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FOREWORD TO THE FIFTH SOVIET
EDITION

The present edition was prepared by me after the death of A. Ya.
Khinchin, an eminent scientist and teacher. Many of the ideas and
results in the modern development of the theory of probability are
intimately connected with the name of Khinchin. The systematic
utilization of the methods of set theory and the theory of functions of
a real variable in the theory of probability, the construction of the
foundations of the theory of stochastic processes, the extensive develop-
ment of the theory of the summation of independent random variables,
and also the construction of a new approach to the problems of
statistical physics and the elegant system of its discussion—all this is
due to Aleksandr Yakovlevich Khinchin, He shares with S. N.
Bernshtein and A. N. Kolmogorov the honor of creating the Soviet
school of probability theory, which plays an outstanding role in
modern science. 1 consider myself fortunate to have been his student.

We wrote this booklet in the period of the victorious conclusion of
the Great Patriotic War; this was naturally reflected in the clementary
formulation of military problems which we used as examples. Now—
fifteen years after the victory—in days when the entire country is
covered with forests of new construction, it is natural to extend the
subject matter in the examples to illustrate the general thecretical
situation, It is for this reason therefore that, not changing the dis-
cussion and elementary character of the book, I have allowed myself
the privilege of replacing a large number of examples by new ones.
The same changes, with some negligible exceptions, were introduced
by me also in the French edition of our booklet (Paris, 1960),
Moscow, October 6, 1960 B. V. GNEDENKO



FOREWORD TO THE FIRST SOVIET
EDITION

Acquaintance with the theoretical foundations of 2 mathematical
science always enables one to apply more knowledgeably and actively
the results of this science in practice. Likewise, in the area of
probability theory, the situation is such that a large number of
leaders (and occasionally also rank and file workers) in the military,
in industry, agricultural economy, economy, ete,, whose mathematical
training is very limited, must deal with the practical applications of this
science.

The present little book has as its aim to acquaint, in the most
accessible form, the workers of this group with the fundamental
concepts of probability theory and the methods of probability cal-
culations. This booklet is completely accessible to all those who have
completed the 10-year secondary school [ages 717 in the USSR]; it
is almost entirely accessible to those who have completed the 7-year
school also [ages 7-14 in the USSR]. In almost all its parts, the book
is constructed on the basis of concrete, practical examples; in the
choice of these examples, however, we were guided primarily not by
their practical reality but by the illustrative value for the mastery of
the corresponding theoretical situations,

Moscow, January 7, 1945
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CHAPTER 1

THE PROBABILITY OF AN EVENT

§ 1. The concept of probability

When we say that under given conditions of firing a marksman
has 929/, success we mean that of 100 shots fired by him under certain
well-defined conditions (e.g., the same target at a prescribed distance,
the same firearm, and so on), there are approximately 92 successes
(and hence about 8 failures) on the average. Of course, there will not
be exactly 92 successful shots out of every 100; sometimes there will
be 91 or 90 of them, sometimes there will be 93 or 94; at times the
number of successes can even be noticeably less or noticeably greater
than 92; but on the average after many repetitions of shots under the
same conditions, this percentage of target hits will remain unchanged
as long as with the passage of time no essential changes take place in
the firing conditions. (Otherwise, for example, our marksman could
increase his mastery, and thereby increase the average percentage of
target hits to 95 or higher.) And experience shows that for such a
marksman, the number of successful shots per hundred will be close to
92; those hundreds, in which, for example, this number is less than 88
or greater than 96, although these will be encountered, will occur
comparatively rarely. The figure 92%, which serves as an index of
mastery of our marksman is usually very stable; i.e., the percentage of
target hity in the majority of shots (under the same conditions) will be
almost the same for a given marksman—deviating rather significantly
from its average value only in rare, exceptional cases.

Let us consider still another example. It is observed in a certain
factory that under given conditions on the average 1.69, of the
manufactured articles do not satisfy the standard and are rejected.
This means that in a collection, say, of 1000 articles which have not
yet been subjected to inspection, there will be approximately 16 which
are unusable. Sometimes, of course, the number of rejected articles
will be somewhat greater, sometimes somewhat less, but on the average
this number will be close to 16, and in the majority of collections of
1000 articles it will also be cloge to 16, Tt is understood that here also

we assume that the conditions of production are invariant; ie., the
3




4 Probability of an Epent [ch. 1]

organization of the technological Process, equipment, raw materials,
qualification of workers, and so on, remain the same.

Clearty, one could introduce any number of such examples. In all
these cases, we see that in homageneous, numerous operations per-
formed under prescribed conditions (repeated firings, the mass
production of articles, and so on), the percentage of a certain type of
event which is important to us (hitting the target, the fact that articles
do not meet a fixed standard, and so on) will almost always remain
approximately unchanged, only in rare cases deviating somewhat
significantly from some average figure. One can therefore say that
this average figure is a characteristic index of the given operation
(under prescribed, strictly established conditions). The percentage
of target hits describes for us the mastery of the marksman, the
percentage of rejects gives us an estimate of how much of the produc-
tion is of good quality. It is therefore self-evident that the knowledge
of such indices is very important in the most diverse arcas: in military
operations, technology, economy, physics, chemistry, and other fields 5
for it enables us not only to estimate the outcome of mass phenomena
which have already occurred but also to foresee the outcome of a mass
operation in the future,

H, under given firing conditions, a marksman hits the target on the
average 92 times out of 100 shots, we say that for this marksman and
under these conditions the frobability of hitting the target is 929, (or
92/100 or 0.92). If, under given conditions, on the average of every
1000 finished articles in a certain factory there are 16 rejects, then we
say that the probability of manufacturing a reject is 0.016 or 1.69%, for the
given production.

But in general what do we call the probability of an event in a given
mass operation? Tt is now not difficult to answer this guestion. A
mass operation always consists in the repetition of a large number of
identical individual operations (e.g., firing—of individual shots, mass
production—the manufacture of individual articles, and so on). We
are interested in a well-defined result of individual operations {hitting
the target in a single shot, the fact that an individual article is non-
standard, and so forth), and above all in the number of such results in
some mass operation (how many shots will hit the target, how many
articles will be rejected, and so on}.  The percentage or, in general,
the fractional part of such “successfiul” results In a given mass opera-
tion will be called the frobability of this result—this is of importance to
us. In the second example it would be more appropriate to say
“unsuccessful” results, However, in the theory of probability it is

- 5
[§ 1] Concept of Probability i
. . the
conventional to call those results which lead to the, reahzat‘mn 0 o
2 -
event which interests us in a problem “successful.” In this I(;or;;lﬁt
tion, one must always have in view that the question of téleﬁprod abi b 1y
, i i ned condi-
nly under precisely de
f an event (result) has meaning o ! ony
::}ions in which our mass operation proceeds. Every essentlg?;ama%t:iré
of these conditions causes, as a rule, a change in the probability o
event under consideration, e
If the mass operation is such that event 4 (i;)r cz?.r‘r:fle,l hlttl:;%iini
i a times in b individual ope
target) is observed on the average 1 ions
(shits)) then the probability of the event A under the given conditi
3

2 (or 100%/) We can therefore say that the probability of a
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“enceessfl” result of an individual operation 1s the. m.tz'a qflthe nw;ﬂm
of such < successful® results observed to the number of tfze.se Mdmdt-tg nfez‘}c:at “
constituting the prescribed mass operatior;; I.t is Sdf-ewl;::ﬁon ol
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ili t equals afb, then in every ¢ :
the probability of some even - oo o
indivi i i t can possibly occur more -
individual operations this even : 2 @ tines

imes—it is only on #he average that it ocours app

and less than ¢ times—it is only on . -
mately « times. And in the majority of many suc.h colie}ctloris (;
operations the number of occurrences of event 4 will be close to

] [ b i ber.
particularly, if b is a large num . o
Exampie 1. During the first quarter of the year, in a certain city
there were born:
145 boys and 135 girls in January
142 ,, ., 136 ,, ,, February
152, ,, 140 ,, ,, March.

. . N
What is the probability that a boy is born? The fractional part o
boy births is:

145 2 0.518 = 51.8%, in January
280

142 » 0.511 = 51.1Y%, in February
278 ~

152 2 0.520 = 52.0%, in March.

292
We see that the arithmetic average of the fractional ngzts f;);r tig
individual months is close to the nurln‘faer (?.516:5 : /(t,:31 > o
probability sought, under the given condl.tlons, is .approxn'n;;1 " }}lf is. L
or 51.6%,. This number is well known in demography (w
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science whose domain is the study of population dynamics} ; it appears
that the fractional part of boy births under usual conditons will not
deviate significantly from this number during various periods of time.

ExampLE 2, At the beginning of the last century there was dis~
covered a remarkable phenomenon, which received the name
Brownian movement (after the English botanist Brown who dis-
covered it), This phenomenon is that very fine particles of matter
suspended in a liquid are in chaotic motion which is executed without
any visible causes. For a long time the reason for this apparently
spontaneous motion could not be clarified, until the kinetic theory of
gases gave a simple and complete explanation: the movement of
particles suspended in a liquid results from the collision of molecules
of the liquid against these particles. The kinetic theory of gases
enables one to calculate the probability that in a given volume of
liquid there will not be a single particle of suspended matter, the
probability that there will be one, two, three, and so on , such particles,
A number of experiments were carried out with the purpose of verifying
the predications of the theory. .

We present the results of 518 observations, made by the Swedish
chemist Svedberg, of very fine particles of gold suspended in water.
Tt was found that in the portion of space under observation, not a
single particle was observed 112 times, 1 particle was observed 168
times, 2 particles 130 times, 3 particles 69 times, 4 particles 32 times,
3 particles 5 times, 6 particles once, and finally, 7 particles once.
"The fractional part of the observed number of particles equals

0 particles: _'15_1% 2z 0.216 4 particles: .'53T28 ~ 0.062
1 particle: ;Tﬁg 2 0.325 5 2 5—% =z 0.010
2 particles: é—?g 2 0,251 6 . % = 0.002
3 . % ~ 0.133 7 ” 5—;,—3 ~ 0.002,

The results of the ohservations, as it turned out, coincided very well
with the theoretically predicted probabilities.

Exampie 8. In a number of problems which are important in
practice, it is essential to know how frequently certain letters of the

[§1] Concept of Probability 7

Russian alphabet can occur in a text. Thus, for example,. it is
irrational to stock up the same number of all letters in forming a
typographical font, since certain letters in the text are encou'ntered
significantly more frequently than others. Therefore, one strives to
have a larger number of the letters which are encountered more
frequently. Investigations performed on literary te‘xts led to an
estimate of the frequency of occurrence of the letters in the Rus‘smn
alphabet, including the spaces between letters, which is s.ummarlz.ed
in the following table' {set up in the order of decreasing relative
frequency of occurrence).

Thus, the indicated investigations show that on the averag:c‘: 0&1090
spaces and letters selected at random in a text, the letter “d’” will
occur in two places, the letter “k”™ in twenty-eight places, the. letter
“0* in ninety places, and there will be spaces between letters in one
hundred and seventy-five places. These data are sufficiently valuable
mformation for forming stock fonts. .

In recent years similar investigations, no longer restricted to_ the
statistics of letters in Russian texts, are beginning to be used extensively
for the explanation of the peculiarities of the Russian language, and
also of the literary style of various authors.

