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Abstract. We reconsider Rauszer’s bi-intuitionistic logic in the framework of the

logic for pragmatics: every formula is regarded as expressing an act of assertion

or conjecture, where conjunction and implication are assertive and subtraction and

disjunction are conjectural. The resulting system of polarized bi-intuitionistic logic

(PBL) consists of two fragments, positive intuitionistic logic LJ
⊃∩ and its dual

LJ
rg , extended with two negations partially internalizing the duality between LJ

⊃∩

and LJ
rg . Modal interpretations and Kripke’s semantics over bimodal preordered

frames are considered and a Natural Deduction system PBN is sketched for the

whole system. A stricter interpretation of the duality and a simpler natural deduction

system is obtained when polarized bi-intuitionistic logic is interpreted over S4 rather

than bi-modal S4 (a logic called intuitionistic logic for pragmatics of assertions

and conjectures ILPAC). The term assignment for the conjectural fragment LJ
rg

exhibits several features of calculi for concurrency, such as remote capture of variable

and remote substitution. The duality is extended from formulas to proofs and it is

shown that every computation in our calculus is isomorphic to a computation in the

simply typed λ-calculus.

§1. Preface. We present a natural deduction system for proposi-
tional polarized bi-intuitionistic logic PBL, (a variant of) intuition-
istic logic extended with a connective of subtraction A r B, read as
“A but not B”, which is dual to implication.1 The logic PBL is
polarized in the sense that its expressions are regarded as express-
ing acts of assertion or of conjecture; implications and conjunctions
are assertive, subtractions and disjunctions are conjectural. Asser-
tions and conjectures are regarded as dual; moreover there are two
negations, transforming assertions into conjectures and viceversa, in
some sense internalizing the duality.

Our notion of polarity isn’t just a technical device: it is rooted in an
analysis of the structure of speech-acts, following the viewpoint of the

1We thank Stefano Berardi, Tristan Crolard, Arnaud Fleury, Nicola Gambino,
Maria Emilia Maietti and Graham White for their help at various stages of this
project.
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logic for pragmatics. An interesting consequence of polarization is
that in PBL only intuitionistic principles are provable. The natural
deduction system for the conjectural part has multiple-conclusions
but a single-premise and the term assignment associated to it is a
purely intuitionistic calculus related to Tristan Crolard’s calculus of
coroutines. The term assignment is related to a simple categorical
interpretation of PBL; however, we shall not develop the abstract
treatment here.

The consideration of Cecylia Rauszer’s bi-intuitionistic logic [29,
30] (also called Heyting-Brouwer or subtractive logic) from the point
of view of the logic for pragmatics has been advocated in a previous
work [5], where the philosophical background and motivations of a
logic of assertions and conjectures are discussed, a general outline of
such a logic is presented and a polarized sequent calculus ILP com-
plete for Kripke’s semantics over preordered frames is given. How-
ever, the logic ILP considerably departs from Rauszer’s tradition,
namely, from the works by Lawvere, Makkai, Reyes and Zolfaghari
in category theory [21, 31] and the more recent ones by R. Gore and
T. Crolard in proof theory [17, 9, 10]. The main difference is pre-
cisely in the semantic definition of the duality between the ordinary
assertive fragment and the conjectural one. This can be seen in the
modal translations: ILP is translated in the modal system S4, while
Rauszer’s logic has been translated into temporal S4. It seems that
the duality between assertions and conjecture, or between intuition-
istic logic and its dual, can be interpreted in many ways; a more
general treatment is therefore in order and this is what we begin to
do here. In the remainder of the introduction a brief presentation of
the logic for pragmatics is given first: sections 1.1, 1.3 are a summary
of the discussion of the logic of assertions and conjectures in the pa-
per [5]. Next the main features of a system of natural deduction for
dual intuitionistic logic are described.

1.1. Logic for pragmatics. The logic for pragmatics, as intro-
duced by Dalla Pozza and Garola in [12, 13] and developed in [5, 7, 6],
aims at a formal characterization of the logical properties of illocu-
tionary operators: it is concerned, e.g., with the operations by which
we performs the act of asserting a proposition as true, either on
the basis of a mathematical proof or by empirical evidence or by the
recognition of physical necessity, or the act of taking a proposition as
an obligation, either on the basis of a moral principle or by inference
within a normative system.
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The following is a rough account of the viewpoint in Dalla Pozza
and Garola [12]. There is a logic of propositions and a logic of judge-
ments. Propositions are entities which can be true of false, judge-
ments are acts which can be justified or unjustified. The logic of
propositions is about truth according to classical semantics. The
logic of judgements gives conditions for the justification of acts of
judgements. An instance of an elementary act of judgement is the
assertion of a proposition α, which is justified by the capacity to
exhibit a proof of it, if α is a mathematical proposition, or some
kind of empirical evidence if α is about states of affairs. It is then
claimed that the justification of complex acts of judgement must be
in terms of Heyting’s interpretation of intuitionistic connectives: for
instance, a conditional judgement where the assertion of β depends
on the assertibility of α is justified by a method that transforms any
justification for the assertion of α into a justification for the assertion
of β.

In modern logic the distinction between propositions and judge-
ments was established by Frege: a proposition expresses the thought
which is the content of a judgement and a judgement is the act of
recognizing the truth of its content. The distinction between propo-
sitions and judgements has recently been taken up by Martin-Löf: in
his formalism “α prop” expresses the assertion that α is a well-formed
proposition, and “α true” expresses the judgement that it is known
how to verify α. However, Martin-Löf seems to give propositions a
verificationist semantics: in order to give meaning to a proposition
we must know what counts as a verification of it.

Unlike Martin-Löf and in agreement with Frege, Dalla Pozza and
Garola distinguish between the truth of a proposition and the justi-
fication of a judgement, but extend Frege’s framework by introduc-
ing pragmatic connectives and by giving them Heyting’s interpreta-
tion while retaining Tarski’s semantics for the logic of propositions.
Therefore, Dalla Pozza and Garola seem to embrace a compatibilist
approach in the controversy between classical and intuitionistic logic:
classical logic is extended rather than challenged by intuitionistic
pragmatics, the latter having a different subject matter than the for-
mer. Formally, intuitionistic logic may simply be identified with the
logic of assertions whose elementary formulas have the form ⊢ p, for
p an atomic proposition, i.e., assertions whose justification is inde-
pendent of the (classical) propositional structure of their content.
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On the crucial issue of the relations between the intuitionistic logic
of pragmatic expressions and the underlying level of classical proposi-
tions, Dalla Pozza and Garola first extend the classical logic of propo-
sitions with modal operators, which are interpreted using Kripke’s se-
mantics, and then they rely on the S4 interpretation of intuitionistic
logic, due to Gödel, Tarski, McKinsey and Kripke, which they re-
gard as a reflection of the pragmatic level on the semantic one. This
method has been used also to introduce extensions of Dalla Pozza
and Garola’s approach to logics that exhibit the interactions between
the operators for assertions, obligations and causal implication [6] or
between assertions and conjectures [5]. In all these cases, a prag-
matics system is defined and a suitable modal extension of classical
propositional logic is found which provides a “semantic reflection”.

Evidently, the philosophical import of the logic for pragmatics de-
pends on the interpretation of such a reflection. If Kripke’s semantics
is regarded as faithfully expressing the essential logical content of the
pragmatic level, then a reductionist outcome of the logic of pragmat-
ics to classical modal logic seems likely. On the contrary, Kripke’s
semantics may be regarded as an abstract interpretation of intuition-
istic pragmatics: the rich content of the latter may be more faithfully
expressed in the diverse branches of intuitionistic mathematics, from
categorical logic and the typed λ-calculus, to game theory, than in
the former.

