Argomenti diagonali

Gianluigi Bellin

November 30, 2010

La cardinalità degli insiemi.

Consideriamo la relazione di equivalenza " \equiv " tra insiemi ottenuta ponendo $A \equiv B$ se e solo se esiste una biiezione $f: A \rightarrow B$.

Dato un insieme A, la classe di equivalenza $[A] = \{B | A \equiv B\}$ è il *numero cardinale* di A.

Questa definizione si applica tanto agli insiemi finiti che a quelli infiniti.

Ma quali proprietà hanno i numeri cardinali dei seguenti insiemi infiniti

- l'insieme N dei numeri naturali,
- l'insieme **Z** dei numeri interi (positivi e negativi),
- ullet l'insieme ${f Q}$ dei numeri razionali (classi di equivalenza di frazioni)
- l'insieme R dei numeri reali?

Abbiamo |N| = |Z|.

Definiamo una funzione $f: \mathbf{Z} \to \mathbf{N}$ come segue:

- \bullet 0 \mapsto 0;
- $+n \mapsto (2 \cdot n) 1;$
- \bullet -n \mapsto $2 \cdot n$.

La funzione f è iniettiva e suriettiva.

Cioè abbiamo una enumerazione senza ripetizioni $0, +1, -1, +2, -2, \ldots$ di tutti i numeri interi.

Abbiamo |N| = |Q|!

Questo è più lungo da dimostrare, ma l'idea fondamentale è la seguente.

I numeri razionali sono classi di equivalenza di frazioni (nota che 1/2 e 2/4 sono lo stesso numero razionale) e ogni frazioni è positiva rappresentata da una coppia di numeri naturali.

La funzione zig-zag di Cantor mostra una bi-iezione tra coppie di naturali positivi ed i naturali positivi. Scriviamo $(i,j) \mapsto n$ come $(i,j)_n$:

$$(1,1)_1$$
 $(2,1)_3$ $(3,1)_6$ $(4,1)_{10}$...
 $(1,2)_2$ $(2,2)_5$ $(3,2)_9$ $(4,2)_{14}$...
 $(1,3)_4$ $(2,3)_8$ $(3,3)_{13}$...
 $(1,4)_7$ $(2,4)_{12}$...
 $(1,5)_{11}$...

La formula è:

$$(i,j) \mapsto ((i+j-1)(i+j-2)/2) + i.$$

Tuttavia $|N| \neq |R|$.

Consideriamo i numeri reali nell'intervallo [0,1]. Scriviamo un numero $r \in [0,1]$ in forma decimale: $0, i_1 i_2 i_3 \dots$ (Come si rappresenta 1?)

Supponiamo di avere una enumerazione di tutti i numeri reali in [0,1]:

$$a_1 = 0, \quad a_{1,1} \quad a_{1,2} \quad a_{1,3} \quad \dots$$
 $a_2 = 0, \quad a_{2,1} \quad a_{2,2} \quad a_{2,3} \quad \dots$
 $a_3 = 0, \quad a_{3,1} \quad a_{3,2} \quad a_{3,3} \quad \dots$
 $\dots \quad \dots$
 $a_i = 0, \quad a_{i,1} \quad a_{i,2} \quad a_{i,3} \quad \dots \quad a_{i,i} \quad \dots$

Definiamo un numero $b = 0, b_1b_2b_3b_4...$ cosí:

•
$$b_i = 3$$
 se $a_{i,i} \neq 3$;
• $b_i = 2$ se $a_{i,i} = 3$.

Il numero b non è nell'enumerazione perchè differisce da ciascun numero a_i per l'i-esima cifra decimale: $b_i \neq a_{i,i}$ per definizione.

In generale possiamo dimostrare il Teorema di Cantor:

Teorema. Sia A un insieme $e \wp(A)$ l'insieme dei sotoinsiemi di A. Non esiste una funzione bi-iettiva $f: A \to \wp(A)$.

Esercizio.

Struttura matematica degli argomenti diagonali.

Un elemento $x \in A$ è un punto fisso di una funzione $f: A \to A$ se f(x) = x. Buona parte delle funzioni non ha punti fissi, come la funzione successore s(n) = n+1 o la funzione $g: \{0,1\} \to \{0,1\}$ tale che g(x) = 1?x. Ma la funzione $f(x) = x^x$ ha 1 come punto fisso: $f(1) = 1^1 = 1$.

Nel lambda calcolo invece troviamo sempre dei punti fissi. La ragione è che il lambda calcolo rappresenta *metodi meccanici di computare le funzioni* (detti **algoritmi**) piuttosto che funzioni nel senso della teoria degli insiemi.

Ricorda che ogni computazione nel lambda calcolo consiste nella riscrittura di termini nel modo seguente:

$$(\lambda x.t)u \mapsto t[u/x].$$

Esempio: $(\lambda x.x + 1)3 = (x+1)[3/x] = 3+1$.

Una caratteristica inevitabile di tutti i metodi meccanici di computazione è che una computazione secondo tali metodi può non terminare.

Esempio: Possiamo scrivere $A = \lambda x.x(x)$. Nota bene: quando scriviamo x(x) il termine x è considerato una volta come funzione ed una volta come argomento. Ma cosa può significare una cosa del genere?

Un programma di computer è un insieme di istruzioni, che può essere codificato in una sequenza di numeri, ed in ultima analisi una sequenza di numeri può essere codificata in un unico numero; allora ha senso pensare di applicare un programma, codificato in una sequenza di numeri, al numero che codifica quel programma. È possibile definire fenomeni simili a proposito delle "computazioni biologiche" (DNA computing)?

Ora consideriamo

$$A(A) = (\lambda x. x(x))(\lambda x. x(x)).$$

Come si computa A(A)?

$$A(A) = (\lambda x.x(x))(A)$$

$$= x(x)[A/x]$$

$$= A(A)$$

Dopo un passo, la computazione mi ha restituito lo stesso termine; dunque posso continuare all'infinito!

Supponiamo che $\lambda x.t$ computi la funzione f(x) ed u rappresenti largomento n. Se la computazione di $(\lambda x.t)u$ termina in un lambda termine r, allora diciamo che il valore f(n) è rappresentato da r; altrimenti diciamo che f è una funzione parziale, che non è definita per largomento n.

Sia M un lambda termine qualsiasi. Definiamo $\Omega := \lambda x. M(x(x))$. Dimostra (in un passo di riduzione) che $\Omega(\Omega)$ è un punto fisso di M. (Esercizio.)

Dunque tutti i lambda termini hanno un punto fisso!

Mentre nel caso del paradosso di Russell un argomento diagonale è usato per dimostrare una impossibilità di definire la collezione di tutti gli insiemi come un insieme, nella teoria degli algoritmi gli "argomenti diagonali" ed i punti fissi sono un metodo fondamentale della computazione.