Relntive frequency §PE5E | 0,000 | o072 | 0.062 | 0.062 | 0.053 | 0.053
kg‘:?i‘ve frequency 0.84-5 0.(1])40 0.(1)338 0.6135 0.(}3{28 0.3526 0.{13[25
lliitltaetrive frequency 0.6123 0.8’21 0.(’]{18 0.16116 0.(?16 OI.’(’)?:} 0.314
ﬁi&::rive frequency 0.513 0.312 0.]5110 0.309 0.:6}:)7 O.ﬁ)ﬁ O.I(ﬁ]ﬁ
-kztlt;gve frequency 0.(11-[04 0.3%)3 0.302 0.(%2

Similar data relative to telegraph communications can be used for
the creation of the most economical telegraph codes which would
allow one to transmit messages by means of a smaller number of signs
and, therefore, more rapidly. It has become clear that the telegraph
codes utilized now are not sufficiently economical.

1 This little table was adapted by the first-named author from the extra-
ordinarzigy ;Jo;:ular booklet Probakility and Information by A. M. Yaglom and 1. M.
Yaglom, 2nd ed., Fizmatgiz, 1960, .
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§ 2. Impossible and certain events

fch. 1]

The probability of an event, obviously, is always a positive number
or zero. It cannot be greater than unity because in the fraction by
which it is defined the numerator cannot be greater than the de-
nominator, for the number of “successful” operations cannot be
greater than the number of all operations undertaken,

We agree to denote the probability of the event 4 by P(4). What-
ever this event is, we have '

0<Pd) <L

The larger P(4) is, the more often the event 4 occurs.  For example,
the greater the probability that a marksman hits the target, the more
often does he have successful shots. If the probability of an event is
very small, then it occurs rarely; if P{4)=0, then the event either
never oceurs or it occurs very rarely, so that in practice one can con-
sider it to be impossible. In contrast, if P(A) is close to unity, then
in the fraction by which this probability is expressed, the numerator is
close to the denominator, i.e., the overwhelming majority of opera-

tions are “successful; if P{4)=1, then the event 4 occurs always or

almost always, so that in practice one can assume it to be, as one says,
“certain,” i.e., one can assume that its occurrence is eertain, If
P(A4)=1/2, then the event 4 occurs in approximately half of all cases;
this means that “successful” operations are observed approximately as
often as “unsuccessful” ones, If P(4)>1/2, then the event 4 occurs
more frequently than it does not oceur; for P(4) < 1/2, we have the
reverse phenomenon,

How small must the probability of an event he before we can assume
it to be, in practice, impossible? It is impossible to give a general
answer to this question because everything depends on how important
the event is with which we are dealing. Thus, 0.01 is a small number.
If we have a supply of shells and 0.0 is the probability that a
shell will not explode upon falling, then this means that approxi-
mately 1% of the shots will be ineffective. One can reconcile oneself
to this! But if we have a parachute and the probability that in a
Jump it will not open is 0.01, then it is of course impossible to reconcile
oneself with this under any circumstances, because this means that in
one out of a hundred jumps the valuable life of a parachutist will bé
lost. These examples show that in every individual problem we must
establish in advance, on the basis of practical considerations, how small
the probability of an event ought to be in order that we can consider

[§2] Impossible and Certain Events 9

to be impossible and of insignificant consequence to the undertaking

§ 3. Problem

.P.ROBLEM. One marksman has 809 as his average of target hits

-"ar:id another (under the same firing conditions) has 70%,. Find th'c
.f)f"(')bability of destroying the target if both marksmar} shoot at it
imultaneously. The target is assumed to be destroyed if at least one

3 o bullets hits it.

.Of;‘?ritt;’ethod of solution. We assume that 100 doub}e shots are ﬁre;!.
The target will be destroyed by the first rnar.ksma? in a}?prommate y
80 of them. There remain about 20 shots in which this marksman
inisses. Since the second marksman destroys the target on the average
70 times in 100 shots and hence 7 times in 10 shots, we can expect that
it these 20 shots in which the first marksman mnisses, the sccorfd
succeeds in destroying the target approximately 14 times. T:hus, in
all 100 shots, the target turns out to be dc.:stroyed approximately
.80+ 14 =94 times. The probability of destroying the target under the
‘simultaneous fire of both marksmen is therefore equal to 949%, or 0.94,
Second method of solution. We again assume that 100 c.louble shots
‘are fired. We have already seen that in this conmection the first
‘marksman has approximately 20 misses. Since the second marksr‘nan
‘has approximately 30 misses per hundred shots and he.nce S.miss;:s
"pcr ten shots, one can expect that among those 20 shots in wh.lch the
first marksman misses, there will be approximately 6 in V'Vhlch tl}e
cond will also miss. In each of these 6 shots, the target will remain
ndestroyed and in each of the remaining 94 shots at least one of the
‘narksmen will shoot successfully and hence the target will ‘be de-
stroyed. We again arrive at the result that for a clioublc ﬁrlng the
‘target will be destroyed in approximately 94 cases in 100; i.e., that
‘the probability of destruction is 949, or (?.94—. .

* The problem we considered is very simple. But, nonctheiess‘, %t
already leads us to a very important result: there are cases V.vhen it is
“useful to know how to find, knowing the probabilities of certain events,
‘the probabilities of other, more complicated events. II.I fact, tht;re
‘are very many cases like this not only in military operations but also
‘in every science and in every practical activity where we encounter
mass phenomena. o
= Of course, it would be very inconvenient to search for the particular
‘method of solution for every new problem of this sort encountered.
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Science always endeavors to form general rules, the knowledge of
which would readily permit one to solve mechanically or almost
mechanically individual problems which are similar to one another.
In the area of mass phenomena, the science which takes upon itself
the formulation of such general rules is called the theory of probability.
The first principles of this science will be given in this book.

The theory of probability is one chapter of mathematical science,
like arithmetic or geometry. Therefore, its path is the path of precise.
reasoning, and formulas, tables, diagrams, and so on, serve as its tools.!

CHAPTER 2

RULE FOR THE ADDITION OF
PROBABILITIES

§ 4. Derivation of the rule for the addition of probabilities

Fhe simplest and most important rule used in the calculation of
probabilities is the addition rule, which we shall now consider,

In firing at a target, depicted in Fig, I, for every marksman standing
at a prescribed distance, there is a certain probability of hitting each
of the regions 1, 2, 3, 4, 5, 6. Suppose that for some marksman the
probability of hitting region 1 is 0.24 and that the probability of hitting
region 2 is 0.17.  As we already know, this means that of one hundred
bullets shot by this marksman, 24 bullets (on the average) hit region 1
and 17 bullets hit region 2.

Fic, 1

Suppose that, in some competition, a shot is adjudged ““excep-
tional”* if the bullet falls into region 1 and “good” if it falls into region
2. 'What is the probability that the marksman’s shot is either good or
exceptional ? '

It is easy to answer this question. Of every hundred bullets shot
by the marksman, approximately 24 fall into region ! and approxi-
mately 17 into region 2. This means that of every hundred bullets

11
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there will be approximately 24+17=41 which will fall into either
region 1 or into region 2. The probability sought therefore equals
0.41=0.244-0.17. Consequently, the probability that the shot will be
either exceptional or good equals the sum of the probabilities of the exceptional
and good shots. ’

Let us consider still another example. A passenger is waiting for
trolley No. 26 or No. 16 at a trolley stop at which trolleys with one of
the four route Nos, 16, 22, 26, and 31 stop.  Assuming that the trolleys
of all routes appear on the average cqually frequently, find the
probability that the first trolley appearing at the stop will have the
route needed by the passenger.

Clearly, the probability that trolley No. 16 will be the first to
appear at the stop equals 1/4; the probability that trolley No. 26 will
be the first is the same. So, the probability sought is obviously equal
to 1/2. But

1/2 = 1/44-1/4;
therefore we can say that the probability that trolley No. 16 or tfolley
No. 26 will appear first equals the sum of the probabilities of the
appearance of trolley No. 16 and trolley No. 26.
We can now carry out the general discussion. In the performance

'_:’f a certain mass operation, it was established that in every series of &
individual operations on the average

a certain result 4, is observed ¢, times

2 EH Az EH a4y 5

and so forth. In other words,

the probability of the event 4, equals a, /b

2% 2] 3] Az EE 42/ b

33 » » AB b1} aa/ b
and 5o on. How great is the probability that, in some individual
operation, one of the results 4;, 4,, 4, . .. occurs, it being immaterial

which one?

The event of interest can be called “A; or A; or Ay or ....7?
(Here and in other similar cases the ellipsis dots [...] denote “and
50 forth‘.”) In a series of & operations, this event occurs a, +a,+ag
+ ... times; this means that the probability sought equals

Gtaytagt... a4 ay a,
P %T+?+?+...

[§ 4] Derivation of Rule for Addition 13

which can be written as the following formula:
P{d,ordgor Agor ...) = P(A)+PA)+ P4z} +-. ..

In this connection, In our examples as well as in our general
discussion, we always assume that any two of the results considered
(for instance, A; and A,) are mutually incompatible, i.e., they cannot be
observed together in the same individual operation, For instance,
the trolley arriving cannot simultaneously be from a needed and not-
needed route—it either satisfies the requirement of the passenger or it
does not. This assumption concerning the mutual incompatibility of
the individual results is very important, for without it the addition
rule becomes invalid and its application leads to serious errors. We
consider, for example, the problem we solved at the end of the pre-
ceding section (see page 9). There we even found the probability
that for a double shot either one or the other shot will hit the target,
in which connection for the first marksman the probability of hitting
the target equals 0.8 and for the second 0.7, If we wished to apply
the addition rule to the solution of this problem, then we would at
once have found that the probability sought equals 0.84+0.7=1.5
which is manifestly absurd since we already know that the probability
of an event cannot be greater than unity. We arrived at this invalid
and meaningless answer because we applied the addition law to a
case where one must not apply it: the two results we are dealing with
in this problem are mufually compaiible, inasmuch as it is entirely
possible that both marksmen destroy the target with the same double

- shot. A significant portion of errors which novices make in the

computation of probabilities is due in fact to such an invalid applica-
tion of the addition rule. It is therefore necessary to guard carefully
against this error and verify in every application of the addition rule
whether in fact, among those events to which we wish to apply it,
every pair is mutually incompatible.

We can now give a general formulation of the addition rule.

Apprrion RULE. The probability of occurrence in a ceriain operation of
any one of the results Ay, Ay, . .., A, (it being immaiterial which one) is equal
to the sum of the probabilities of these results, provided that every pair of them
is mutually incompatible.

§ 5. Complete system of events

In the Third (Soviet) Government Loan (TSGL) for the re-
construction and development of the national economy, in the course
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of the twenty-year period of its operation, a third of the bonds win
and the remaining two-thirds are drawn in a lottery and are paid off
at the nominal rate, In other words, for this loan each bond has a
probability equal to 1/3 of winning and a probability equal to 2 /3 of
being drawn in a lottery. Winning and being drawn in a lottery are
complementary events; i.e., they are two events such that one and only
one of them must necessarily occur for every bond. The sum of their
probabilities is '
1 2
§+'3" = 1:
and this is not accidental, In general, if A; and 4, are two com-
plementary events and if in a series of & operations the event 4,
occurs a; times and the event 4, occurs a4y times, then, obviously,
a3+a,=5h. But

Pl) = Py =3

50 that

B 4 ataey
P{4,)+P(4y) = 3T =5 =1
This same result can alko be obtained from the addition rule: gince
complementary events are mutually incompatible, we have

P(4))+P(4;) = P(4; or 4,).

But the event “4; or 4," is a certain event since it follows from the
definition of complementary events that it certainly fmust occur;
therefore, its probability equals unity and we again obtain

PlA)+P(4,) = 1.
The sum of the probabilities of two complementary ez}en&'eguab uﬁi’ty.