A possible philosophical interpretation of Dalla Pozza and Garola’s
logic for pragmatics is in terms of Stewart Shapiro’s epistemic ap-
proach to the philosophy of mathematics [33]. Justification of judge-
ments depends on knowledge; Kripke’s possible worlds may be re-
garded as possible states of knowledge and their preordering may
correspond to ways our knowledge could evolve in the future. Hav-
ing a proof of α now rules out the possibility of α being false at any
future state of knowledge, and the possibility that α may be false at
a future state of knowledge propagates the impossibility of having a
proof of α backwards to all previous states of knowledge. The epis-
temic interpretation of Kripke’s semantics can be given an ontolog-
ical significance: in this way Kripke’s possible world semantics can
be used to reduce intuitionistic mathematics to classical epistemic
mathematics; presumably, the intensional notion of a proof would
be explained away in an ontology of possible states of knowledge.
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On the other hand, Dalla Pozza insists that the logic for pragmat-
ics is an intensional logic, while Kripke’s semantics for modal logics
suggests an extensional interpretation of intensional notions. In the
field of deontic logic Dalla Pozza has successfully applied the inten-
sional status of the pragmatic operator of obligation, in opposition to
the extensional reading of the KD necessity operator, by introduc-
ing a distinction between expressive and descriptive interpretations
of norms, which appears to have resolved conceptual confusions [13].
Similarly, Frege’s symbol “⊢” may be regarded here as expressing
the intentionality of an act of judgement, while the S4 modality “2”
would perhaps describe conditions on the states of knowledge which
justify the appropriateness of such an act.

1.2. Assertions and Conjectures. Which criteria shall we fol-
low in extending the logic for pragmatics to a logic of conjectures?
First of all, such a logic cannot deal with positive justifications of
acts of conjecture, e.g., in terms of the likelihood of their proposi-
tional content being true: such a task would require other tools than
those available here. Second, a characterization of the relations be-
tween acts of assertion and acts of conjecture may be based upon
the similarity between what counts as a justification of the assertion
that α is true, on one hand, and what counts as a refutation of the
conjecture that α is false, on the other. Certainly in Dalla Pozza
and Garola’s approach, proving the truth of the proposition α is very
close to refuting the truth of ¬α. Thus a formal treatment of the
logic of conjectures could have the form of a calculus of refutations
and the overall system should axiomatize a notion of duality between
assertions and conjectures.

In [5] the following principles have been identified as plausible
starting points for the definition of the extension of the logic for
pragmatics with a logic of conjectures: 2

1. the grounds that justify asserting a proposition α certainly suf-
fice also for conjecturing it, whatever these grounds may be;
in other words ⊢ α ⇒H α should be an axiom of our logic of
assertions and conjectures;

2Notice that in the formula H¬α of (2), the negation is classical negation, not
the intuitionistic one: e.g., the conjecture H¬α may be refuted also by evidence
that a certain state of affairs α does not obtain, not necessarily by a proof that
there would be a contradiction assuming that α obtains.
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2. in any situation, the grounds that justify the assertion ⊢ α are
also necessary and sufficient to regard H¬α as unjustified;

3. pragmatic connectives are operations which express ways of
building up complex acts of assertion or of conjecture from ele-
mentary acts of assertion and conjecture. The justification of a
complex act depends on the justification of the component acts,
possibly through intensional operations.

Therefore our extension of the logic of pragmatics deals with acts of
assertion ϑ and acts of conjecture υ. The language L−

ϑυ has symbols
for elementary assertions ⊢ α and the constant

∨
, for an assertion

which is always justified, and symbols for acts of composite type,
conjunctive ϑ1 ∩ ϑ2 and implicative ϑ1 ⊃ ϑ2 ones; similarly, we have
symbols for elementary conjectures H α and the constant

∧
, for a

conjecture which is always refuted, and symbols for conjectural acts
of composite type, disjunctive υ1 g υ2 and subtractive υ1 r υ2 ones.
We define the duality ( )⊥ inductively thus:

( ⊢ p)⊥ = H¬p (H p)⊥ = ⊢ ¬p
(
∨

)⊥ =
∧

(
∧

)⊥ =
∨

(ϑ0 ⊃ ϑ1)
⊥ = ϑ⊥

1 r ϑ⊥
0 (υ0 r υ1)

⊥ = υ⊥
1 ⊃ υ⊥

0

(ϑ0 ∩ ϑ1)
⊥ = ϑ⊥

0 g ϑ⊥
1 (υ0 g υ1)

⊥ = υ⊥
0 ∩ υ⊥

1

The methodological principles above indicated support an intu-
itive interpretation of the duality between acts of assertion and of
conjecture. 3 The main contribution of this paper is to define a
proof-system for the logic of assertions and conjectures and to show
that in this proof-system the above notion of duality can be extended
from formulas to proofs.

A further step is to extend the language L−

ϑυ to a language Lϑυ

which has a strong negation ∼ υ =df υ ⊃
∧

and a weak negation
a ϑ =df

∨
rϑ. These connectives “internalize” the action of the

duality ( )⊥.4

However, in order to motivate the specification of a proof-system
for our logic, we consider the mathematical interpretation of the
language Lϑυ which result from a modal interpretation. Indeed in
a logic for pragmatics the acts of assertions and conjecture must

3However, our first principle introduces an asymmetry which is not accounted
for here.

4It should be clear that strong and weak negations extend the language Lϑυ :
they turn assertion into conjectures and viceversa, therefore are not definable
within L−

ϑυ.
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be related to the epistemic conditions by which they are justified
through an extension of the Gödel’s, McKinsey and Tarski’s and
Kripke’s translation of intuitionistic logic into S4.

Thus let F = (W, R, S) be a bimodal frame, where R and S are
arbitrary preorders. The forcing conditions for 2α and 2- α are
defined thus:

w 
 2α iff w′ 
 α for all w′ ∈ W such that wRw′;
w 
2- α iff w′ 
 α for all w′ ∈ W such that wSw′.

Now define the modal translation (Lϑυ)
M inductively thus:

( ⊢ α)M = 2α (Hα)M = 3- α
(
∨

)M = ⊤ (
∧

)M = ⊥
(ϑ1 ⊃ ϑ2)

M = 2(ϑM
1 → ϑM

2 ) (υ1 r υ2)
M = 3- (υM

2 ∧ ¬υM
1 )

(ϑ1 ∩ ϑ2)
M = ϑM

1 ∧ ϑM
2 (υ1 g υ2)

M = υM
1 ∨ υM

2

from which one easily shows ϑM ≡ 2ϑM and υM ≡3- υM . 5

As R and S are preorders,

2 2- 2α → 2α and 3- α →3- 3 3- α

are certainly valid in F . It is easy to see that

(1) 2α → 2 2- 2α and (2) 3- 3 3- α →3- α

are valid in every Kripke model over F if and only if R = S.

Our methodological principles strongly support the identification
R = S, i.e., defining the modal translation thus:

(Hα)M = 3α, (υ1 r υ0)
M = 3(υM

1 ∧ ¬υM
0 ) (§)

Indeed, the validity of 2α ⇒ 3α in S4 satisfies (1) and the equiv-
alence 2α ≡ ¬3¬α satisfies (2). Moreover, by (3) υ1 r υ0 also
expresses an act of conjecture, thus the choices in (§) cannot be
separated.

