =>; 7T

logical rules, connectives of type v x 9 — v

CAC.1: right »,: CAC.2: right »,: CAC.3: left »:
O;=>9; Tv=9d O;v=>;Tvs=d 06;=;7Twvw 3,0; =>; 7T
0; =>;Tv=19 O;=;Tv=19 O;v-9 =>; 7
CAC.4: right A: CAC.5: left Ay: CAC.6: left Ay:
O;¢=>¢€; T O;=>49;7T O;v=>;7T 0,9;=>;7T
O;€¢ = €; T,uord O;vAid =;T O;vAid =; 7T
CAC.7: right Y ,: CAC.8: right Yg,: CAC.9: left v:
0;=9; YT,v O;¢ = ;7 T,v O;v=;7T 0,9;=>;7T
O;=>;T,oYd O;e=¢€;T,vYd O;vYd =; T

logical rules, connectives of type ¥ x ¥ — v

AAC.1: right =, : AAC.2: right =,: AAC.3: left =:
0,91; = Y; T, =19 0,91;€¢ => ;0,9 =9 060;=>09,;7T 92,0 ; =>; T
O; =;T,% =1 O;¢e¢ = €e; T, =19 O; =9 =; 7

AAC.4: right A: AAC.5,6: left A,
O;=> ;7T O; = 9 T,v 0,9 ;=>;7
05 =; T,91 LV, O; %A% =; T
for i = 0,1.
AAC.7,8: right Yi: AAC.9: left Y:
0;=>v9;7T 0,%;=>;7T 0,%;=>;7T
O; =;9%Y,T O; %Y =; 7T
fori=0,1.

TABLE 7. ILP, 28 additional mixed-to-conjectural rules



and its modal translation
oM. M = (e')M; ™

we simulate the semantical procedure of section 7.2.3 by inverting
the rules of ILP and then applying the translation ( )™ at each
step. We claim that this yields either a derivation of S in ILP or a
countermodel for S™ in S4.

We consider the construction of the refutation tree 7™ for SM as
it results through the map ( )™ from the inversion of the rules in
Tables 4, 5, 6 and 7. We classify our 74 logical rules in four groups:

1. pragmatic rules corresponding to invertible propositional rules

only (6 rules):

(1) A.5: right-N, A.6: left-Npy,, A.9: left-U, and

(13) C.6: right-A, C.9: right-Y ,, C.10: left-Y.

Inverting one among these six rules corresponds to inverting the
propositional rules for disjunction V and conjunction A, which
are valid and semantically invertible.

2. pragmatic rules corresponding to invertible propositional rules
together with O-left or O-right and possibly structural rules (21
rules):

(1) A.2 and CA.2: left negation;

(11) A4, ACA.2, CAA.8 and CCA.2: left D;
(111) ACA.8, CAA.9 and CCA.8: left U;
(iv) ACA.4 and CAA.5: left Npy;

(v) C.1and AC.1: right doubt;

(vi) C.4, ACC.1 and AAC.1: right >,;
(vii) ACC.3, CAC.4 and AAC.4: right A;
(viii) ACC.6 and CAC.7: right Y .

Inverting one among these twenty-one rules of the sequent cal-
culus ILP corresponds to inverting a O-left rule or $-right rule
and a propositional rule in the sequent calculus for S4, where
an implicit contraction rule may be performed. Since in S4 the
rules O-left and <-right are valid and semantically invertible, it
follows that all of these twenty-one rules are valid and semanti-
cally invertible with respect to the modal interpretation.

Since the semantic-tableaux procedure for ILP is an extension
of the semantic-tableaux procedure for S4 summarized in sec-
tion 7.2.3, notice that if an implicit contraction is performed
then the occurrence of the active formula in the upper sequent



must be marked, and it should not be considered again in the
current branches of the refutation tree until a rule the corre-
sponding to a O-right or <-left inference is performed. (Here
we ignore issues of optimization of the semantic-tableaux algo-
rithm).
3. pragmatic rules corresponding to O-right or $-left, together with
a propositional rule (17 rules):
(1) A.1 and CA.1: right negation;
(17) A.3, ACA.1 and CCA.1: right Dpy;
(ii1) ACA.83, CAA.} and CCA.3: right N
(iv) C.2 and AC.2: left doubt,
(v) C.5, ACC.2, CAC.3 and AAC.3: left »;
(vi) ACC.8, CAC.9 and AAC.9: left Y.