This rule admits of a very important generalization which can be
proved by the same method. Suppose we have n events 4,, A, ..,
4, (where nis an arbitrary positive integer) such that in each individual
operation one and only one of these events must necessarily occur; we
agree to call such a group of events a complete system.  In particular,
every pair of complementary events, obviously, constitutes a complete
system.

The sum of the probabilities of events constituting a complete system is equal
fo unity.

- [85] Complete System of Events 15

In fact, according to the definition of a complete system, any two
events in this system are mutually incompatible, so that the addition

rule yields

PA)+P(d))+ ... +P(d,) = P{4, or Ay or ... or 4,).
But the right member of this equality is the probability of a certain
event and it therefore equals unity; thus, for a complete system, we

have
PlA)+P(A)+. .. +P(4,) = 1,

which was to be proved.

Examprr 1. Of every 100 target shots (target depicted in Fig. 1
on page 11), a marksman has on the average

44 hits in region 1
30 » 23 2
15 5 » 3
6 » L 4’
4 3 J-’ 5
1 hit p O

(44+30+1546+4+1=100). ‘Thesesix firing results obviously con-
stitute a complete system of events. Their probabilities are equal to

0.44, 0.30, 0.15, 0.06, 0.04, 0.0l,

respectively; we have
0.4440.304+0.15+0.06 +0.04 +0.01 = 1,

Shots falling corﬁpletely or partially into the region 6 do not hi.t the
target at all and cannot be considered; this does r.lot, howevex:, h]l"ldﬁ‘:r
finding the probability of falling into this region, ff)tl' .Whlch it is
sufficient to subtract from unity the sum of the probabilities of falling
into all the other regions.

ExaMpLE 2. Statistics show that at a certain weaving factory, of
every hundred stoppages of a weaving machine requiring the subse-
quent work of the weaver, on the average, :

22 occur due to a break in the warp thread
31 23 » 23 bE WOOf 33
27 2 change in the shuttle

3 occur due to  breakage of the shuttlecock

and the remaining stoppages of the machine are due to other reasons.
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We see that besides other reasons for the stoppage of the machine,
there are four definite reasons whose probabilities are equal to

0.22, 031, 0.27, 0.03,
respectively.  The sum of these probabilities equals 0.83. Together
with the other reasons, the reasons pointed out for stoppage of the
machine constitute a complete system of events; therefore, the
probability of stoppage of the machine from other causes equals

1-0.83 = 0.17.

§ 6. Examples

We frequently successfully base the so-called a priori, i.e., pre-
trial, calculation of probabilitics on the theorem concerning a com-
plete system of events which we have established. Suppose, for
example, that we are studying the falling of cosmic particles into a

7 zZ 5
4 & &
Fic, 2

small area of rectangular form (see Fig, 2)—this area being sub-
divided into the 6 equal squares numbered in the figure. The sub-
areas of interest find themselves under the same conditions and there-
fore there is no basis for assuming that particles will fall into any one
of these six squares more often than another. We therefore assume
that on the average particles will fall into each of the six squares
equally frequently, i.e., that the probabilities p,, ps, pg, pu Ps> s oF
falling into these squares are equal. If we assume that we are
interested omly in particles which fall into this area, then it will
follow from this that each of the numbers p equals 1/6, inasmuch as
these numbers are equal and their sum equals unity by virtue of
the theorem we proved above. Of course this result, which is
based on a number of assumptions, requires experimental verifica-
tion for its affirmation. We have, however, become so accustomed in
such cases to obtaining excellent agreement between our theoretical
assumptions and their experimental verifications that we can depend
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" on the theoretically deduced probabilities for all practical purposes.
 We usually say in such cases that the given operation can have n

distinct, mutvally equi-probable results (thus, in our example of cosmic
particles falling into an area, depicted in Fig. 2, the result is that the
particle falls into one of the six squares). The probability of each of
these n results is equal in this case to 1/n.  The importance of this
type of a priori reasoning is that in many cases it enables us to foresee
the probability of an event under conditions where its determination
by repetitive operations is either absolutely impossible or extremely
difficult.

Examprel. In the case of government loan bonds, the numbers of
a series are usually expressed by five-digit numbers, Suppose we
wish to find the probability that the last digit, taken at random from
a winning series, equals 7 (as, for example, in the series No. 59607).
In accordance with our definition of probability, we ought to con-
sider, for this purpose, a long series of lottery tables and calculate
how many winning series have numbers ending in the digit 7; the
ratio of this number 1o the total number of winning series will then be
the probability sought. HHowever, we have every reason to assume
that any one of the ten digits 0, 1, 2, 3,4, 5, 6, 7, 8, 9 has as much of
a chance to appear in the last place in a number of the winning series
as any other. 'Therefore, without any hesitation, we make the assump-
tion that the probability sought equals 0.1. The reader can easily
verify the legitimacy of this theoretical “foresight™: carry out all
necessary calculations within the framework of any one lottery table
and verify that in reality each of the 10 digits will appear in the last
place in approximately 1/10 of all cases.

ExampLe 2. A telephone line connecting two points A and B at a
distance of 2 km. broke at an unknown spot. 'What is the probability
that it broke no farther than 450 m. from the point A? Mentally
subdividing the entire line into individual meters, we can assume, by
virtue of the actual homogeneity of all these parts, that the probability
of breakage is the same for every meter. From this, similar to the
preceding, we easily find that the required probability equals

450

5000 = 0,225,




CHAPTER 3

CONDITIONAL PROBABILITIES AND THE
MULTIPLICATION RULE

§ 7. The concept of conditional probability. _ .

Electric light bulbs are manufactured at two plants—the first
plant furnishes 709, and the second 30%, of all required production
of bulbs. At the first plant, among every 100 bulbs 83 are on the
average standard,? whereas only 63 per hundred are standard at the
second plant,

It can easily be computed from these data that on the average each
set of 100 electric light bulbs purchased by a consumer will contain 77
standard bulbs and, consequently, the probability of buying a standard
bulb equals 0.77.2 But we shall now assume that we have made it
clear that the bulbs on stock in a store were manufactured at the first
plant. Then the probability that the bulb is standard will change—it
will equal 83/100=0.83.

The example just considered shows that the addition to the general
conditions under which an operation takes place (in our case this is
the purchase of the bulbs) of some essentially new condition (in our
example this is knowledge of the fact that the bulb was produced by
one or the other of the plants) can change the probability of some result
of an individual operation. But this is understandable; for the very
definition of the concept of probability requires that the totality of
conditions under which a given mass operation occurs be precisely
defined. By adding any new condition to this collection of conditions
we, generally speaking, change this collection in an essential way.
Our mass operation takes place after this addition under new con-
ditions; in reality, this is already another operation, and therefore the
probability of some result in it will no longer be the same as that under
the initial conditions,

We thus have two distinct probabilities of the same event—i.e., the

* In this regard, we call 2 bulb “standard” (i.c., it meets certain standard
requirements) if it is capable of functioning no less than 1200 hours; otherwise,
the bulb will be called substandard.

2 In fact, we have 0.83-70+0.6%.30=77.
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... purchase of a standard bulb—but these probabilities are calculated
» under different conditions. As long as we do not set down an
. additional condition (e.g., not considering where the bulb was
- manufactured), we take the unconditional probability of purchasing a

standard bulb as equal to 0.77; but upon placing an additional
condition (that the bulb was manufactured in the first plant) we
obtain the conditional probability 0.83, which differs somewhat from the
preceding. If we denote by A the event of purchasing a standard
bulb and by B the event that it was manufactured in the first plant,
then we usually denote by P(4) the unconditional probability of
event 4 and by Pp(4) the probability of the same event under the
condition that event B has occurred, i.e., that the bulb was mann-
factured by the first plant. We thus have P(4)=0.77, Pr(4)=0.83.

Since one can discuss the probability of a result of a given operation
only under certain precisely defined conditions, every probability is,
strictly speaking, a conditional probability ; unconditional probabilities
cannot exist in the literal sense of this word. In the majority of
concrete problems, however, the situation is such that at the basis of
all operations considered in a given problem there lies some well-
defined set of conditions X which are assumed satisfied for all opera-
tions. If in the calculation of some probability no other conditions
except the set K are assumed, then we shall call such a probability
unconditional; the probability calculated under the assumption that

' further precisely prescribed conditions, besides the set of conditions K

common to all operations, are satisfied will be called conditional.

Thus, in our example, we assume, of course, that the manufacture
of a bulb occurs under certain well-defined conditions which remain
the same for all bulbs which are placed on sale. This assumption is
so unavoidable and self-evident that in the formulation of problems
we did not even find it necessary to mention it. If we do not place
any additional conditions on the given bulb, then the probability of
some result in the testing of the bulb will be called unconditional.
But if, over and above these conditions, we make still other, additional
requirements, then the probabilities computed under these require-
ments will now be conditional.

Examprr I. In the problem we described at the beginning of the
present section, the probability that the bulb was manufactured by
the second plant obviously equals 0.3. It is established that the bulb
is of standard quality. After this observation, what is the probability
that this bulb was manufactured at the second plant?

Among every 1000 bulbs put on the market, on the average 770
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bulbs are of standard quality—and of this number 581 bulbs came
from the first plant and 189 bulbs came from the second.! After
making this observation, the probability of issuing a bulb by the second
plant therefore becomes 189/7700.245. This is the conditional
probability of issuing a bulb by the second plant, calculated under the
assumption that the given bulb is standard. Using our previous
notation, we can write P(B) =0.3 and P,(B) x0.245, where the event
B denotes the nonoccurrence of the event B,

ExamrLE 2. Observations over a period of many years carried out
in a certain region showed that among 100,000 children who have
attained the age of 9, on the average 82,277 live to 40 and 37,977 live
to 70. Find the probability that a person who attains the age 40 will
also live to 70. , '

Since on the average 37,977 of the 82,277 forty-year-olds live to 70,
the probability that a person aged 40 will live to 70 equals 37,977/
82,277 = 0.46. :

If we denote by A4 the first event (that a nine-year-old child lives to
70) and by B the second event (that this child attains the age 40), then
obviously, we have P{4)~0.37,977 220.38 and P;(4) ~0.46.

§ 8. Derivation of the rule for the multiplication of prob-
abilities

We now return to the first example in the preceding section.
Among every 1000 bulbs placed on the market, on the average 300
were manufactured at the second plant, and among these 300 bulbs
on the average 189 are of standard quality. We deduce from this
that the probability that the bulb was manufactured at the second
plant (i.e., event B) equals P(B) =300/1000=0.3 and the probability
that it is of standard quality, under the condition that it was manu-
factured at the second plant, equals Pg(4) =189/300=0.63. '

Since, out of every 1000 bulbs, 189 were manufactured at the

second plant and are at the same time of standard quality, the
probability of the simultaneous occurrence of the events 4 and B
equals

189 300 189
T000 — TO00 300

! This can easily be calculated as follows, Among every 1000 bulbs, on the
average 700 were manufactured at the first plant, and among every 100 bulbs
from the first plant on the average 83 are of standard quality. Consequently,
among 700 bulbs from the first plant, on the average 7-83=581 will be of
standard quality, The remaining 189 bulbs of standard quality were produced
at the second plant,

P{d and B) = = P(B)-P5(4). .
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This “multiplication rule’ can also be easily extended to the general
case. Suppose in every sequence of # operations, the result B occurs
on the average m times, and that in every sequence of m such operations
in which the result B is observed, the result 4 occurs { times. Then,
in every sequence of n operations, the simultaneous occurrence of the
events B and A will be observed on the average [ times. Thus,

P(B) = g Py(d) = :le

m !