An corollary of this choice is that the modal translations of strong
negation (∼ A)M = 2¬AM and of weak negation (⌢ A)M = 3¬AM

support the interpretation of these connectives as inverses: if ϑ is an
assertive formula and υ a conjectural one then

∼⌢ ϑ ⇐⇒ ϑ and ⌢∼ υ ⇐⇒ υ

5Notice that the above methodological principles do not support the other
well-known translation ( )G which yields (p)G = p, (A ⊃ B)G = 2AG → BG

and (A ∪ B)G = 2AG ∨ 2BG: here atomic symbols stand for propositions, not
for elementary acts of judgement.
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Moreover, writing F (ϑ) for a ϑ and G(υ) for ∼ υ the following
equalities and rules are semantically justified:

F ( ⊢ p) =H¬p G(H p) = ⊢ ¬p

F (ϑ0 ∩ ϑ1) = F (ϑ0)g F (ϑ1) G(υ0 g υ1) = G(υ0) ∩ G(υ1)

F (
∨

) =
∧

G(
∧

) =
∨

ϑ ⇒ G(υ)

F (ϑ) ⇐ υ

G(υ) ⇒ ϑ

υ ⇐ F (ϑ)

1.3. Heyting-Brouwer Logic. Let us give a closer look at the
semantics of Rauszer’s Heyting-Brouwer logic. A co-Heyting algebra
is a (distributive) lattice C such that its opposite Cop is a Heyting
algebra. In Cop the operation of Heyting implication B → A is
defined by the familiar adjunction, thus in the co-Heyting algebra C
co-implication (or subtraction) A r B is defined dually

C ∧ B ≤ A

C ≤ B → A

A ≤ B ∨ C

A r B ≤ C

In this tradition the crucial move has been to consider bi-Heyting
algebras, which have both the structure of Heyting and co-Heyting
algebras. The topological models of the Heyting-Brouwer logic are
bi-topological spaces, but every bi-topological space consists of the fi-
nal sections of some preorder; the categorical models are bi-Cartesian
closed categories, but unfortunately by Joyal’s argument bi-CCC’s
collapse to partial orderings (see [10]). Since in a bi-CCC for every
pair of objects A, B, Hom(A, B) has at most one element, in such
a categorical model of the Heying-Brouwer logic it is impossible to
define a sensible notion of identity of proofs.

In the framework of the logic for pragmatics, the objects of an
Heyting algebra and of a co-Heyting algebras cannot be identified,
but alternative modal translations are possible without such identifi-
cation. We may define Kripke models for Heyting-Brouwer logic over
bimodal preordered frames F = (W, R, S) where S = R−1, namely
over temporal S4 rather than S4. This shows that our choice (§) is
not the only reasonable one, at least from a mathematical viewpoint.
Looking at this interpretation in the light of our methodologica cri-
teria, we see that criterion (1) is still satisfied, as 2α ⇒3- α, and so
is (3) but not (2): indeed now 2α and 3- ¬α may be both true at
some possible world w, i.e., the modal translation into temporal S4
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justifies asserting α while at the same time conjecturing ¬α. Never-
theless, even from a philosophical viewpoint it would be premature
to rule out alternatives to (§): indeed a naif reading of Kripke’s pos-
sible worlds as states of knowledge in a temporal sequence may be
philosophically questionable.

The pragmatic system for assertions and conjectures whose modal
translation is interpreted over bimodal frames F = (W, R, S) where
R and S are arbitrary preorders is called polarized bi-intuitionistic
logic (PBL). We reserve the name intuitionistic pragmatic logic of
assertions and conjectures (ILPAC) for the pragmatic system for
assertions and conjectures whose modal translation is interpreted
within S4 (i.e., over bimodal frames F = (W, R, S) where R = S).
It follows that PBL is more general than our logic ILPAC: indeed
if we add the axioms

(1) ϑ ⇒∼⌢ ϑ and (2) ⌢∼ υ ⇒ υ

to an axiomatization of PBL then we obtain an axiomatization of
ILPAC.

Notice that in PBL we only have ∼a ϑ ⇒ ϑ and υ ⇒a∼ υ. We
still have

ϑ ⇒ G(υ)

F (ϑ) ⇐ υ

υ ⇐ F (ϑ)

G(υ) ⇒ ϑ

but the bottom-up directions no longer hold.

1.4. Natural Deduction. The Curry-Howard correspondence be-
tween propositions of intuitionistic logic and types, on one hand,
and between proofs in intuitionistic Natural Deduction NJ and λ-
terms, on the other, and moreover the abstract characterization of
the Curry-Howard correspondence in terms of Cartesian closed cat-
egories, are remarkable discoveries and powerful motivations for the
study of Gentzen systems in the last three decades. The Curry-
Howard correspondence can be illustrated in the most elementary
way by decorating Natural Deduction derivations with λ-terms, so
that the resulting trees may be regarded either as logical deductions
or as type derivations; then one shows that in this representation
β-reduction actually coincides with the reduction of cuts (maximal
formulas).

It may be worth remembering that when deductions are regarded
as type derivations, they are usually represented as directed trees,
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whose edges are labelled with intuitionistic sequents and vertices are
labelled with deduction rules, as in the rules for implication6:

⊃-E (application):
x : Θ ⊲ t : ϑ1 ⊃ ϑ2 x : Θ ⊲ u : ϑ1

x : Θ ⊲ tu : ϑ2

⊃-I (λ-abstraction):
x : Θ, x : ϑ1 ⊲ t : ϑ2

x : Θ ⊲ λx.t : ϑ1 ⊃ ϑ2

Here all the information needed to verify the correctness of the
derivation and to determine which open assumptions an edge de-
pends on (and, in particular, which open assumptions are discharged
in an ⊃-I inference), is exhibited locally in each sequent. But Prawitz
[27] gives another presentation of deductions as directed trees, where
edges are labelled with formulas and vertices are labelled with in-
ference rules, together with pointers, mapping the leaves which are
closed assumptions to the inferences by which they are discharged.
It should be recalled that such a proof-graph does not determine a
deduction in a unique way: for instance, if a proof-graph τ represents
a deduction d of A from Γ, then it may also represent any deduction
of A from Γ′, for Γ ⊆ Γ′. Thus additional information must be pro-
vided to determine the intended derivation: as in the definition of
type derivations, we may regard deduction rules as clauses of an in-
ductive definition and we may assume that correct proof-graphs are
those which are inductively generated in accordance with the deduc-
tion rules7. However, an important feature of proof-graphs is that
the verification of their correctness as derivations is a global affair; in
particular, an obvious linear-time algorithm determines for any edge
which open assumptions it actually depends on. The more recent
representation of non-intuitionistic proofs through proof-nets shares
this feature with Prawitz’s Natural Deduction.

6We shall use the symbol “⇒” for the consequence relation in the sequent
calculus, “−” in the deduction rules of Natural Deduction systems and “⊲” in
type derivations.

7In Prawitz [27] pp. 19-24, the inference rules of first-order intuitionistic and
classical Natural Deduction are listed and then it is pointed out that these rules
“do not characterize a system of natural deduction completely, since it is not
stated in them how assumptions are discharged” and also how global restrictions
on the open assumptions are verified; thus the distinction is introduced between
proper inference rules, namely, &-I, &-E, ⊃-E, ∨-I, ∀-E, ∃-I and

∧
I , and improper

ones, namely, ⊃-I, ∨-E, ∀-I, ∃-E and
∧

C , which must be determined by deduction
rules in order for their correctness to be verified and for the deduction to be
fully determined. Since in Prawitz [27] the &-I rule is multiplicative but the &-E
rules are additive (and dually for disjunction), in the normalization process some
actual dependencies may become vacuous; thus the issue of the representation
of vacuous dependencies affects the definition of normalization of proof-graphs.
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Already in the implicational and conjunctive fragment NJ⊃∩ of
NJ proof-graphs are directed trees with complex additional struc-
ture of logical, computational and geometric significance. In a di-
rected proof-tree, the direction from the leaves to the root, may be
called main orientation. Prawitz’s analysis of branches in normal de-
ductions for the fragment NJ⊃∩ ([27] p. 41) identifies an elimination
part, where vertices are ⊃-E (applications) or ∩-E (projections), fol-
lowed by an introduction part, where vertices are ⊃-I (λ-abstractions)
or ∩-I (pairings). Branches are connected at an application vertex:
the child branch terminates at the minor premise (argument position)
while the parent branch continues from the major premise (function
position) to the conclusion. This analysis identifies a “flow of infor-
mation”, from the elimination part of a branch to its introduction
part, and from a branch to its parent, which may be called the input-
output orientation8. It is a remarkable feature of Natural Deduction
for NJ⊃∩ that the input-output orientation and the main orienta-
tion coincide in a deduction tree.9 In the sequent calculus LJ the
input-output orientation is “contravariant” in the antecedent and
“covariant” in the succedent, namely, it runs from a formula to its
ancestors in the antecedent and conversely in the succedent.