The rules in (7), (i7), (iv) and (v) correspond to a O-right or
O-left inference Z; following a propositional rule inference Z,,
while the rules in (i77) and (vi) correspond to an O-right or -
left inference Z; followed by a propositional rule Z,. In both
cases the active formula Z; is the principal formula of Zs.

The rules O-right and <-left in the sequent calculus for S4 are
valid and semantically invertible if the restriction on the pas-
sive formulas is satisfied. Therefore all our seventeen rules are
valid and invertible with respect to the modal translation if the
restrictions on the passive formulas are preserved in the transla-
tion. This is guaranteed by the use of focalized hyper-sequents:
indeed the translation SM of an ILP sequent has the form

oM o) = o)™ ,orM

where at most one formula among {<O(eM), O(¢)M} actually
occurs in SM.

4. pragmatic rules corresponding to propositional and modal rules
involving a disjunctive ramification (30 rules).
All the additive rules of the sequent calculus ILP are not se-
mantically invertible in the modal translation. Following the
semantic-tableaux procedure for S4 in 7.2.3, these cases are
dealt with (what we call) a disjunctive ramification: here the
construction of a counterexample requires a countermodel on
both branches, while only one valid premise suffice to infer the
conclusion by an implicit use of weakening.



(a) The rules A.7, 8: right-U, are similar to those in the first
group, but the focalization of the hyper-sequents requires a dis-
junctive ramification of the form

O; = 9; 7T O;=9;7

where the left branching inverts the rule A.7 and the right

branching the rule A.8. We proceed similarly for the pair of
rules C.7,8: left- A,.

(b) The following rules are similar to those in the third group,
CAA.1: right D, and CAA.2: right D,

but the semantic-tableaux procedure requires a disjunctive ram-

ification of the form

O;,v=,;7T O;=19;7

©O;=vD>d; T

The following pairs are handlead similarly:

(i) ACA.6,7 CAA.7,8 and CCA.6,7: right Uy;
(it) CCA.4,5: left N:, for and 1 = 0, 1;

(i31) CAC.1,2: right >;

(iv) ACC.4,5, CAC.5,6 and AAC.5,6: left Ag;
(v) AAC.7,8: right Y.

(c) Finally, there are rules that can be treated multiplicatively
and are semantically invertible only if the focalized part of the
sequent-conclusion is empty. Otherwise, we have two alterna-
tives: either we discard the focalized part and then invert the
rule in its multiplicative form, or we invert the rule in its addi-
tive form, thus erasing one of the immediate subformulas of the
principal formula. The two alternatives are preserved by the
disjunctive ramification.

We follow this procedure for the following pairs of rules:
(1) ACA.4: left Ny, ACA.S: left Ng;

(1) CAA.5: left Ny, CAA.6: left Ng;

(731) C.3: right >4, C.4: right »=;

(iv) ACC.6: right Y, ACC.7: right Y 4

(v) CAC.7: right Y, CAC.8: right Y ;



(vi) AAC.1: right >, AAC.2: right >,.

For instance, the first pair may occur in a disjunctive ramifica-
tion of the form

0,9;v=>,;7T 0,0;¢e = ¢€; 7T
0,9Nv;e = ;7T

In all cases the construction of the refutation tree carries over from
the S4 procedure. Further details are left to the reader.