P(AandB):%:n =

= P(B)-Py(4). (&

MuvrtipLicarioN RuLk.  The probability of the simultaneous eccrrrence

“of twe events equals the product of the probability of the first event with the

conditional probability of the second, computed under the assumption that the
Jrrst event has occurred.

It is understood that we can call either of the two given events the
first so that on an equal basis with formula (1) we can also write

P{4 and B) = P(A4)-P4(B), (1"
froim which we obtain the important relation:

P(A)-Py(B) = P(B)-Pp(4). (2)
In our example, we had

= 189 77 -

and this shows that formula (1') is satisfied.

- ExamprLE. At a certain enterprise, 969, of the articles are judged
to be usable (event 4); out of every hundred usable articles, on the
average 75 turn out to be of the first sort (event B). Find the
probability that an article manufactured at this enterprise is of the first
sort.

We seek P(4 and B) since, in order that an article be of the first
sort, it is necessary that it be usable {event A) and of the first sort
{event B).

By virtue of the conditions of the problem, P{4)=0.96 and P,(B)
=0.75. Therefore, on the basis of formula (1°), P(4 and B)=0.96
-0.75=0.72.

§ 9. Independent events

Twao skeins of yarn, manufactured on different machines, were
tested for strength. It turned out that a sample of prescribed length
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taken from the first skein held a definite standard load with probability
0.84 and that from the second skein with probability 0.78.' Find
the probability that two samples of yarn, taken from two different
skeins, are both capable of supporting the standard load.

We denote by 4 the event that the sample taken from the first
skein supports the standard load and by B the analogous event for the
sample from the second skein. Since we are seeking P(4 and B), we
apply the multiplication rule:

P(4d and B) = P(4)-P,(B).

Here we obviously have P(4) =0.84; but what is P, (B)? Accord-
ing to the gencral definition of conditional probabilities, this is the
probability that the sample of yarn from the second skein will support
the standard load if the sample from the first skein supported such a
load.  But the probability of event B does not depend on whether or
not event A has occurred, for these tests can be carried out simul-
tancously and the yarn samples are chosen from completely un-
related skeins, manufactured on different machines. In practice,
this means that the percentage of trials in which the varn from the
second skein supports the standard load does not depend on the
strength of the sample from the first skein; i.e.,

P,(B) = P(B) = 0.78.
It follows from this that _
P(4 and B) = P{4)-P(B) = 0.84-0.78 = 0.6552.

"The peculiarity which distinguishes this example from the preceding
ones consists, as we see, in that here the probability of the result B is
not changed by the fact that to the general conditions we add the
requirement that the event 4 occur.  In other words, the conditional
probability P, {B) equals the unconditional probability P(B), In this
case we will say, briefly, that the svent B does not depend on the event A.

It can easily be verified that if B does not depend on 4, then 4 also
does not depend on B. In fact, if P,(B) =P(B), then by virtue of
formula (2) Py(4)=P(A) and this means that the event A4 does not
depend on the event B. Thus, the independence of two events is a
mutual (or dual) property. We see that for mutually independent
events, the multiplication rule has a particularly simple form:

P(4 and B) = P(4)-P(B). (3

! If the standard load equals, say, 460 grams, then this means the following:

among 100 samples taken from the first skein, 84 samples on the average
support such  load and 16 do not support it and break. :
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As in every application of the addition rule it is necessary to establish
in advance the mutual incompatibility of the given events, so in every
application of rule (3) it is necessary to verify that the events 4 and £
are mutually independent, Disregard for these instructions leads to
errors. Ifthe events 4 and B are mutually dependent, then formula
(%) is not valid and must be replaced by the more general formula (1)
or 1'}).

Rule (3) is easily generalized to the case of seeking the probability of
the occurrence of not two, but of three or more mutually independent
events. Suppose, for example, that we have three mutually inde-
pendent events A, B, C {this means that the probability of any one
of them does not depend on the occurrence or the nonoccurrence of
the other two events), Since the events 4, B and € are mutually
independent, we have, by rule (3):

P(4 and B and C) = P(4 and B) -P{C).

Now if we substitute here for P{4 and B) the expression for this
probability from formula (3}, we find:

P(A and B and C) = P(4)-P(B) - P(C). )

Clearly, such a rule holds in the case when the set under consideration
contains an arbitrary number of events as long as these events are
mutually independent (i.e., the probability of each of them does not
depend on the occurrence or nonoccurrence of the remaining events}.
The probability of the simultaneous occurrence of any number of mutually
independent events equals the product of the frobabilities of these events,

Examrir I, A worker operates three machines. The probability
that for the duration of one hour a machine does not require the
attention of the worker equals (1.9 for the first machine, 0.8 for the
second, and 0.85 for the third. Find the probability that for the dura-
tion of an hour none of the machines requires the worker’s attention.

Assuming that the machines work independently of each other, we
find, by formula (4), that the probability sought is

0.9.0.8.0.85 = 0.612.

ExampLi 2. Under the conditions of Example 1, find the prob-
ability that at least one of the three machines does not require the
attention of the worker for the duration of one hour.

In this problem, we are dealing with a probability of the form
P(A or B or () and, therefore, we of course think first of all of the
addition rule. However, we soonrealize that thisruleis not applicable
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in the present case inasmuch as any two of the three events considered
can occur simultaneously; for nothing hinders any two machines
from working without being given attention for the duration of the
same hour. Moreover, independently of this line of reasoning, we at
once see that the sum of the three given probabilities is significantly
larger than unity and hence we cannot compute the probability in this
way.

To solve the problem as stated, we note that the probability that a
machine requires the attention of the worker equals 0.1 for the first
machine, 0.2 for the second, and 0.15 for the third. Since these
three events are mutually independent, the probability that all these
events are realized equals

(.1.0.2.0.15 = 0.0003,

according to rule (4). But the events “all three machines require
attention” and ‘““at least one of the three machines operates without
receiving attention” clearly represent a pair of complementary events,
Therefore, the sim of their probabilities equals unity and, conse-
quently, the probability sought equals 1—0.0003=0.9997. When
the probability of an event is as close to unity as this, then this event
can in practice be assumed to be certain. This means that almost
always, in the course of an hour, at least one of the three machines
will operate without receiving attention.

Exampre 3. Under certain definite conditions, the probability of
destroying an enemy’s plane with a rifle shot equals 0,004, Find the
probability of destroying an enemy plane when 250 rifles are fired
simultaneously.

For each shot, the probability is 1 —0.004 =0.996 that the plane
will not be downed. The probability that it will not be downed by
all 250 shots equals, according to the multiplication rule for inde-
pendent events, the product of 250 factors cach of which equals 0.996,
Le., it is equal to (0.996)25°, And the probability that at least one
of the 250shots proves to be sufficient for downing the plane is therefore
equal to

1—{0.996)250, .
A detailed calculation, which will not be carried out here, shows that
this number is approximately equal to 5 /8. Thus, although the
probability of downing an enemy plane by one rifle shot is negligibly
small-—0.004—with the simultaneous firing from 2 large number of
rifles, the probability of the desired result becomes very significant. -
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The line of reasoning which we utilized in the last two examples can
easily be generalized and leads to an important general rule.  In both
cases, we were dealing with the probability P{4; or dyor 45 ... or
A} of the occurrence of at least one of several mutually independent
events A, 4,5, ..., 4,. Ifwe denote by A, the event that 4, will not
occur, then the events 4, and 4, are complementary, so that

P(Ar:)“i‘P(A‘rc) = L

On the other hand, the events 4,, A, .. ., 4, are obviously mutuaily
independent so that
P{4d,and 4, and ... and 4,) = P{4;)-P(4,) ... P(A-"f)
— =P TI-P)] ..
[1—-P(4,}].

Finally, the events (4, or Azor . .. or 4,) and (4; and Ayand ... and
A,) obviously are complementary; that is, one of the following:
either at least one of the events A, occurs or all the events A, occur.
Therefore,

P{A or Ayor ... or 4,) = 1-P(4d, and 4, and ... and 4,)
= 1=[1=P{A)]-[1-P(45)] ... I-P(4)}. (5

This important formula, which enables one to calculate the probability
of the occurrence of af least one of the events A,, A,, . . ., A, on the basis
of the given probabilities of these events, is valid if, and only if, these
events are mutually independent, In the particular case when all
the events 4, have the same probability # (as was the case in Example
3, above) we have:

Pldordgor ... or 4,) = 1—(1-—p)" (6)

Exampiz 4. An instrument part is being lathed in the form of a
rectangular paralielepiped. The part is considered usable if the
fength of each of its edges deviates by no more than 0.01 mm. from
prescribed dimensions. If the probability of deviations exceeding
0.01 mm. is

£ = 0.08 along the length of the parallelepiped
=012 width  ,, »
pa = (.10 " height |, u

find the probability P that the part is not usable,
For the part to be unusable, it is necessary that at least in one of the
three directions the deviation from the prescribed dimension exceed
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0.01 mm. Since these three events can usually be assumed mutually
independent (because they are basically due to different causes), fo
solve the problem we can apply formula (5); this yields

P=1-{1—p) (1=pa) - (1—p5) = 0.27. -
Consequently, we can assume that of every 100 parts approximately
73 on the average turn out to be usable,

CHAPTER 4

CONSEQUENCES OF THE ADDITION AND
MULTIPLICATION RULES

§ 10. Derivation of certain inegualities

We turn again to the electric light bulb example of the preceding
chapter (see page 18). We introduce the following notation for
events:

A—the bulb is of standard quality

A— the bulb is of substandard quality

B-—the bulb was manufactured at the first plant
B—the bulb was manufactured at the second plant.

Obviously, evenis 4 and A constitute a pair of complementary
events; the events B and B form a pair of the same sort.

If the bulb is of standard quality (4), then either it was manu-
factured by the first plant (4 and B) or by the second (4 and B).
Since the last two events, evidently, are incompatible with one
another, we have, according to the addition rule

P(4) = P(A and B)+P(A4 and B). (1)
In the same way, we find that
P(B) = P(A and B)+P(4 and B). (2)

Finally, we consider the event (4 or B); we obviously have the follow-
ing three possibilities for its occurrence:

)Aand B, 2) Aand B, 3) 4 and B.
Of these three possibilities, any two are incompatible with one
another; therefore, by the addition rule, we have
P(Aor B) = P(4d and B)+P{d4 and B)+P(d and B). (3}
Adding equalities (1) and (2) memberwise and taking equality
(3} into consideration, we easily find that
P(Ay+P(B) = P(4 and B)+P(4 or B),
from which it follows that

P(4dor B) = P(4)+P(B)—P(A and B). 4)
27
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We have arrived at a very important result. Although we carried
out our reasoning for a particular example, it was so general that the
result can be considered established for any pair of events 4 and B.
Up to this point, we obtained expressions for probabilities P{dor B)
only under very particular assumptions concerning the connection
between the events 4 and B (we first assumed them to be incom-
patible and, later, to be mutually independent). Formula (4) which
we just obtained holds without any additional assumptions for an
arbitrary pair of events 4 and B. It is true that we must not forget
one essential difference between formula (4) and our previous
formulas. In previous formulas, the probability P{4 or B) was
always expressed in terms of the probabilities P(4) and P (B), o that,
knowing only the probabilities of the events 4 and B, we were always
able to determine the probability of the event {4 or B) uniquely.
The situation is different in formula (4): to compute the quantity
P(4 or B) by this formula it is necessary to know, besides P(4) and
P(B), the probability P(4 and B), i.e., the probability of the simul-
taneous occurrence of the events 4 and B. To find this same prob-
ability in the general case, with arbitrary connection between the
events 4 and B, is usually no easier than to find P(4 or B); therefore,
for practical calculations we seldom use formula (4) directly—but it is,
nonetheless, of very great theoretical significance.