In the full system NJ the analysis of branches is subsumed in that
of paths ([27], pp. 52-3). Paths extend branches but in addition they
go from the major premise of a ∪-elimination I to any one of the
assumptions in the classes discharged by the inference I. Thus in
the case of ∪-elimination the main orientation diverges from input-
output orientation: here the tree structure of the derivation performs
a control function, namely, the verification that the minor premises
of the inference coincide.

8The terminology comes from research communities working on process calculi
and on linear logic in the early 1990s. From a computational point of view, the
analysis is spelt out in [3].

9An application of this remark is the explanation of Girard’s (or Danos-
Regnier’s) correctness conditions in the theory of proof-nets for classical mul-
tiplicative linear logic MLL− given in [3], section 5.4. Indeed a long trip on a
proof-net induces the input-output orientation of Natural Deduction on a proof-
net; moreover such orientations determine translations of formulas and proofs of
classical MLL− into formulas and proofs of intuitionistic MLL−. Abstractly
presented, this fact is a special case of Chu’s construction: a ∗-autonomous cat-
egory can be built as C × Cop from a free symmetric monoidal closed category
with products C and its opposite Cop (see [4]).
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1.5. Natural Deduction for conjectural reasoning. Our Nat-
ural Deduction for the logic of conjectures is a single-premise multiple-
conclusion system NJrg with rules for the conjectural connectives
of subtraction (r) and disjunction (g). NJrg is dual to the familiar
system NJ⊃∩, in a sense to be made precise below.

The deduction rules for subtraction are

r-I:
ǫ − Υ, υ1

ǫ − Υ, υ2, υ1 r υ2

r-E:
ǫ − Υ, υ1 r υ2 υ1 − Υ′, υ2

ǫ − Υ, Υ′

The r-introduction rule has following “operational interpretation”:
if from the conjecture ǫ the alternative conjectures Υ, υ1 follow, then
we may we specify our alternative υ1 by taking it as “υ1 but not υ2”,
on one hand, and by considering also υ2 as an alternative, on the
other hand.

The r-elimination rule can be explained as follows. Suppose we
have two arguments, one showing that ǫ yields the alternatives Υ or
else “υ1 but not υ2”, and another showing that υ1 yields the alterna-
tives Υ′ or υ2; then after assuming ǫ we are left with the alternatives
Υ and Υ′, but υ1 \ υ2 is no longer a consistent option.

The dynamics of our calculus is illustrated by the following reduc-
tion of a cut (maximal formula) υ1 r υ2:

ǫ − Υ, υ1
r-I

ǫ − Υ, υ2, υ1 r υ2 υ1 − Υ′, υ2
r-E

ǫ − Υ,Υ′, υ2

reduces to

ǫ − Υ, Υ′, υ2

Thinking in terms of the underlying proof-graph, in order to re-
move the r introduction-elimination pair we have substituted the
branch ending with the premise υ1 of the r-introduction for the
open assumption υ1 in the derivation of the minor premise υ2 of the
r-elimination; finally, we have identified this occurrence of υ2 with
the one which was a conclusion of the removed r-introduction.

Derivations still have a main orientation as directed trees, whose
edges are labelled with sequents of the form ǫ ⊢ Υ and vertices with
deduction rules. We define paths and the input-output orientation as
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follows. In a r-elimination, a path continues from the main premise
υ1 r υ2 to the assumption υ1 discharged by the inference; any path
reaching the minor premise υ2 ends there. In the r-introduction,
a path begins at the conclusion υ2 and another continues from the
premise υ1 to the other conclusion υ1 r υ2. The relation between
these edges υ1 r υ2 and υ2 is the same between the major premise
and the minor premise of a ⊃-elimination, i.e., it establishes the
relation between the child branch which υ2 belongs to and its parent
branch continuing through υ1 r υ2. The main difference is that the
flow of information here goes from the parent branch to its children
branches: if in considering the alternative υ1 we decide to exclude
υ2, then the new task of exploring the consequences of υ2 follows
from our decision.

Natural Deduction in NJrg may be regarded as a calculus of refu-
tations: a deduction, given refutations of the conclusions, yields a
refutation of the premise. Thus when a deduction is regarded as a
refutation, it would seem that the flow of information goes in the
opposite direction to the one described above, from the many con-
clusions to the unique open assumption of the derivation. However,
we have regarded a deduction NJrg as a process in which the task of
refuting the premise is specified in the subtasks of refuting its conse-
quences, as we have just seen in our discussion of the r-introduction
rule; in this sense it seems appropriate to say that here the flow of
information goes from the premise to the conclusions.

1.6. Term Assignment for conjectural reasoning. We ex-
tend the Curry-Howard correspondence by giving a term assignment
to out Natural Deduction system for NJrg10. The implicit presence
of contraction in the conclusion requires formulas to be labelled with
lists ℓ of terms. Terms t are defined by the following grammar:

10In [11] Tristan Crolard presents a Natural Deduction system and a term
assignment for Subtractive Logic, called λµ→+×−-calculus, in the tradition
of Parigot’s λµ-calculus for classical Natural Deduction. Restrictions on the
implication-introduction and subtraction-elimination rules are introduced to de-
fine a constructive system of Subtractive Logic and its term calculus. A crucial
difference of the approach presented here is that polarization prevents us from
expressing full classical logic; there is no obvious way for us to introduce a µ-
operator. It is an interesting problem for future research, an important one for
the project of logic for pragmatics, to find a more general framework in which
both the intuitionistic and the classical proof-theory could be fully expressed.
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t := x | false (ℓ1 . . . ℓn) | inl(ℓ) | inr(ℓ) | casel (ℓ) | caser (ℓ) |
continue from(x)using(ℓ) | postpone(x :: ℓ) until(ℓ′) |

and substitution of lists of terms within lists of terms is defined from
the usual substitution (avoiding capture of free variables) as follows:

()[ℓ′/x] = () (t · ℓ)[ℓ′/x] = t[ℓ′/x] · ℓ[ℓ′/x]
t[()/x] = () t[(u · ℓ)/x] = t[u/x] · t[ℓ/x]

All terms are typed with formulas as usual, except for the terms of
the form postpone: these are control terms.11 The rules for subtrac-
tion are labelled as follows:

r-I (continuation):

y : ǫ ⊲ ℓ : Υ, ℓ1 : υ1

y : ǫ ⊲ ℓ : Υ, z : υ2, continue from (z) using (ℓ1) : υ1 r υ2

r-E (postpone):

y : ǫ ⊲ ℓ : Υ, ℓ : υ1 r υ2 x : υ1 ⊲ ℓ′ : Υ′, ℓ2 : υ2

y : ǫ ⊲ ℓ : Υ, ℓ′[x/x] : Υ′, postpone(x :: ℓ2) until(ℓ) : •

Notice that in the r-elimination rule the term

u = postpone(x :: ℓ2) until(ℓ) : •

binds the occurrences of the variable x which occur in its subterm
ℓ2; but the occurrences of x within ℓ′ also become bound as a side
effect of the introduction of the term u. We use the typescript font
x to indicate that this occurrence of the variable x has been globally
captured by another term in the context.

A similar remark applies to the r-introduction rule: here the con-
clusions υ2 and υ1 r υ2 are introduced; the terms z : υ2 is certainly
not a free variable: it is bounded by the term continue from z

using ℓ1 : υ1 r υ2.