PROPOSITION 1. The pragmatic connectives satisfy the following
significant equivalences:

(’191 D (192 D ’193)) = (('191 n ’192) D U3 ) ('Ul - (’UQ - ’U3)) = (('U1 A ’Uz) - ’U3)
(191 D (192 D ’U)) = (('191 n ’192) D ’U) (’U1 - (’Ug - ’19)) = (('U1 A ’Uz) - ’19)
(’U1 D (’U2 D ’19)) = (('U1 A ’Uz) D ’19) (191 - (192 - ’U)) = (('191 n ’192) - ’U)

(’Ul D (’U2 D) ’U3)) = ((’Ul A ’Uz) D ’U3) ('191 - ('192 - ’19)) = ((’191 n ’192) b ’19)

( D) (’191 n ’192)) = (19 D) ’191) n (’19 D ’192) ((’U - ’U1) Y (U - ’Ug)) = (’U - (’Ul Y ’Uz))
(D MWiN¥)=@wW>DH)N(vDP) (0 =v1) Y (¥ = v2)) = (3> (v1 Y 12))
(WD (W Av))=0Dv)N (WD) (V=) Y (v=132) = (v = (% Y )
( D (’Ul A Uz)) = (’U D Ul) n (’U D 'U2) ((’19 - ’191) Y (’19 - ’192)) = (19 - ('191 Y ’192))
((191 @] '192) D) ’19) = ('191 D 19) n ('192 D) '19)) ((Ul - U) Y (Uz - U)) = ((’Ul A ’U2) -
((191 U 192) D) 'U) = (191 D 'U) N (’192 D) 'U)) ((’Ul - ’l9) Y ('Uz - 19)) = ((Ul A U2) -
((’Ul Y U2) D) 19) = (U1 D 19) N (’U2 D) 19)) ((191 - U) Y (192 - U)) = ((’Ul ﬂUg) -
((U1 Y ’U2) D U) = (U1 D 19) N (’U2 D) ’U)) ((’191 - ’l9) Y (192 - 19)) = ((191 0192) -

§6. Sequent calculus for classical L. We briefly consider clas-
sical reasoning in the framework of formal pragmatics. Here we take
the principle of compositionality as an optimal criterion for the def-
inition of pragmatic rules of inference: namely, we are looking for
rules of inference which would allow us to infer more complex for-
mulas from simpler ones. Clearly in this way we formalize only a
constructive fragment of classical reasoning within £F.

Moreover, we want a sequent calculus where both the left and
right rules preserve validity and are semantically invertible in the S4
translation. A set of rules satisfying our requirements is given in
the following table 8: this is a fragment of classical reasoning for
which the soundness and completeness theorem with respect to the
semantic interpretation in S4 can be easily proved.



right assert-negation: left assert-negation

0; Ha =; T O;¢e = ¢€; 7T, Ha
;= r-a; T Foa,® 56 = €T
right hyp-negation: left hyp-negation
O,ra; =; 7Y O;= ra; Y
0;=>;7T, -« O; Ha =; T
right hyp-impl: left hyp-impl:
O,ras;e = €;T, #Ha— ), #HS O;=ra; T O;HB =; T
O;¢ = ¢; 7T, #Ha—P) 0; #Ha—p) =; T
right assert-and: left assert-and:
O;= ra; T O;=+r8;7T O,ra,rB;e = €; T
O; = r(anpg); T O, (aNp); e = ;T
right hyp-or: left hyp-or
O;¢ = ¢€¢; Ha, HB,T O; Ha =; T O; #B =; T
O;¢e = ¢€¢; #H(aVP),T O, H(aVp); =; T

TABLE 8. Classical sequent calculus

DEFINITION 6. (i) Consider the following grammar for radical for-
mulas:
P = p -N| PAP
N = p| P| NVN| P> N|
(ii) Consider the sublanguage of £” where elementary pragmatic
expressions are generated by the following rules:

¥ = +P v = HN.

Let us call such a language the basic classical language.

(iii) The basic classical sequent calculus is system of sequent calculus
for classical logic where sequents are restricted to elementary for-
mulas in the basic classical language, i.e., sequents have one of the

forms
FQyeony FQ 3 = F; HP, oo, Hy
FQyeoey FQ 3 HB =5 HPB1,. .., H,

where the «;, o are of the form P and the 3;, 8 are of the form IN.