We shall first convince ourselves that our previous formulas can,
easily be obtained from formula (4) as special cases. If the events 4
and B are mutually incompatible, then the event (4 and B) is im-
possible—hence, P(4 and B)=0—and formula (4) leads to the
relation

P(dor B) = P(A)+P(B),
i.e., to the addition law. If the events 4 and B are mutually inde-
pendent, then, according to formula (3) on page 22, we have

P{d and B) = P(4)-P(B),
and formula (4) yields

P(dor B) = P(d)+P(B)—P(4)-P(B)

1-{1-P(D]-[1-P(B)].
Thus, we obtain formula (5) on page 25 (for the case n=2),

Il

Furthermore, we deduce an important corollary from formula {4).
Since P(4 and B)=0 in all cases, it follows from formula (4) in all
cases that '

P(dor B) < P(4)+P(B). (5)
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This inequality can easily be generalized to any number of events.
Thus, forinstance, in the case of three events, we have, by virtue of (5),

PlAorBorC) < P(Aor B)+P(C)
< P(A)+P(By+P(0),
and, clearly, one can proceed in the same way from three events to
four, and so on. We obtain the following general result:

The probability of the occurrence of at least one of several events never exceeds
the sum of the probabilities of these events.

In this connection, the equality sign holds only in the case when
every palr of the given events is mutually incompatible.

§ 11. Formula for total prohability

We return once more to the bulb example on page 18 and use,
for the various results of the experiments, the notation introduced on
page 27.  The probability that a bulb is of standard quality under the
condition that it was manufactured at the second plant equals, as we
have already seen more than once,

189
and the probability of the same event under the condition that the

bulb was manufactured at the first plant is

581
PB(A) = m = 0.83.

Let us assume that these two numbers are known an(i[ that we also
know that the probability that the bulb was manufactured at the

first plant is
P(B) = 0.7

and at the second plant is

P(B) = 0.3.
It is required that one find the unconditional probability P{4), i.e.,
the probahility that a random bulh is of standard cuality, without any
assumptions concerning the place where it was manufactured,

In order to solve this problem, we shall reason as follows. We
denote by E the joint event consisting of 1) that the bulb was issued by
the first plant and 2) that it is standard, and by F the analogous event
for the second plant. Since every standard bulb is manufaciured by
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the first or second plant, the event 4 is equivalent to the event “E or
F” and since the events E and F are mutually incompatible, we have,
by the addition law

P(4) = P(E)+P(F). (6)

On the other hand, in order that the event E hold, it is necessary 1)
that the bulb be manufactured by the first plant (B) and 2) that it be
standard (4) ; therefore, the event E is equivalent to the event “ B and
4,” from which it follows, by the multiplication rule, that

P(E) = P(B).-Py(4).
In exactly the same way we find that
P(F) = P(B)-P5(4),
and, substituting these expressions into equality (6), we have
P(d) = P(B)-Py(4)+P(B)-P5(4).
This formula solves the problem we posed. Substituting the given
numbers, we find that P(4) = 0.77.

ExamrLe. For a seeding, there are prepared wheat seeds of the
variety I containing as admixture small quantities of other varieties—
II, 171, IV. We take one of these grains. The event that this grain
is of variety I will be denoted by 4, that it is of variety II by 4,, of
variety ITI by 4,, and, finally, of variety IV by 4,. It is known that
the probability that a grain taken at random turns out to be of a
certain variety equals:

P(d,) = 0.96; P{d;) =001; P(4,) =002 P(d4,) = 0.0l

(The sum of these four numbers equals unity, as it should in every
case of a complete system of events.)

The probability that a spike containing no less than 50 grains will
grow from the grain equals:

1) 0.50 for a grain of variety I

2) 015 . II
3} 0.20 » » I
4) 005 N V.

It is required that one find the unconditional probability that the
spike has no less than 50 grains.

Let K be the event that the spike contains no less than 50 grains;
then, by the condition of the problem, we have

Py (K) =0.50; P, (K) =015 P, (K)=020; P, (K)=0.05
) 3 4
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.. Our problem Is to determine P (K). We denote by E, the event that

the grain turns out to be of variety I and that the spike growing from it
will contain no less than 50 grains, so that £, is equivalent to the event
{A; and K); in the same way, we denote

the event {4, and K) by £,
the event {4y and K) by E,
the event (4, and K) by E,.

Obviously, for the event K to occur it is necessary that one of the
events Ky, E,, Ey, or E, occur and since any pair of these events is
mutually incompatible, we obtain, by the addition rule

P(K) = P(E\)+P{E;)+P(E;)+P(E). 7
On the other hand, according to the multiplication rule, we have
P(E)}) = P(4, and K) = P(4,)-P,,(K)
P(Ey) = P(4; and K) = P(4,)-P,,(K)
P(E;) = P(d; and K) = P(dy)-Pu,(K)
P(E) = P{d, and K) = P(4,)-P,,(K).
Substituting- these expressions into formula (7), we find that
P(K) = P{A4,) Py (KY+P(dy)-Py (K)

FP(4s) gy (K) +P(4y) - Py (K),
which obviously solves our problem. Substituting the given numbers
into the last equation, we find that

P(K) = 0.486.

The two examples which we considered here in detail bring us to an
important general rule which we can now formulate and prove
without difficulty. Suppose a given operation admits of the results
Ay, ds, ..., A, and that these form a complete system of events.
(Let us recall that this means that any two of these events are mutually

incompatible and that some one of them must necessarily occur.)
Then for an arbitrary possible result X of this operation, the relation

P(K) = P(Ay) Py (K)+P(Ag) Py (K)+ ... +P(4,)- Py (K) (8)

holds. Rule (8) is usually called the “formula for total probability.”
Its proof is carried out exactly as in the two examples we considered
above: first, the occurrence of the event K requires the occurrence of
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one of the events “4; and K so'that, by the addition rule, we have
P(K) = > P(4;and K); (9)
i

second, by the multiplication rule,
P(d; and K} = P(4,)-P, (K});

substituting these expressions into equation (9) we arrive at formula

(8).

§ 12, Bayes’s formula

The formulas of the preceding section enable us to derive an
important result having numerous applications. We start with a
formal derivation, postponing an explanation of the real meaning of
the final formula until we consider examples.

Again, let the events 4;, 4,,..., 4, form a complete system of
results of some operation. Then, if X denotes an arbitrary result
of this operation, we have, by the multiplication rule

P(dyand K} = P(A4) Py (K) = P(K)-Pe(d) {1 =i < n),

from which it follows that

P(4)-Py(K)
P(K)

or, expressing the denominator of the fraction obtained according to

the formula for total probability (8) in the preceding section, we find
that

Prld;) = {1 <ixgn),

Pld) Py (K)

Py(d) = -
2 P(4)-Py(K)

(1<i<n). {10

"This is Bayes’s formula, which has many applications in practice in the
calculation of probabilitiecs. We apply it most frequently in situa-
tions illustrated by the following example,

.Supposc a target situated on a linear segment MN (see Fig. 3) is
being fired upon; we imagine the segment MN to be subdivided into
five small subsegments a, #', ¥, ¢, ¢". We assume that the precise
position of the target is not known ; we only know the probability that

the farcet TTee am mere mae mermd o of 2l e B e A
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where now a, ', #", ¢, ¢ denote the following events: the target lies
in the segment a, &', #", ¢, ¢, respectively. (Note that the sum of

©* these numbers equals unity.) The largest probability corresponds to

the segment g toward which we therefore, naturally, aim our shot,

ﬁlf L i 4 X A"
" 3 a 5 ¢
Fic. 3

However, due to unavoidable errors in firing, the target can also be
destroyed when it isnotin 2 but in any of the other segments,  Suppose
the probability of destroying the target (event K) is

P,(K) = 0.36 if the target lies in the segment a

P, (K) =018 s » b’
Pbu(.K) = 0.16 3 33 23 23 b”
Pcr(K) - 006 33 33 3 LE] (’J
P.(K) =002 » e » ¢

‘We assume that a shot has been fired and that the target was
destroyed (i.e., event K occurred). As a result of this, the probabilities
of the various positions of the target which we had earlier [ie., the
numbers P{a}, P(#'),...] must be recalculated. The qualitative

" aspect of this revised calculation is clear without any computations,

for we shot at the segment ¢ and hit the target—it is clear that the
probability P(a) in this connection must increase. Now we wish to
compute exactly and quantitatively the new value due to our shot;
iLe., we wish to find an exact expression for the probabilities Py(a),
Py(®"),. .. of the various possible positions of the target under the
condition that the target was destroyed by the shot fired. Bayes’s
formula (10} at once gives us the answer to this problem. Thus,

Py(a) = {P(a)- Po(K)M{P(a) - Po(K}+ P (F') - Pyp(K)
FP(b") Py (K)+P(c") - Po(K) +P(c") - P ()} 2 0.8;

we see that Pr(a) is in fact larger than P{a). .

We easily find the probabilities P(8"), . .. for the other positions of
the target in a similar manner. For the calculations, it is useful to
note that the expressions given for these probabilities by Bayes’s
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The general scheme of this type of situation can be described as
follows. The conditions of the operation contain some unknown
element with respect to which » distinct “hypotheses” can be made:
Ay, Ay, ..., A, which form a complete system of events. For one
reason or another we know the probabilities P (4,} of these hypotheses
to be tested; it is also known that the hypothesis 4, “conveys™ a
probability P, (K) (1 <i<n) to some event K (for instance, hitting a
target). Here, P, (K) is the probability of the event X calculated
under the condition that the hypothesis 4, is true. If, as the result
of a trial, event K has occurred, then this requires a re-evaluation of
the probability of the hypothesis 4, and the problem consists in
finding the new probabilities P{4,) of these hypotheses; Bayes’s
formula gives the answer.

In artillery practice, so-called test-firings are carried out which have
for their purpose making more precise our knowledge of the firing
conditions. In this regard, not only the position of the target can
serve as the unknown element whose effect is required to be made
precise, but also any other element in the firing conditions which
influences the effectiveness of the results (in particular, some peculiar-
ity of the fire-arm used). It often happens that not one such shot is
fired but, rather, several, and the problem posed is to calculate the new
probabilities of the hypotheses on the basis of the firing results obtained.
In all such cases, Bayes’s formula also easily solves the problems.

For the sake of brevity in writing, we shall set, in the general scheme
considered by us,

P(4) = Prand Py(K) = p, (1 <i < n),

so that Bayes’s formula has the simple form

P .
Py(d) =
2 P,

We assurmne that s test shots have been fired, in which connection the
result K occurred m times and did not occur s—m times. We denote
by K* the result obtained from a serics of 5 shots. We can assume
that the results of individual shots constitute mutually independent
events. If the hypothesis 4, is valid, the probability of the result X
equals p; and, hence, the probability of the complementary event that
K does not occur equals 1—p,, '

The probability that the result K occurred for the definite m shots
equals {1~ ;)" ™ according to the multiplication rule for independ-
ent events. Since the m shots in which the result X occurred can be
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any of the s fired, the event K* can be realized in C7* incompatible
ways. Thus, according to the rule for the addition of probabilities,

we have

P (K#*) = Copp(l—p~™ (1 £ 4 < n),

and Bayes’s formula yields

PK*(A() _ ﬂPd?T(l __p!)s_m (1 < i < n), (11)
21 Pr ;n(l _Pr)s_m

which solves the problem posed. Of course, such problems arise not
only in artillery practice, but also in other areas of human activity.