Le us consider the β-reduction of a redex corresponding to a r-
reduction. A derivation of the form

y : ǫ ⊲ ℓ : Υ, ℓ1 : υ1
r-I

y : ǫ ⊲ ℓ : Υ, z : υ2, t : υ1 r υ2 x : υ1 ⊲ ℓ′ : Υ′, ℓ2 : υ2
r-E

y : ǫ ⊲ ℓ : Υ, ℓ′[x/x] : Υ′, z : υ2,u : •

11The meaning of a ‘type’ • assigned to a postpone term resembles that of
absurdity.
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where

t = continue from(z) using(ℓ1)

and

u = postpone(x :: ℓ2) until(continue from(z)using(ℓ1))

is eventually reduced to

y : ǫ ⊲ ℓ : Υ, ℓ′[ℓ1/x] : Υ′, ℓ2[ℓ1/x] : υ2

Notice that when the major premise υ1 r υ2 of a r-elimination is
the conclusion of a r-introduction, then the term t : υ1 r υ2 is not
a redex, but some control term u : • is a redex.

When such a redex u is removed the control term disappears; we
substitute ℓ1 for x in ℓ2, which are subterms of u and thus “locally
available”. But then the resulting term ℓ2[ℓ1/x] must be substituted
for z : υ2 and also ℓ1 must be substituted for x in ℓ′[x/x] : Υ′;
these are remote substitutions which take place as the remote binding
determined by u is removed. Therefore commands to perform such
substitutions must be broadcast to the context and the execution
of such commands may be performed in parallel. We shall not try
to implement remote substitution here: we simply introduce control
terms expressing remote substitutions {x ::= ℓ} and then describe
their intended effect. We expect the specification of their action may
be achieved in an elegant way using familiar techniques from calculi
for concurrency.

We have interpreted Natural Deduction NJrg as a calculus where
the “flow of information” goes from the premise to the conclusions:
what we have obtained is a calculus related to Crolard’s coroutines
typed within this intuitionistic system. On the other hand, if the
“flow of information” is regarded as going from the conclusions to
the open assumption, and therefore variables are assigned to the con-
clusions and terms to the premises, what we obtain is the familiar
simply typed λ-calculus, which is assigned also to the dual fragment
NJ⊃∩. The duality between these points of view can be mathemati-
cally expressed as an orthogonality functor ( )⊥ from NJrg to NJ⊃∩.
The analysis of paths yields a geometric representation of the duality
between NJrg and NJ⊃∩: the flow of information in a derivation of
Υ from ǫ can be represented as the proof-tree of a derivation of ǫ⊥
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form Υ⊥ “turned upside down” (as in examples given at the end of
this paper).

Finally, the systems NJ⊃∩ and NJrg can be combined in a larger
system; their interaction is handled by rules of right-∼, left-a. A
proper specification of their behaviour, however, and the interesting
issues it evokes concerning the rules of Contraction are left to future
research.

§2. The pragmatic language of assertions and conjectures.

The language LP of the logic for pragmatics [5], characterizing the
logical properties of the acts of assertion and conjecture, is based on
a countable set of propositional letters p1, p2, . . . , from which radical
formulas α are built using the classical propositional connectives ¬,
∧, ∨, →. The elementary formulas are either the elementary con-
stants

∨
and

∧
, or they are obtained by prefixing a radical formula

α with a sign of illocutionary force “⊢” for assertion and “H” for
conjecture. The sentential formulas of LP are built from elementary
formulas using pragmatic connectives of conjunction, disjunction, im-
plication and subtraction; these connectives denote operations build-
ing complex acts of assertion or conjecture from the elementary ones.
We use ϑ, ϑ1, . . . to denote assertive expressions and υ, υ1. . . . to
denote conjectural expressions.

In the framework of logic for pragmatics, the treatment of intu-
itionistic logic is obtained by regarding the radical part of pragmatic
expressions as constant. (For a consideration of some interactions
between the radical part and the pragmatic level, see [5].)

Here we are interested only in a fragment of the gigantic language
LP , the language L−

ϑυ given as follows.

Definition 1. (i) The language L−

ϑυ is generated by the following
grammar:

ϑ := ⊢ α |
∨

| ϑ ⊃ ϑ | ϑ ∩ ϑ

υ := Hα |
∧

| υ r υ | υ g υ

where α is atomic p or the negation ¬p of an atomic proposition.

(ii) We define the duality ( )⊥ on L−

ϑυ inductively thus:
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( ⊢ p)⊥ = H¬p (H p)⊥ = ⊢ ¬p
( ⊢ ¬p)⊥ = H p (H¬p)⊥ = ⊢ p

(
∨

)⊥ =
∧

(
∧

)⊥ =
∨

(ϑ0 ⊃ ϑ1)
⊥ = ϑ⊥

1 r ϑ⊥
0 (υ0 r υ1)

⊥ = υ⊥
1 ⊃ υ⊥

0

(ϑ0 ∩ ϑ1)
⊥ = ϑ⊥

0 g ϑ⊥
1 (υ0 g υ1)

⊥ = υ⊥
0 ∩ υ⊥

1

(iii) Later, we shall interested in the extension Lϑυ of L−

ϑυ obtained
from the above grammar by adding also the clauses

ϑ := ∼ υ and υ := a ϑ

The informal interpretation of the language Lϑυ is as follows.

Definition 2. (Informal Interpretation) (i) Radical formulas are
interpreted as propositions, which can be true or false.

(ii) Sentential expressions ϑ and υ are interpreted as impersonal il-
locutionary acts of assertion and conjecture, respectively, which can
be felicitously or infelicitously made. Assertions can be justified or
unjustified, and are felicitous or infelicitous accordingly. Conjectures
can be refuted or unrefuted and we shall make the (perhaps unintu-
itive) convention that conjectures are infelicitous precisely when they
are refuted, and felicitous if they are unrefuted.

1.
∨

is assertive and always justified,
∧

is conjectural and always re-
futed.

2. ⊢ α is justified if and only if a proof can be exhibited that α is true.
Dually, H α is refuted if and only if a proof that α is false can be
exhibited.

3. ϑ1 ⊃ ϑ2 is justified if and only if a proof can be exhibited that a
justification of ϑ1 can be transformed into a justification of ϑ2; it is
unjustified, otherwise. Dually, υ1 rυ2 is refuted if and only if a proof
can be exhibited that a refutation of υ2 can be transformed into a
refutation of υ2; it is unrefuted otherwise.

4. ϑ1 ∩ ϑ2 is justified if and only if ϑ1 and ϑ2 are both justified; it is
unjustified, otherwise. Dually, υ1g υ2 is refuted if and only if υ1 and
υ2 are both refuted; it is unrefuted otherwise.

5. ∼ υ is justified if and only if a proof can be exhibited that to assume
υ justified would lead to a contradiction and a ϑ is refuted if and
only if a proof can be exhibited that a refutation of ϑ would be
inconsistent.

(iii) A fragment of the language LP is intuitionistic if only atomic
radicals occur in it.
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§3. Bimodal S4. The bimodal language L
2,2-, an extension of

the classical radical part of LP is defined as follows.

Definition 3. (i) Let p range over a denumerable set of propo-
sitional variables Var = {p1, p1, . . . }. The language L

2,2- is defined
by the following grammar.

α := p | ¬α | α ∧ α | α ∨ α | α → α | 2α | 2- α

Define 3α =df ¬2¬α and 3- α =df ¬ 2- ¬α.

(ii) Let F = (W, R, S) be a multimodal frame, where W is a set, R
and S are preorders on W . Given a valuation function V : Var →
℘(W ), the forcing relations are defined as usual:

• w 
 2α iff ∀w′.wRw′ ⇒ w′ 
 α,
• w 
 2- α iff ∀w′.wSw′ ⇒ w′


 α.

(iii) We say that a formula A in the language L
2,2- is valid in bimodal

K [valid in bimodal S4] if A is valid in all bimodal frames F =
(W, R, S) [where R adn S are preorders].