THEOREM 2. The basic classical sequent calculus is sound and
complete with respect to the modal interpretation in S4.

To prove the theorem, notice that in the semantics of S4 there
is a countermodel to the translation of the sequent-conclusion if
and only if there is a countermodel to the translation of at least
one sequent-premise. For sequents consisting of elementary formu-
las whose radical is in the basic classical language, there is always
a rule in the basic sequent calculus which can be applied, until we
reach a sequent where all elementary formulas have atomic radicals.
Therefore we can apply the semantical procedure of section 7.2.3 to
the translations of the sequents.

Consider the following translation ( ):

(P)F =4 rp ifP = p
N =4 up ifN = p
(-N)? =4 ~ (NP) (PAP)Y =4 PINPP
( (ﬁpgf; =df AP(PP) p (NVN)P =4 NPyNP
P>NP = PP-N
where the conditions P := p and N := pin the first two rules refer

to the productions of the grammar generating the radical formulas.

THEOREM 3. Let S be a sequent consisting of elementary formulas
in the basic classical language. Then S is derivable in the classical
sequent calculus if and only if ST is derivable in the intuitionistic
sequent calculus.

§7. APPENDIX. Syntax of £ and semantics for K and
S4.

DEFINITION 7. (Syntaz) (i) The language £™ is built from an in-
finite set Atoms of propositional letters py, py ... using the propo-

sititonal connectives —, A, V, —; and the modal operators O and
O.

(ii) (Formation Rules) The expressions of the language £™ are given
by the following grammar, where p ranges over Atoms:

a:=p|l]l-alaralaVa|a—a|Oa| O
7.1. Frames and Kripke models.

DEFINITION 8. (Frames and Kripke models) (i) A frame is a pair
F = (W, C) where



e W is a set (of “possible worlds”);
e U C W x W is a relation (the “accessibility relation” between
possible worlds).

(ii) A Kripke model is a triple M = (W,C,IF) where F = (W,C) is
a frame and IFC W x Atoms is the forcing relation, usually written
in infix notation: w IF p means “p is true in the possible world w”
and w Iff p means “p s false in the possible world w”.

(iii) The relation I is extended to a relation IFC W x L™ according
to the following rules:

w lf L for all w e W;

w lF —a iff wlf o

wlk (aAp)=V iff wlk « and w IF §;

wlk (aVp)iff wlk aor wlk g;

w Ik (v — B) iff either w | o or w IF B;

w Ik O iff w' IF « for all w' € W such that w' C w;
w Ik Ca iff w' IF o for some w' € W such that w' C w.

A

If I' and A are sets of formulas in £™, then the sequent I' = A is
true inw € W iff w - (AT — V A).

(iv) We say that a formula « is valid in a model M = (W,C,IF),
in symbols Eu «, iff for every w € W we have w |- «. Similarly,
given a sequent S =T' = A we say that S is valid in M iff for every
w e W, S is true in w.

(v) We say that a formula « is valid in a frame F iff for every M
over F we have =, o. Similarly, a sequent S is valid in a frame F
iff it is valid in every Kripke model over F.

(vi) A formula « [a sequent S] is valid in the system K iff o [S] it is
valid in all Kripke models M.

(viii) A formula « [a sequent S] is valid in the system KD iff o [S]
is valid in all frames without terminal points, i.e., all frames where
Vw.Jw' . w' C w.

(viii) A formula « [a sequent S| is valid in the system S4 iff « [S] is
valid in all preordered frames, i.e., all frames where the accessibility
relation C is reflexive and transitive.