Examerr |. Referring to the problem we considered in the be-
ginning of the present section, we now seek the probability that the
target les in the segment o if two successive shots at this segment
yielded hits. _

Denoting by K* the event of hitting the target twice, we have,
according to formula (11)

P A © 1 L4109 5
w(0) = Pl PR+ P ) P T+ -
We leave it to the reader to carry out the uncomplicated calculation

and verify that as a result of hitting the target twice the probability
that the target is situated in the segment ¢ has been increased still

more.

Examrrr 2. The probability that in a certain production process
the articles satisfy a prescribed standard equals 0.96. A simplified
system of testing? is suggested which for the articles satisfying. the
standard yield a positive result with probability 0.98 and for articles
which do not satisfy the standard a positive result with a probability
0.05. What is the probability that the articles which endure the
simplified test twice satisfy the standard?

Here, a complete system of hypotheses consists of two complement-
ary events: 1) that the article satisfies the standard, or 2) that the
article does not satisfy the standard. The probabilities of these
hypotheses are, before the test, equal to P;=0.96 and P,=0.04,

i impli i red very frequently in
pr;c'gc’g. nt}f‘:gis;;y;tggie? i?lllz}lgillﬁg‘iispilr;;;? eﬁcﬁ?ﬁ?ﬁ?ﬁi bulbs a}]rl of %hcm \Z'ere
subjected to testing for their ability to bura for a period, say, of not less than 1200
hours, then the consumer would obtain only burnt-out or almost burnt-out

butbs. ‘Fhus one must replace the test for period of burning by other tests—for
example, testing the bulb for lighting up.
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respectively.  Under the first hypothesis, the probability that the
article endures the test equals §, —=0.98 and, under the second hypo-
thesis, the probability equals p,=0.05. After a two-fold test, the
probability of the first hypothesis is equal, on the basis of formula (in,
to
Pt 0.96-(0.98)2
Pipi+Ppy  0.96-(0.98)2+0.04- (0.05)

5 = 0.9999.

We see that if the article endured the test indicated in the conditions
of the problem, then we can make an error only once in ten thousand
cases assumning that it is standard. This, of course, completely
satisfies the requirements in practice.

Examprr 3. In an examination of a patient, it is suspected that he
has one of three illnesses: 4,, 4,, A,. Their probabilities, under
prescribed conditions, are :

Py =1/2, Py=1[6, Py =13,

respectively. In order to make the diagnosis more precise, some
analysis is specified which yields a positive result with probability 0.1
in the case of illness 4,, with probability 0.2 in the case of illness As,
and with probability 0.9 in the case of illness Az, The analysis was
carried out five times and yielded a positive result four times and a
negative result once. It is required that one find the probability of
each of the illnesses after the analysis. _

In the case of illness A, the probability of the indicated results of
the analyses is equal, by the multiplication rule, to 5 =C0.1)2.0.9,
For the second hypothesis, this probability equals p,=C%(0.2)%.0.8
and for the third it is equal to Pa=C(0.9)%.0.1,

According to Bayes’s formula, we find that after the analyses the
probability of illness 4, turns out to be equal to

Pipy
P1pi+Popy+Pypy

(1/2)-(0.1)%.0.9

- {1/2)-(0.1)*-0.9+{1/6)-(0.2)4-0.8-5-(1/3}-(0.9)*-0.1 ~ 0.002;
the probability of illness A, is
Popy
Prpy+Pypo+ Py o .
= - (1f6)-(0.2)¢.0.8 S
(1/2}-(0.1)4-0.9+(1/6)-(0.2}*-0.8-[»(1/3)-(0.9)4-0.1 e
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and for illness A, it is

Psps
Popi+Papa+Pspa

(1/3)-(0.9)*-0.1 i ~ 0.988.
T - (0.)50.9+(1/6)- (0.2)5-0.8+ (1/3) - (0.9)-0.1
Since these three events 4,, 4, A, form, even after the test,la complete
system of events, we can as a check on the calculation carried out add
the three numbers obtained and verify that their sum is equal to
unity, as before.




CHAPTER 5

BERNOULLYI’S SCHEME o

§ 13. Examples

Exawprr 1. Among fibers of cotton of a definite sort 759, on
the average have lengths less than 45 mm. and 25% have lengths
greater than (or equal to) 45 mmm. Find the probability that of three
fibers taken at random two will be shorter than and one will be lfonger
than 45 mm.

We denote the event of choosing a fiber of length less than 45 mm.
by 4 and the event of choosing a fiber of length greater than 45 mm.
by B; it is then clear that

P(d) = 3/4; P(B) = 1/4.

We shall further agree to denote the following compound event by
AAB: the first two fibers chosen are shorter than 45 mm. and the third
fiber is longer than 45 mm. It is clear what the meaning of the
schemes BBA, ABA, and so on, will be. Our problem is to compute
the probability of the event C: that of three fibers two are shorter than
45 mm. and one fiber is longer than 45 mm. Evidently, for this to
happen one of the following schemes must be realized:

AAB, ABA, BAA. (0

Since any two of these three results are mutually incompatible we
have, by the addition rule -

P(C) = P(AAB) +P(ABA) +P(BAA).

All three terms in the right member are equal inasmuch as the results
of the choice of the fibers can be assumed to be mutually independent
events, The probability of each of the schemes (1), according to the
multiplication rule for probabilities of independent events, is repre-
sentable as the product of three factors of which two equal P(4} = 3/4
and one equals P(B)=1/4. Thus, the probability of each of the
three schemes (1) equals

(314)7- (14) = 9f64,
38
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and, consequently,

P(C) = 3-(9/64) = 27/64,
which is the solution of ¢ur problem.

ExamrLe 2. As the result of observations exiending over many
decades it was found that of every 1000 newly born children on the
average there are born 515 boys and 485 girls. In a certain family
there are six children, Find the probability that there are no more
than two girls among them.

For the occurrence of the event whose probability we are seeking,
it is necessary that there be either 0 or | or 2girls, The probabilities
of these particular events will be denoted by P, Py, Py, respectively.
It is clear that, according to the rule for the addition of probabilities,
the probability sought is

P =Py P +P, (2)
For each child, the probability that it is a boy equals 0.515 and,
hence, the probability that it is a girl equals 0.485.

P, is the easiest to find; this is the probability that all the children
in the family are boys. Since the birth of a child of either sex can be
considered as independent of the sex of the remaining children, the
probability, according to the rule for the multiplication of probabilities,
that all six children are boys is equal to the product of six factors each
equal to 0.515, i.e.,

P, = (0.515)% x 0.018.

We now go over to the calculation of Py, i.e., the probability that of
the six children in the family one child is a girl and the remaining five
are boys. This event can occur in six different ways depending on
which child in the order of birth is a girl (i.e., first, sccond, etc.). We
consider any of the possible ways of this event, for example the one
that a girl is born as the fourth child. The probability of this pos-
sibility, according to the multiplication rule, equals the product of six
factors of which five equal 0.515 and the sixth (situated in the fourth
place} equals 0.485; i.e., this probability equals (0.515)®.0.485. This
is also the probability of each of the other five possibilities of the event
which interests us at the moment; therefore, the probability P; of this
event is equal, according to the addition rule, to the sum of six
numbers each equal to (0.515)5-0.485, i.e.,

P, — 6.(0.515)5.0.485 2 0.105.

We now turn to the calculation of P, (i.e., the probability that two
of the children are girls and four are boys). Analogous {o what
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precedes, we at once note that this event admits of a whole series of
possibilities. One of the possibilities will be, for instance, the follow-
ing; the second and fifth child in order of birth are girls and the
remainder are boys. The probability of each of the possibilities,
according to the multiplication rule, equals {0.515)%-(0.485)2 and,
consequently, P, equals, by the addition rule, the number (0.515)%.
(0.485)% multiplied by the number of all possibilities of the type
considered; the entire problem thus reduces to the determination of
this last number. '

Each of the possibilities is characterized by the fact that of six
children two. are girls and the remainder are boys; the number of
different possibilities consequently equals the number of distinct
choices of two children from the six at hand. The number of such
choices equals the number of combinations of six distinct objects taken
two at a time; Le., C3=(6-5)/(2-1)=15. Thus,

Py = CZ-(0.515)*. (0.485)% = 15.(0.515)*- (0.485)2 ~ 0.247.
Combining the results obtained above, we have o
P = Py P+ P, = 0.018+0.1054-0,247 = 0.370,

Thus, in about 37Y%, of the families having six children we will find
fewer than three girls and, hence, more than three boys among the
children. ‘

§ 14. The Bernoulli formulas

In the preceding section, we became acquainted by means of a
number of examples with the scheme of repeated trials, in each of which
an event 4 can be realized. We attribute a very broad and varie-
gated sense to the word “trial.” Thus, if we fire at a certain target,
by a trial we shall understand each individual shot. If we test
electric light bulbs for length of burning, then a trial will be understood
to be the testing of each bulb. If we are studying the composition of
newly born children by sex, weight, or height, then a trial will be
understood to be the investigation of an individual child, In general,

by a trial we shall in what follows understand the realization of -

certain conditions in the presence of which some event of interest to
Us can occur, ‘

We have now arrived at the consideration of one of the important
schemes in the theory of probability having, besides application in
various branches of knowledge, great significance also in probability:
theory itself as a mathematical science. This scheme consists in
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considering a sequence of mutually independent trials, ie., of such
trials for which the probability of some result in each of them does not
depend on what results occurred or will occur in the remainder. In

" each of these trials, there can occur {or not occur} some event 4 with

probability # which does not depend on the number of trials. The

* scheme just described has received the name Bernoulli scheme since the

origin of its systematic study can be traced back to the renowned Swiss
mathematician Jacob Bernoulli, who lived at the end of the seven~
teenth century.

We have already dealt with the Bernoulli scheme in our examples;
in order to convince ourselves of this, it is sufficient to recall the ex-
amples of the preceding section.  We shall now solve the following
general problem; all the examples we considered up to this point in
this chapter were particular cases of this.

Prorem. Under certain conditions, the probability that the event
A occurs in every trial equals p; find the probability that a sequence
of n independent trials yields £ occurrences and n—k nonoccurrences
of the event A.