Lemma 1. Let F = (W, R, S) be a multimodal frame, where R and
S are preorders.
(i) The following are valid in F :

2 2- 2α → 2α and 3- α →3- 3 3- α

(ii) The following are equivalent:
1. R = S;
2. the following schemes are valid in F

(Ax.i) 2α → 2 2- 2α and (Ax.ii) 2- α →2- 2 2- α

3. the following rules is are valid in F :

(R.i)
3- ¬2α ⇐3- β

2α ⇒ 2¬ 3- β
and (R.ii)

2¬ 3- β ⇒ 2α

3- β ⇐3- ¬2α

Proof of (ii). (1 ⇒ 2) is obvious. (2 ⇒ 1): If S is not a subset of
R, then given wSv and not wRv define a model on F where w′ 
 p
for all w′ such that wRw′ but v 6
 p; thus 2p → 2 2- 2p is false at
w. Similarly, using (Ax.ii), if R is not a subset of S.

(2 ⇒ 3): If 3- ¬2α ⇐3- β is valid in F then so is 2¬ 3- ¬2α ⇒
2¬ 3- β and the conclusion of (R.i) is valid because of (Ax.i).



DUAL LAMBDA CALCULUS 19

If 2¬ 3- β ⇒ 2α is valid in F , then so is 3- ¬2¬ 3- β ⇐3- ¬2α and
the conclusion of (R.ii) is valid because of (Ax.ii).

(3 ⇒ 2): (Ax.i) is obtained by applying (R.i) to 3- ¬2α ⇐3- ¬2α
and similarly (Ax.ii) is obtained by applying (R.ii) to 2¬ 3- β ⇒
2¬ 3- β.

In the Appendix, Section 7, we give sequent calculi for bimodal
K and S4 and outline a completeness theorem for them, base on
semantic tableaux procedure.

3.1. Modal and bimodal interpretations of Lϑυ. We give the
bimodal interpretation of Lϑυ, proper of Polarized Bi-intuitionistic
Logic.

Definition 4. (i) The interpretation ( )M of Lϑυ into L
2,2- is de-

fined inductively thus:

(
∧

)M =df ⊥ (
∨

)M =df ⊤
( ⊢ α)M =df 2α (Hα)M =df 3- α

(ϑ1 ⊃ ϑ2)
M =df 2(ϑM

1 → ϑM
2 ) (υ1 r υ2)

M =df 3- (υM
1 ∧ ¬υM

2 )
(ϑ1 ∩ ϑ2)

M =df ϑM
1 ∧ ϑM

2 (υ1 g υ2)
M =df υM

1 ∨ υM
2

(∼ υ)M =df 2¬υM (a ϑ)M =df 3- ¬ϑM

It is immediate to prove that ϑM ⇐⇒ 2ϑM and υM ⇐⇒ 3- υM .

(ii) The propositional theory PBL is the set of all formulas δ in the
language Lϑυ such that δM is valid in every preordered bimodal frame
(i.e, in any frame (W, R, S) where R and S are arbitrary preorders).

(iii) The propositional theory ILPAC is the set of all formulas δ in
the intuitionistic fragment of the language Lϑυ such that δM is valid
in S412.

Remark. (i) Let F = (W, R, S) be a bimodal preordered frame
where S = R−1. Then by Lemma 1(i) ∼a ϑ ⊃ ϑ is valid in F and
υr a∼ υ is contradictory in F . However, if a bimodal frame F =
(W, R, R−1) has backwards branching as well as forward branching,
then there are models over F which falsify ϑ ⊃∼a ϑ and models
over F which satisfy a∼ υ r υ.

12This is the set of all formulas δ ∈ Lϑυ such that δ has only atomic radicals
⊢ p or H p and δM is valid in every preordered bimodal frame (W, R, S) where
R = S.
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(ii) Let F = (W, R, S) be a bimodal frame where R and S are pre-
orders. If the schemes

(1) ϑ ⇒∼a ϑ and (2) a∼ υ ⇒ υ

are valid in F for all ϑ and for all υ, then by Lemma 1 we have
R = S. It follows that ILPAC may be regarded as an axiomatic
theory of PBL.

(iii) Notice that the duality ( )⊥ cannot be defined in the intuitionistic
fragment of the language L−

ϑυ, as it relies on the classical equivalence
p ≡ ¬¬p. However, we do not need the full power of classical rea-
soning here; what is required is a polarization of the atoms as p+

0 ,
p−0 , p+

1 , p−1 , . . . , i.e., an involution without fixed points on them.

(iv) In ILPAC, but not in PBL a ⊢ p is equivalent to H¬p and also
∼H p is equivalent to ⊢ ¬p. Therefore the intuitionistic fragment
of Lϑυ, where only atomic radicals are considered, has the same
expressive power than Lϑυ.

(v) The purely assertive intuitionistic fragments (with formulas in
L−

ϑ ) of PBL and ILPAC coincide, and so do their purely conjectural
intuitionistic fragments.

In Polarized Bi-intuitionistic Logic the two connectives “∼” and
“a” are “real negations”, not orthogonalities. However, to a certain
extent negations internalize the duality ( )⊥ between conjectures and
assertions. However, there is a significant difference here between
PBL and ILPAC, as indicated by the following Lemma, whose proof
is immediate from Lemma 1.

Lemma 2. Write F (ϑ) for a ϑ and G(υ) for ∼ υ.

(i) The following equalities and rules are valid in ILPAC:

(a) F ( ⊢ p) =H¬p G( H p) = ⊢ ¬p

(b) F (ϑ0 ∩ ϑ1) = F (ϑ0)g F (ϑ1) G(υ0 g υ1) = G(υ0) ∩ G(υ1)

(c) F (
∨

) =
∧

G(
∧

) =
∨

(d)
ϑ ⇒ G(υ)

F (ϑ) ⇐ υ

G(υ) ⇒ ϑ

υ ⇐ F (ϑ)

(ii) In PBL (b) and (c) hold, but (a) doesn’t. Moreover, we have
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ϑ ⇒ G(υ)

F (ϑ) ⇐ υ

υ ⇐ F (ϑ)

G(υ) ⇒ ϑ

but the bottom-up directions do not hold.

§4. Sequent Calculus for PBL. The intuitionistic fragments
of ILPAC and PBL are formalized by sequent calculi which con-
tains only rules for the pragmatic connectives. The characteristic
feature of G3 sequent calculi [34] is that the rules of Weakening and
Contraction are implicit. The sequent calculus for the logic PBL

considered here is of this type and so is the sequent calculus sys-
tem for ILP given in [5]. It can be proved [8] that in ILPAC-G3

the rules of Weakening and Contraction are admissible preserving
the depth of the derivation and that the rules Cut can be given the
context-sharing form, rather than the multiplicative form.

Since all formulas of the language LP are polarized as assertive or
conjectural, sequents of PBL-G3 have a restricted form, inspired by
Girard’s logic LU [15].

Definition 5. All the sequents S are of the form

Θ ; ǫ ⇒ ǫ′ ; Υ

where

• Θ is a sequence of assertive formulas ϑ1, . . . , ϑm;
• Υ is a sequence of conjectural formulas υ1, . . . , υn;
• ǫ is conjectural and ǫ′ is assertive and exactly of ǫ, ǫ′ occurs.

The rules of PBL-G3 are given in Table 3.

Remark. The only formal difference between PBL-G3 and ILPAC-
G3 is the restrictions on the ⊃-right, ∼-right, r -left anda -left rules.
In PBL-G3 the rules of ⊃-right and r -left have the forms

Θ, ϑ1 ; ⇒ ϑ2 ;

Θ ; ⇒ ϑ1 ⊃ ϑ2 ; Υ

; υ1 ⇒ ; Υ, υ2

Θ ; υ1 r υ2 ⇒ ; Υ

while in ILPAC-G3 the formulas in Υ and Θ are allowed in the
sequent-premise of ⊃-right and r -left, respectively; similar remarks
apply to ∼-right and a -left. In Table 3 the restricted rules are
marked with (¶). It is obvious that the schemes

(1) ϑ ⇒∼a ϑ and (2) a∼ υ ⇒ υ
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(section 3.1) are derivable in ILP; conversely, the unrestricted rules
of ILP become derivable in PBL using cut with the schemes (1) and
(2) taken as axioms.