7.2. Sequent calculi G3c, K and S4. Gentzen-Kleene’s se-
quent calculus G3c for classical propositional logic (cfr.[25], p. 77)
is given by the following sequent-axioms and rules of inference:



identity axioms: falsity azioms:
p, = Ap 1, I'=A
logical rules
right —: left —:
a,'= A '=>Aa«a
T = A, Qo _|Ot,F = A
right A: left \:
F'=Aa T'sAp o, 8, = A
' Aanpg aNp,l = A
right —: left —:
Ia=6,A I'=>Aa B T=A
'=sa—-g6,A a—B,=A
right V: left V:
= Ao al=A [gIT=A
' AaVvp aVgTl=A

TABLE 9. Sequent Calculus G3c

DEFINITION 9. (i) Given a notion of semantic validity, a rule of the

Siy...,8S

sequent calculus = preserves validity if for every instance of

the rule, the sequent conclusion § is valid whenever the sequent-
premises Si, ..., S, are all valid; a rule is semantically invertible
if for every instance of the rule the sequent-premises are all valid
whenever the sequent-conclusion is valid.

PROPOSITION 2. (i) The rules of the system G3c preserve validity
and are semantically invertible for any modal semantics;
(i) the modal rules for the system K preserve validity and are se-
mantically invertible in the semantics of system K;
(#i) the modal rules for the system S4 preserve validity and are se-
mantically invertible in the semantics of the system S4;
(iv) the rules of weakening preserve validity but are not semantically
inwvertible:

I'= A, = A

'=s Ao a,l'= A



weakening: weakening:
O = Oa,CA ar, a = ©A

2,00 = Oa, OA, A 2,00, Oa = OA, A

modal rules for K

K-O-rule: K-C-rule:
F'=aA Fa= A
Oor' = Oa,CA ar, ¢a = ©A

additional rule for KD

D-rule:
I'=s A

or = ©A

modal rules for S4

O left. O right:
a,0a,T'= A or' = «,CA
Oa,I'= A Or' = Og,<CA

O left: <& right:
Ol a = ©A = A,%0,a
ar,oa = ©A = A a

TABLE 10. Systems K, KD and S4

7.2.1. Semantic Tableaux procedure for K. The “semantic tableaux’
procedure decides whether a sequent S is valid in the semantics for
K by building a refutation tree labelled with sequents and with S at
the root; if S is valid, then it return a derivation of S in the sequent
calculus for K; if S not valid, it returns a counterexample M which
refutes S.

DEFINITION 10. (o) Start with tree 7y consisting of the root S;
(n+ 1) for every leaf S’ of the tree 7, check whether the sequent S’
matches the conclusion of a rule of inference (in some given order,
e.g., checking the one-premised rules first). If yes, invert that rule;
otherwise, the leaf in question is a sequent of the form

p1,--- ,pkaDP,oal,"' aoam = Dﬂl,"' aDﬂnaOAaQI,"' y Qe (T)

)



and we have four cases:

(a) pi = g; for some 7 < k, j < £: in this case the sequent () is a
logical aziom and the procedure halts on this branch;

(b) p; = L for some i < k: in this case the sequent (1) is a falsity
aziom and the procedure halts on this branch;

(c) otherwise, if (1) is not an axiom and m = 0 = n, then the
procedure halts on this branch leaving it open;

(d) otherwise, (f) is not an axiom and m + n > 0: in this case the
procedures branches considering all possible sub-sequents Si,

. Sman of (1) which may be conclusions of a modal inference

and from which () may be derived by repeated applications of
weakening, as in the figure below.

Fa,= A I'=> ,Bj,A
KR KR
ar, Ca; = ©A oI = 0g;, CA
for all : <m for all j <n

P1y- - ,ph,DP,OOél,... 7<>am = Dﬁl;"' aD/BnaoAa(JIa"' »qe (T)

(L#pi#gqjforalli<h j</ and also n+m > 0)

TABLE 11. “Disjunctive branching”

DEFINITION 11. We define inductively what it means for a refu-
tation tree 7 to be closed (starting from the leaves):

e a logical axiom or a falsity axiom is closed;

e if 7 results from 7y by a one-premise inference rule, then 7 is
closed iff 7y is closed;

e if 7 results from 7y and 7 by a two-premises inference rule, then
T is closed iff 7y and 7; are both closed;

o if 7 results from 7, ..., 71, by a disjunctive ramification, then
7 is closed iff at least one 7; is closed, for i < m + n.