The event whose probability is sought splits into a number of
possibilities; in order to obtain one definite possibility, we must
arbitrarily choose from the given sequence any k trials and assume
that the event A occurred for precisely these & trials and that 4 did
not oceur for the remaining n—k Thus, every such possibility
requires the occurrence of # definite results—in this number £ occur-
rences and n— k nonoccurrences of the event 4. By the multiplication
rule, we find that the probability of each definite possibility equals

peL—p)
The number of different possibilities equals the number of different
sets of & trials each of which can be constructed from » distinet trials,
i.e., it is equal to C¥. Applying the addition rule and the known
formula for the number of combinations of n objects taken k at a time,
Ck = -1y, .. [n—{k— 1)],
kk—-1)...2-1
we find that the probability of £ occurrences of the event A with 2
independent trials equals
nn—1)...[n--(k—1)
kk—1)...2-1

which solves our problem. It is frequently more convenient to
represent the expression C¥ in a somewhat different form; multiplying

Pk = Ly —pyrs, (3)
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the numerator and denominator by the product {(n—k)[n— (k+1)]
...2-1, we obtain
ok — n(n—1)...2.1 ,
k1) 2 k) [n—(k+1)]... 21

or, denoting for brevity the product of all integers from 1 to m in-
clusively by m!,

n!
G = =1
For P.(k), this yields
! ‘
Pub) =m0 (4)

Formulas (3) and (4) are usually called Bernoulli’s Jormulas.  For large
values of n and £, the computation of P, (k) according to these forraulas
is rather difficult since the factorials n!, kl, (n—k)! are very large
numbers which are rather cumbersome to evaluate. Therefore, in
caleulations of this type specially compiled tables of factorials as well
as various approximation formulas are extensively used,

Exampre. The probability that the consumption of water at 2
certain factory is normal (i.e., it is not more than a prescribed number
of liters every twenty-four hours) equals 3/4. Find the probability
that in the next 6 days the consumption of water will be normal in
the course of 0, 1, 2, 3, 4, 5, 6 days. _

Denoting by Ps(k) the probability that in the course of £ days out
of 6 the consumption of water will be normal, we find, by formula (3)
(where we must set $=3/4), that

Py(6) = (3/4)° = 3545,
Po(5) = 6.(3/4)5.1/4 = i;fi

3% 6.5 3% 15.3¢

Py(4) = C- (3/4)*. (1/4) = C3 -

#0717 45
Pf3) = G- 1y = £34 5 20
Po2) = 32 (35 (1pays = 22 F,
Py(1) = 6- (3 (14° = &2,

finally, we evidently have Py(0) (i.e;, the probability that there is. -

excessive consumption in each of the 6 days) equal to 1/48, Al six
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probabilities are expressed as fractions with the same qenominator,
48 =4096; we use this, of course, to shorten our calculations. These
yield

Pg(6) = 0.18; Pe(5) = 0.36; Ps(4) = 0.30;

Py(3) = 0.13; Py(2) = 0.03; Py(l) = P(0) = 0.00.

We see that it is most probable that there will be an excessive
consurnption of water in the course of one or two days of the six and
that the probability of excessive consumption in the course of five or
gsix days, i.e., Pg(1) + P4(0), practically equals zero,

:§ 15. The most probable number of occurrences of an
N event

The example which we just considered shows that the probabil.ity
of a normal consumption of water in the course of exactly k days with
increasing £ at first increases and then, having attained its. I?rgest
value, begins to decrease; this is most clearly seen if the Va.ri.ation ?f
the probability Pg{k) with increasing £ is expressed geometrically in
the form of a diagram, shown in Fig. 4. A still clearer picture is

Bln]

of -

421

Mt

0 55 T

given by diagrams of the variation of the quantity P, (k) as & increases
when the number # becomes larger; thus, for =15 and p=1/2, the
diagram has the form shown in Fig. 5.

In practice, it is sometimes required to know what number of
occurrences of the event is most probable, i.e., for what number k the
probability P, (k) is the largest. {In this connection, it is, of course,
assumed that p and » are prescribed.) The Bernoulli formulas aliow
us in all cases to find a simple solution of this problem; we shall oceupy
oursclves with this now.
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0’/23455?53)?11/273/#/5
Figz. 5

We first calculate the magnitude of the ratio P,(k+1) /Pn(k). By
virtue of formula (4},

nl
Bl = etpm e 7= )

and, from formulas (3} and (5), we have
Polk+1) _ nlkln—k)Ipti(1—p)»k-t  a—k p
PR G+ Dn—k—Dlalpc(I—p)*F k31 1—p

The probability P, (k+ 1) will be larger than, equal to, or less than the
probability P, (k) depending on whether or not the ratio P, (k+ 1} /P, (k)
is larger than, equal to, or less than unity, and the latter, as we see,
reduces to the question of which of the three relations

n—k p n—k p n—k p

11— T~ b miT <t O
is valid. If we wish, for example, to determine the values of £ for
which the inequality P,{k+1)>P,(k) is satisfied, then we must
recognize for what values of k the inequality

n— k b
F+1T1—p

> 1,

> 1

(n—k)p > (k+1)(1—P)

holds.  From this we obtain

np—(1~p) > k;
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thus, as long as k increases but does not attain the value np— (1 —p),
we will always have P,(k+1) > P, (k). Thus, with increasing £, the
probability P,(k) will always increase. For example, in the scheme to
which the diagram in Fig. 5 corresponds, we have p=1/2, n=15,
np— (1 —p)=7; this means that as long as k <7 (i.e., for all & from 0 to
6 inclusively), we have P, (k+1) > P, (k). 'The diagram substantiates
this.

In precisely the same way, starting with the other two relations in
(6), we find that

Plk+1)=Pk) if k=np—(1—p)

and
| Pyk+1) < Po(R) if & > np—(1—p);

thus, as soon as the number & exceeds the bound np—(1—p), the

probability P, (k) begins to decrease and will decrease to P,(n).

This derivation first of all convinces us that the behavior of the
quantity P, (k) considercd by us in the examples is a general law which
holds in all cases: as the number £ increases, P, (k) first increases and
then decreases, But, more than this, this result also allows us to
solve quickly the problem we have set for curselves—i.e., to determine
the most probable value of the number £ We denote this most

¢ probable value of the number & by £,. Then

Polko+1) < Pulke),
from which it follows, according to what precedes, that
ko = np—(1—p).
On the other hand, _
Poko—1) < Pylko),
from which, according to what precedes, the inequality
bo—1 = mp—(1-p)
or
ko < np—(1—p)+1 = np+p
must hold. Thus, the most probable value %, of the number £ must
satisfy the double ineguality
np—(1-p) < ko < np+p. 7
The interval from np— (1 —p) to np+4p, in which the number £, must
therefore lie, has length 1 as can be shown by a simple calculation;
therefore, if either of the endpoints of this interval, for instance the
number nfp— {1 —p), is not an integer, then between these endpoints
there will necessarily lie one, and only one, integer and k, will be
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uniquely determined. We ought to consider this case to be normal;
for, # is less than 1, and therefore only in exceptional cases will the
quantity nf—(1—p) be an integer. In this exceptional case, in-
equalities (7) yield two values for the number £y: np—(1—p) and
np-+p, which differ from one another by unity. Those two values
will also be the most probable; their probabilities will be equal and
exceed the probability of any other value of the number 4. This
exceptional case holds, for instance, in the scheme expressed by the
diagram in Fig. 5; here, n=15, p=1/2 and hence ap—{1—py=7,
np+p=8; the numbers 7 and 8 serve as the most probable values of
the number % of occurrences of the event; their probabilities are
equal to one another, each of them being approximately equal to
0.196. (Al this can be seen on the diagram.)

ExampLe 1. As the result of observations over a period of many
years, it was discovered, for a certain region, that the probability that
rain falls on July 1 equals 4/17. Find the most probable number of
rainy July 1’s for the next 50 years. Here, n= 50, $=4/17, and

np—(1—p) = 50-(4/17}—13/17 = 11.
As this number turned out to be an integer, it means we are dealing
with the exceptional case; the most probable value of the number of
rainy days will be the numbers 11 and 12 which are equally probable.

ExampLe 2. In a physics experiment, particles of a prescribed type
are being observed. Under fixed conditions, during an interval of
time of definite length, on the average 60 particles appear and each of
them has—with a probability 0.7—a velocity greater than »,. Under
other conditions, during the same interval of time there appear on the
average only 50 particles, but for each of them the probability ofhaving
a velocity exceeding v, equals 0.8, Under what conditions of the
experiment will the most probable number of particles having a
velocity exceeding #, be the greatest?

Under the first conditions of the experiment,

=060, p=07, ap—(1—p) =417, k, =49,
For the second conditions of the experiment,
n=2350, p=08 wp—(1—-p) =398, k =40,
We see that the most probable number of ““fast” particles under the
first conditions of the experiment is somewhat larger than under the
second. '
In practice, we often encounter the situation when the number # is

very large; e.g., in the case of mass firing, the mass production of
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articles, and so on. In this case the product ngp will also be a very
large mumber provided the probability p i3 not unuvsually small.
And since in the expressions np— (1 —p) and np+p, between which
lie the most probable number of cccurrences of the event, the quan-
tities p and 1 —p are less than unity, we see that both these expressions
and hence the most probable number of occurrences of the event are
all close to np. Thus, if the probability of completing a telephone

¢ connection in less than 15 seconds equals 0.74, then we can take

1000-0.74 as the most probable number of connections, among every
1000 calls coming into the central exchange, made in less than 15
seconds. '

This result can be given a still more precise form. If %, denotes the
most probable number of occurrences of the event in # trials, then /=
is the most probable “fraction” of occurrences of the event for the
same 7 trials; inequalities (7) yield

PR Y. Py ®)

n n

: Let us assume that, leaving the probability p of the occurrence of the

event for an individual trial invariant, we shall increase indefinitely
the number of trials . (In this connection we, of course, also increase
the most probable number of occurrences £;.) The fractions (1 —p)/n
and p/n, appearing in the left and right members of the inequalities (8)
above will become smaller and smaller; this means that, for large n,
these fractions can be disregarded. We can now consider both the
left and right members of the inequalities (8) and hence also the
fraction kofn contained between them to be equal to p. Thus, the
most probable ratio of occurrences of the event—provided there are a large
number of trials—is practically equal to the probability of the vecurrence of the
event in an individual trial.

For example, if for certain measurements the problem of making
in an individual measurement an error comprised between « and 8
equals 0.84, then for a large number of measurements one can expect
with the greatest probability errors comprised between o and 8 in
approximately 849, of the cases. This does not mean, of course,
that the probability of cbtaining exactly 849/ of such errors will be
large; on the contrary, this “largest probability” itself will be very
small in a large number of measurements {thus, we saw in the scheme
in Fig. 5 that the largest probability turned out to be equal to 0:196
where we were dealing with 15 trials altogether; for a large number of
trials it is significantly less). This probability is the largest only in
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the comparative sense: the probability of obtaining 849, of the
measurements with errors comprised between o and g is larger than
the probability of obtaining 83%, or 86%, of such measurements.

On the other hand, it is easily understandable that in extended
series of measurements the probability of a certain individual number
of errors of a given quantity cannot be of significant interest. For
example, if we carry out 200 measurements, then it is doubtful
whether it is expedient to calculate the probability that exactly 137
of them will be measurements with the prescribed precision because
in practice it is immaterial whether the number is 137 or 136 or 138
or even, for instance, 140, In contrast, questions of the probability
that the number of measurements for which the error is between
prescribed bounds will be more than 100 of the 200 measurements
made or that this number will be somewhere between 100 and 125 or
that it will be less than 50, and so on, are certainly of practical interest.
How should we express this type of probability ? Suppose we wish,
for example, to find the probability that the number of measurements
will be between 100 and 120 (including 120); more specifically, we
will seek the probability of satisfying the inequality :

100 < & < 120,

where £ is the number of measurements. For these inequalities to be
realized, it is necessary that k be equal to one of the twenty numbers
101, 102,...,120. According to the addition rule, this probability
equals

P(100 < £ < 120) = Paoo(101) +Pago{102) + . . . +Pyoo(120). -

To calculate this sum directly, we would have first to compute 20
individual probabilities of the type P,(k) according to formula (3);
for such large numbers, such calculations present insurmountable
difficulties. Therefore, sums of the form obtained are never computed
by means of direct calculations in practice. For this purpose there
exist suitable approximation formulas and tables. The composition
of these formulas and tables is based on complicated methods of
mathematical analysis, which we shall not touch upon here. How-
ever, concerning probabilities of the type P(100<k< 120) one can
obtain information by simple lines of reasoning in many cases which
lead to the complete solution of the problem posed. We shall discuss
this problem in the following chapter.