A proof of the following theorem is sketched in Section 7.

Theorem 1. The intuitionistic sequent calculus PBL− G3 with-
out the rules of cut are sound and complete with respect to the inter-
pretation in bimodal S4.

§5. Natural Deducation Systems INPAC and PBN. We out-
line two Natural Deduction system: INPAC for the Intuitionistic
Logic for Pragmatics of Assertions and Conjectures and PBN for
Polarized Bi-intuitionistic Logic. In this paper we will not give full
treatments of these systems; the main result here is about purely
conjectural fragment, which is common to both. A proper treatment
of the (most interesting) negation rules is left to future work.

Notation. (i) INPAC is the Natural Deduction system for the In-
tuitionistic Logic for Pragmatics of Assertions and Conjectures on
the language Lϑυ, with rules of inference and rules of deduction for
assertive connectives, conjectural connectives and negations. There
are β-reductions for all connectives except

∨
and

∧
and commuta-

tions for
∨

-introduction and
∧

-elimination.

(ii) PBN is the Natural Deduction system for Polarized Bi- intuition-
istic Logic. It is like INPAC, except that the rules ⊃-introduction,
r-elimination, ∼-introduction and a-elimination have restrictions
corresponding to those for the corresponding rules of the sequent
calculus (which are marked (¶) in Table 3). There are β-reductions
for all connectives except

∨
and

∧
and commutations for all con-

nectives except ∩ and g.

(iii) Leaving out the rules of negation and working with the language
L−

ϑυ, our Natural Deduction systems split in two parts:

• NJ⊃∩, the familiar many-premises single-conclusion Natural De-
duction system with rules for intuitionistic implication (⊃), conjunc-
tion (∩) and validity (

∨
);

• NJrg, a single-premise multiple-conclusion Natural Deduction sys-
tem with rules for subtraction (r), weak disjuncion (g) and absur-
dity (

∧
).
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Definition 6. (Proof-graphs and Rules of Inference) (i) A proof-
graph is a directed acyclic and connected labelled graph G =
(V, E, L, C, D) where

• the labelling function L maps edges in E to formulas of the
language Lϑυ and vertices in V to rules of inference; vertices
with no incoming edge are called assumptions and vertices with
no outgoing edge are called conclusions;

• C is an equivalence relation on edges such that e1Ce2 implies
L(e1) = L(e2). Equivalence classes of assumption [conclusions]
are called assumption classes [conclusion classes ] .

• the partial discharge function D maps assumptions classes to
vertices (namely, an assumption class to the inference in virtue
of which all formulas in the assumption class are discharged).

(ii) The rules of inference for INPAC must have the form indicated
below in Table 4.

(iii) The rules of inference proper of PBN are the restricted rules
(⊃-introduction, r-elimination, ∼-introduction and a-elimination)
given in Table 8; all other rules are unrestricted and have the same
form as those for INPAC given in Table 4.

Remarks on notation. (i) The absence of explicit structural rules
is a distinctive feature of Prawitz’s Natural Deduction for NJ⊃∩.
Implicit left Contraction is implemented through the equivalence re-
lation C which collects assumptions into assumption classes, and
becomes active in the discharging operations associated with ⊃-I.
Notice that the latter implicitly involves also the structural rule Ex-
change left. Following the convention of Prawitz [27], we write [A]
for a class of assumptions of the form A in a proof-graph which are
discharged by an inference ⊃-I. In PBN this rule is restricted and
has extra premises ϑ′

1, . . . , ϑ′
m; every extra premise ϑ′

i discharges an
assumption class [ϑ′

i].

(ii) Following a common convention in the literature, the notation
d1

...
[ϑ]

...
d2

in a reduction (or commutation) rule indicates that a copy of d1

has been susbtituted for each open assumption in the assumption
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class [ϑ] of d2 (identifying each assumption vertex in [ϑ] with the
conclusion vertex of the corresponding copy of d1) and that open
assumption classes [ϑi]

′ and [ϑi]
′′ in different copies d′

1 and d′′
1 of d1

have been merged.

(iii) Symmetrically, an inference r-E also “discharges” some conclu-
sions and we write (C) for a conclusion class which is discharged in
virtue of such an inference. Here again an implicit use is made of Ex-
change right. However, unlike assumption-classes, this information
affects the specification of the form of inference rule, i.e., the number
of minor premises of the inference in question, thus in some sense
the implicit use of Contraction right is manifest in the form of the
r-E rule13. In PBN this rule is restricted and has extra premises
(υ′

1), . . . , (υ′
m) and extra conclusions υ′

1, . . . , υ′
m, again with an im-

plicit use of Exchange right and Contraction right. A symmetric
convention to that in (ii) applies here with respect to the notation

d2

...
(υ)

...
d1

in a reduction or commutation rule. Namely, we substitute a copy
of the deduction d1 for each conclusion of d2 in (υ) (identifying each
conclusion vertex in (υ) with the unique assumption υ of the cor-
responding copy of d1) and merging the conclusion classes (υj)

′ and
(υj)

′′ occurring in different copies d′
1 and d′′

1 of d1.

(iii) Right Contraction appears in INPAC also in the ∼-I rule, a
rule introducing a single assertive formula from a variable number of
conjectural premises of the form

∧
.

Definition 7. (Rules of deduction) (i) The deduction rules that
characterize the systems INPAC are given in Table 5.

(ii) The deduction rules characterizing the system PBN are the same
as those for INPAC except for those corresponding to restricted rules
of inference given in Table 9.

(iii) Let G be a proof-graph for INPAC [or for PBN]. We say that
G represents a Natural Deduction derivation in INPAC [in PBN] if

13This “anomaly” is removed in an alternative formulation of the Rule of
Inference for r-E, mentioned in the Remark in section 6.2.
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G can be built inductively, using the deduction rules for INPAC [for
PBN] as inductive clauses.

(iv) Symmetric reductions (β-reductions) and commutations for the
system INPAC are given in Table 6 and 7.

(v) Symmetric reductions involving the restricted rules of system
PBN are given in Table 10; the other symmetric reductions (for ∩
and for g) are the same as for INPAC. The commutations for PBN

are those for INPAC (Table 7) and in addition those in Table 11.

Remark. In PBN (as in the corresponding PBL-G3 sequent cal-
culus rules) applications of ⊃-I, ∼-I, r-E and a-E require a global
control of the context of the inference. For an application of ⊃-I
to be correct, the premise must be derivable with a subderivation
having no conjectural assumption and no conjectural conclusions.
As a consequence, if ⊃-I had the same familiar form as in INPAC,
then an application of it may become invalid as a consequence of a
β-reduction. A solution is provided by giving it the form of a pro-
motion rule: such a rule has extra premises, as many as the open
assumption classes in the derivation of the major premise, and all
these open assumptions are discharged in virtue of the rule applica-
tion. The problem and this solution are well-known from work on
Natural Deduction for linear logic, but were already familiar in the
literature about modal logic (see [27], pp. 74-80 and [2]). A similar
problem arises with applications of the r-E, where the minor premise
must be derivable with a subderivation having no assertive assump-
tions and no assertive conclusion. It occurs also in the rules ∼-I and
a-E, which are superficially similar to ⊃-I and r-E, respectively.

The definitions of a path, a segment in a path and of maximal and
minimal segments in PBN follow from the analogue definition of
Prawitz [27] and are not given here. We shall not give a normal-
ization theorem for INPAC nor for PBN. A strong normalization
theorem for NJrg is a corollary of the same result for NJ⊃∩ and the
isomorphism theorem below.