Fact 1: The semantic tableax procedure for K terminates.



Fact 2: If a refutation tree T with conclusion S is closed, then we
can obtain a derivation of S in the sequent calculus for K as follows:

e for each disjunctive ramification from a sequent of the form (}),
first we prune 7 by selecting a closed subtree 7; and then obtain
the sequent (}) by suitable applications of weakening.

Fact 3: If a refutation tree T with conclusion S is open, the we can
construct a Kripke model M which refutes S:

e for every two-premises logical rule, if the sequent-conclusion is
open, then we select one of the sequent-premises which is open.
In this way we eventually obtain a tree 7' where all branches

are open.

e Consider all fragments of branches /i, ..., 3, obtained from 7’
by removing every modal inference and every disjunctive rami-
fication:

(¢) identify f; with a possible world w;;

(1) put w; C w; if and only if the lowermost sequent of §; is
the premise of a KR occurring immediately above a disjunctive
ramification from a sequent S* of the form (f) and S* is the
uppermost sequent of 3;;

(731) let w; IF p; if and only if p; occurs in the antecedent of a
sequent S* of the form (f) and S* is the uppermost sequent of
Bi-

From facts 1-3 we obtain the following theorem:

THEOREM 4. The semantic tableaux procedure for K is sound and
complete with respect to the semantics of K.

7.2.2. Semantic Tableaux procedure for KD. Notice that we may
apply a D-rule even when OI" in the antecedent and ¢A in the con-
sequent are empty. Therefore on each branch we eventually have a
sequent of the form (f) such that above it only one D-rule is inverted
of the form

iD-rule
=

which could be iterated forever. Instead, the procedure stops on such
a branch, but in correspondence of such a D-rule we slightly modify
the construction in Fact 3 by introducing a possible world w; such
that w; C w; and such that w; | p for all atom p. This suffices to
satisfy the condition for KD frames, since in every coutermodel no
possible world will be terminal. It follows that



THEOREM 5. The semantic tableaux procedure for KD is sound
and complete with respect to the semantics of KD.

7.2.3. Semantic Tableaux procedure for S4. In the case of S4 two
modifications are required to the procedure to deal with the fact
that the above procedure inevitably enters infinte loops. The first
problem comes form the O-left and <-right rules, which could be
trivially iterated forever. It is enough to mark the modal formulas
which such a rule has been applied to and remove the mark only
when a O-right or O-left rule is inverted; in other words we may
take modal rules of the forms

a left: O right:
o, ', 0a,00 = A,0A O = a, CA
Oc,T',00 = A,OA Or = O, OA
& left: <& right:
Or,a = OA I,00 = A, a,0a,0A
ar, da = 0A [,00 = A, 00, QA

The second source of non-termination is, of course, the fact that an
inversion of the O-left and of the O-right rules generally increases
rather than reducing the logical complexity of the sequent. How-
ever, since the procedure satisfies the subformula property and there
is only a finite number of modal subformulas in any given sequent,
eventually on any branch we come to invert a O-right or <-left rule
with a sequent-conclusion S such that the same rule with the same
sequent-conclusion S had already inverted at some point below in
the refutation tree. Let Z and let Z' be the lower and the upper ap-
plications of the modal rule under consideration. At Z' the procedure
stops on that branch.

The construction in Fact 3 above is modified as follows: let §;
be the fragment of branch whose lowermost sequent is the sequent-
premise of Z; let w; be the corresponding possible world (defined as
in the case for K). If the procedure continued, above the sequent-
premise S’ of Z' there would be a copy of j3;; therefore we associate S’
with the possible world w;. If the sequent-conclusion of Z' branches
from a sequent of the form (1) which belongs to a fragment of branch
B; and if §; is associated with the possible world w;, then we put the
condition w; T w; on the frame of the countermodel. Details are left
to the reader.



This proves the following theorem:

THEOREM 6. The semantic tableaux procedure for S4 is sound and
complete with respect to the semantics of S4.
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