CHAPTER 6

BERNOULLI’'S THEOREM

§ 16. Content of Bernoulli’s theorem

Let us take another good look at the diagram in Fig. 5 (on page
44), where the probabilities of various values of the number & of
occurrences of the event under consideration are the numbers P, (k),
which are depicted by the vertical lines. The probability assigned to
some segment of values of % (the probability that the number of
occurrences of the event of interest to us turns out to be equal to some
one of the numbers of this segment) is equal, according to the addition
rule, to the sum of the probabilities of all the numbers of this segment;
ie,, it is equal to the sum of the lengths of all vertical lines situated over
this segment. Pictorially, the figure shows that this sum is quite
different for various segments of the same length. Thus, the segments
2<k<5 and 7<k <10 have the same length; the probability of each

. of them is expressed by the sum of the lengths of three vertical lines,
.. and we see that for the second segment this sum is significantly larger

than for the first. We already know that the diagrams of the prob-

.- abilities P,(k} have, for all #, basically, the same form as the diagram

in Fig. 5; i.e., the quantity P,{k) at first increases with increasing k and
then, after passing through its largest value, it decreases. It is
therefore clear that of the two segments of values of the number &
having the same length, the one situated nearer the most probable
value, k;, will in all cases have the largest probability. In particular,
on the segment having the number £, as its center we will always have
a greater probability than on any other segment of the same length,
But it turns out that much more can be said in this regard. There
are in all n+1 possible values of the number & of occurrences of the
eventin n trials (0<k<n). We take the segment having center at k,
and containing only a small fractional part, for example one hun-
dredth, of the possible values of the number £, Tt then turns out that
if the total number 7 of trials is very large, the predominant probability
will correspond to this segment and all other values of the number &
taken together have a negligibly small probability. Thus, although
the segment we chose is negligibly small in comparison with » (on the
49
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figure it occupies in all a one-hundredth part of the entire length of
the diagram), nevertheless, the sum of the vertical lines situated over
it will be significantly larger than the sum of all remaining vertical
lines. The reason for this lies in the fact that the lines in the central
part of the diagram are many times larger than the lines situated near
the ends. Thus, for large n the diagram of the quantity P,(k) has a
form which is approximately that shown in Fig, 6,

g & M
Fic. 6

In practice, this obviously means the following: if we perform a series
of @ large number 1 of trials, then we can expect with a probability close to
unity that the number k of occurrences of the event A will be-very close to ils
most probable value, differing from the latter only by an insignificant fractional
part of the total mumber 11 of trials made.

"This proposition, known under the name of Bernoulli’s theovem and
discovered at the beginning of the eighteenth century, is one of the
important laws of probability theory. Up to the middle of the last
century, all proofs of this theorem required complicated mathematical
means and the great Russian mathematician P. L. Chiebyshev was the
first to find a very simple and short derivation of this Iaw; we now
present Chebyshev’s remarkable proof. '

§ 17. Proof of Bernoulli’s theorem

We already know that for a large number » of trials, the most
probable number £, of occurrences of the event 4 differs very little
from the quantity np, where p, as always, denotes the probability of
the event 4 for an individual trial. It is therefore sufficient for us to
prove that, for a large number of trials, with very high probability the
number £ of occurrences of the event A will differ from np by very little

—Dby not more than an arbitrarily small fractional part of the number -

n (not more, for example, than by 0.01 z or 0.001 #, or, in general, not
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more than by en where ¢ is an arbitrarily small number). In other
words, we must show that the probability

P(lk—np | > en) (1)

will be as small as we please for sufficiently large 2.
In order to verify this, we note that according to the law of addition,
probability (1) equals the sum of the probabilities P, (k) for all those

TN

"‘M_i. éﬁ‘f"“\"‘%—
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values of the number & which lie at a distance not more than zx from
ip; in our typical diagram (Fig. 7), this sum is expressed by the sum
of the lengths of all vertical lines lying exterior to the segment AB—to
ithe right as well as to the left of it. Since the sum total of all the :
vertical lines (being the sum of the probabilities of a complete system
of events) equals unity, this means that the overwhelming portion (al-
most equal to unity} of this sum corresponds to the segment AB and
-only a negligibly small part of it corresponds to the regions lying
xterior to this segment,
Thus,

P(lk—np| > en) = P, @

te—np|>sn
‘We now turn to Chebyshev’s line of reasoning. Since in every term
- of the sum written down we have

k — nf

> 1
&R
sand hence
_ 4
(k nﬁ) > 1,
EN
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we can only increase this sum if each of its terms P, (k) is replaced by

the expression
_ 2
(=2) rw.

an
Therefore,
_ 2
Plk=np| > em) < > (’“ ”") k)
|k—np|>sn en
i
= 53 2 (k—np)2P,(£).
ie—npl>sn

Furthermore, it is obvious that the last sum is increased still more if
further new terms are added to the terms it already has, forcing the
number £ to range over not only the parts to the left of np—en and
to the right of ng+en, but over the entire series of values which are
possible for it, i.e., the entire series of numbers from 0 to # inclusive,
We thus obtain, a fortiori,

. 7
P(=npl > o) <z 5 (k=)o) (3)
The latter sum differs advantageously from all the preceding sums
in that it can be computed precisely; the Chebyshev method thus
consists of replacing sum (2), which is difficult to estimate, by the sum
(8), which admits of an exact computation.

We now proceed to make this calculation; no matter how Iong it
may appear to take us, these are simply difficulties of a technical
nature which anyone who knows algebra can handle. The remark-
able idea of Chebyshev has already been completely utilized by us, as
it consisted, namely, in the transition from equality (2) to inequality (3).

First of all, we easily find that

S (h—np)2P, (k)

k=0

= zﬁk%(!ﬂ) —2np é;kPn(k) +n?p? é:oPn(k). (4)

Of the three sums in the right member, the last is equal to unity since
it is the sum of the probabilities of a complete system of events. This
means that it only remains for us to calculate the sums '

2 kP (k) and D k2P,(k)
k=0 k=0

In this connection, in both sums the terms corresponding to k=0 are
equal to zero so that one can start the summation with £=1.
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1) To calculate both sums, we express P,(k) according to formula
{(4), Chapter b (see page 42). We find that

DR = S e g1 —ps

since, obviously, nl=n{n—1)! and k‘mk(kw 1)1, we find that

Z kPo(k) = np 2 ‘{(in_—ll)ﬁ = 1}]1Pk_1(1 —pyrT oD,

or, setting k— [ =/ in the sum in the right member and noting that /
varies from 0 to n—1 as k varies from 1 to n,

JZ P (k) = np 2 Z;(n—)J);P (I—gr-1-t
= fp izo Pn—l([)'

n—1
The last sum, 1.e., > P,_,({), of course, equals unity because it is the
=0

sum of the probabilities of a complete system of events—all possible
numbers of occurrences of the event [ for n— ! trials. Thus, for the

sum Zn kP(k), we obtain the very simple expression
k=0
D kPk) = np. (5)
£=0
2} To calculate the second sum, we first find the quantity
i k(k—1}P,(k}; since the term corresponding to k=1 is ohviously
k=1

equal to zero, the swnation can begin with the value £=2. Noting
that nl=n{n--1)(n-2)! and that kl=k(k—1}(k—2)!, we easily
conchude, setting £—2=m, similarly to what we did before, that

2 (=P = > KE=1)E(H

()
¢ Kl(n—k)!

)"
n (ﬂ—2)! Jo—2
n{n—1}p? Z = 2)![(,3__2)—(,%—2)]!!’
.{l_p)(nmz)—wvm

T?M;. TTM=

pI—prs

=m1wim§éﬁw0www

= n(n—1)p? ZOPH_Z{m) = n(n—1)p?, (6)
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because the last sum is again equal to unity being the sum of the
probabilities of a complete system of events—all possible numbers
of occurrences of the events for n—2 trials,

Finally, formulas (5) and (6) yield

i k(E—1)P, (k) + Z kP, ()

= n(n=Dp+np = i +np(l=p). ()
Now, hoth of the sumns that we needed have been computed. Sub-
stituting results (5} and (7) into relation (4), we find finally that

S k()

k=1

Zﬂ (k—1p) 2Py (k) = n2p®+np(1 — p) —2np-np+n%p?
k=0
= np(1—p).

Substituting this simple expression we just derived into inequality (3),
we obtain

np(l—p) _ p{1-2) .
P([k—np| > en) < an2  &n (8)
This inequality completes the proof of everything required. In fact,
it'is true that we could have taken the number g arbitrarily small;
however, having chosen it, we do not change it any more. But the
number z of trials in the sense of our assertion can be arbitrarily large.
Therefore, the fraction p(I —p) /(&%) can be assumed to be as small ag
we please, since with increasing n its denominator can be made
arbitrarily large whereas the numerator at the same time remains
unchanged.
For example, let p=0.75, so that _
l1—p =0.25 and p(1—p) = 0.1875 < 0.2;

choose £=0.01; then inequality (8) yields
02 __ 2000
0.0001.n n
1f, for instance, we take n=200,000, then’
P{|£--150,000| > 2000) < 0.01.

In practice, this means, for example, the following: if in some pro-
duction process, under fixed operating conditions, 759%, on the
average of the articles possess a certain property (for example, they
belong to the first sort), then of 200,000 articles, from 148,000 to
152,000 articles will possess this property with a, probability ex-
ceeding (.99 (i.e., almost certainly},

P(‘k—gn > 0.0in) <
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Int regard to this matter we must make two ohservations:

1. Inequality (8) yields a very rough estimate of the probability
P{lk—np|>en); in fact, this probability is significantly smaller—
especially for large values of n. In practice, we therefore make use
of more precise estimates whose derivation is, however, considerably
more complicated.

2. The estimate, given by inequality (8), becomes significantly
more precise when the probability # is very small—or just the opposite
—very close to unity. Thus, if in the example we have just intro-
duced, the probability that the article possesses a certain property
equals p=0.95, then 1—p=0.05, and p(I —p) <0.05. Therefore,
choosing £=0,003, n="200,000, we find that

1—p < 0.05. 1,000,000
&%n 25.200,000

= 0.01,

just as before. But now en is not equal to 2000 but only to 1000;
from this (since ng = 190,000} we conclude that with practical certainty
the number of articles possessing the property under consideration
will, for a total number of 200,000 articles, lie between 189,000 and
191,000. ‘Thus, inequality (8) practically gnarantees us that the
number of articles possessing the property concerned will be in an
interval for p=0.95 of half the length of that for p==0.75, because we
have here

P{]k—190,000] > 1000) < 0.01.

ProBirm. Itisknown that one-fourth of the workers in a particular
branch of industry have an elementary school education. For a
certain investigation, 200,000 workers are chosen at random. Find
I) the most probable value of the number of workers with an element-
ary school education among the 200,000 workers chosen and 2) the
probability that the true {actual) number of such workers deviates
from the most probable number by no more than 1.69.

In the solution of this problem, we start with the fact that the
probability of having an elementary education equals one-fourth for
each of the 200,000 workers chosen at random.  (This is precisely the
key to the meaning of the phrase “at random.”) Thus, in our
problem, we have

n = 200,000, p=1/4, ko =np=50,000, p(l—p) = 3/L6.

We are secking the probability that [k—np| <0.016np or that [k— np|
<800, where k is the number of workers with an elementary school
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education. We choose £ 50 as to have en=800; from. this we find that
£=800/n=0.004, Formula {8) yields

3

16.0.000016 200,000 ~ 0-06:

P([k—50,000] > 800) <

from which it follows that
P(|k—50,000| < 800) > 0.94,
Answer.  The most probable value, which is what we are looking

for, equals 50,000; the probability sought is greater than 0.94.
(Actually, the probability sought is significantly closer to unity.)

PART II

RANDOM VARIABLES