§6. Term assignment for the assertive and conjectural frag-

ments. For the purely assertive fragment NJ⊃∩ we take the familiar
term assignment with terms of the simply typed λ-calculus. Namely,
we have an infinite list of variables, denoted by x, and terms are given
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by the following grammar:14

t := x | true (t1 . . . tn) | < t0, t1 > | π0t | π1t | λx.t | t0t1

Usually we will assign terms to natural deductions explicitly written
as type derivations with deduction rules and sequents of the form

x : Θ ⊲ t : ϑ.

However, we shall sometimes use the more concise notation and dec-
orate proof-graphs with terms.

6.1. Term assignment for PBN, conjectural fragment. For
the purely conjectural fragment NJrg we will give type derivations
with sequents of the form

x : υ ⊲ ℓ : Υ

but here the term-assignment presents some novelties. One is that
we must label formulas with lists ℓ of terms, rather than just with
terms, in order to account for contraction of conclusions. Another is
the presence of global binding: as explained in the Preface (Section
1.6), variables become bound as a consequence of the introduction
of another term in the context (control term) and “frozen”, until the
computation of the latter makes them available again for substitu-
tion. For each symbol of variable x there will correspond exactly
one symbol x for a globally bound variable (the presence in the same
context of a free variable x and of its counterpart x is ruled out by
suitable conventions).

Since the process of computation may take place in control terms,
substitution becomes a global process, which has to be broadcast and
performed in remote terms. We shall express a command of remote
substitution by control expressions of the form {x ::= ℓ}. Remote
substitution shall coexist with ordinary substitution (avoiding cap-
ture of free variables), denoted by t[u/x] as usual. A parameter x in
a term can be substituted by a term through a command for remote
substitution; a free variable cannot occur in the left-hand side of a
command for remote substitution. However, we shall not attempt
to indicate an implementation of remote substitution: we will simply
say that in presence of a control term of the form {x ::= u} a term
of the form ℓ[x/x] will eventually become ℓ[u/x].

14In the global system PBN the restriction on the ⊃-I rule also prevents
unrestricted substitutions in the term calculus. Therefore we need terms of the
form promote t for x in λx.t, instead of just λx.t.
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Definition 8. We are given a countable set of free variables (de-
noted by x) and a contable set of globally bound variables (denoted
by x) together with a bijection between them.
(i) Terms and lists of terms are defined simulaneously by the follow-
ing grammar:15

t := x | x | false (ℓ1 . . . ℓn) | inl(ℓ) | inr(ℓ) | casel (ℓ) | caser (ℓ) |
continue from(x)using(ℓ) | postpone (x :: ℓ) until(ℓ′)

ℓ := () | t · ℓ

with the usual associative operation of append:

() ∗ ℓ′ = ℓ′ (t · ℓ) ∗ ℓ′ = t · (ℓ ∗ ℓ′).

If ℓ and ℓ′ are vectors of lists of the same length n, then ℓ ∗ ℓ′ =
(ℓ1 ∗ ℓ′1, . . . , ℓn ∗ ℓ′n).

(ii) Term expansion: Let op ( ) be one of
false (ℓ1 . . . ( ) . . . ℓn), inl ( ), inr ( ) casel ( ), caser( ),

continue from x using ( ) or postpone (x :: ℓ′) using ( ).

Then the expansion of op (ℓ) is the list defined inductively thus:

op () = () op (t · ℓ) = op (t) · op (ℓ)

Remark. By term expansion, a term consisting of an operator ap-
plied to a list of terms can always be turned into a list of terms;
thus terms may always be trasformed into an expanded form where
operators are applied only to terms, except for expressions (x :: ℓ′)
occurring in terms of the form postpone (x :: ℓ′) using (t).

Definition 9. The free variables FV (ℓ) in a list of terms ℓ are
defined as follows:

15In the full system PBN we may need to consider postpone terms of a more
elaborate form, such as postpone (x :: ℓ) until(ℓ′) with ℓ[x/x] for y. We also
need a closure requirement, i.e., the condition that in a term postpone (x :: ℓ)

until (ℓ′) with ℓ[x/x] for (y) we must have

FV (ℓ) \ {x} ∪ FV (ℓ[x/x]) = ∅.

This corresponds the condition that in an r-E inference υ1 must be the only
open assumption on which the minor premises depends, in particular they cannot
depend on an assertive assumption.
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FV (()) = ∅
FV (t · ℓ) = FV (t) ∪ FV (ℓ)

FV (x) = {x}
FV (x) = ∅

FV (false (ℓ1 . . . ℓn)) =
⋃

i≤n FV (ℓi)

FV (inl (ℓ)) = FV (inr (ℓ)) = FV (ℓ)
FV (casel (ℓ)) = FV (caser (ℓ)) = FV (ℓ)

FV (continue from (x) using (ℓ)) = FV (ℓ)
FV (postpone (x :: ℓ) until (ℓ′)) = FV (ℓ′) ∪ FV (ℓ) \ {x}.

Definition 10. Substitution of lists of terms within lists of terms
is defined from the usual substitution (avoiding capture of free vari-
ables) as follows:

()[ℓ′/x] = () t · ℓ[ℓ′/x] = t[ℓ′/x] · ℓ[ℓ′/x]
t[()/x] = () t[u · ℓ/x] = t[u/x] · t[ℓ/x]

If ℓ is a vector (ℓ1, . . . , ℓm), then ℓ[ℓ′/x] = (ℓ1[ℓ
′/x], . . . , ℓm[ℓ′/x]).

Definition 11. β-reduction ℓ β ℓ′ for lists of terms in the purely
conjectural fragment is defined as follows:

casel (inl ℓ) β ℓ; caser (inr ℓ) β ℓ;
casel (inr ℓ) β (); caser (inl ℓ) β ();

postpone (y :: ℓ′) until
(continue from (x) using(ℓ)) β {x ::= ℓ′[ℓ/y]}, {y ::= ℓ}

6.2. Typing judgement for the term calculus. The typing
judgements for the purely conjectural fragment NJrg are in the
following table.

We shall make the following pure variable requirement:

Different axioms are labelled with a different free variable.

Remark. (i) The deduction rule for g-E in the form given in Table
5 results from the one given above using substitution.

(ii) There is an alternative one premise definition to the rule of in-
ference r which takes the discharged assumption x : υ1 in our official
definition (Table 4) as conclusion of the inference:
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Typing judgement for NJrg

exchange:
ǫ ⊲ Υ, x : υ, y : υ′,Υ′

ǫ ⊲ Υ, y : υ′, x : υ,Υ′

contraction:
Θ ⊲ Υ, ℓ : υ, ℓ′ : υ

Θ ⊲ Υ, ℓ ∗ ℓ′ : υ

weakening:
Θ ⊲ Υ

Θ ⊲ Υ, () : υ

assumption :

x : υ ⊲ x : υ

ǫ ⊲ Υ, ℓ : υ x : υ ⊲ ℓ : Υ′

ǫ ⊲ Υ, ℓ[ℓ/x] : Υ′
-substitution

ǫ ⊲ ℓ :
∧ ∧

-E
ǫ ⊲ false (ℓ) : υ1 . . . false (ℓ) : υn

ǫ ⊲ ℓ : υ1,Υ
r-I

ǫ ⊲ y : υ2, continue from (y) using (ℓ) : υ1 r υ2,Υ

ǫ ⊲ Υ, ℓ′ : υ1 r υ2 x : υ1 ⊲ ℓ : (υ2), ℓ : Υ′

r-E
ǫ ⊲ Υ, ℓ[x/x] : Υ, postpone (x :: ℓ) until ℓ′ : •

ǫ ⊲ ℓ : υ0,Υ
g0-I

ǫ ⊲ inl (ℓ) : υ0 g υ1,Υ

ǫ ⊲ ℓ : υ1,Υ
g1-I

ǫ ⊲ inr (ℓ) : υ0 g υ1,Υ

ǫ ⊲ Υ, ℓ : υ0 g υ1
g-E

ǫ ⊲ Υ, casel (ℓ) : υ0, caser (ℓ) : υ1

Table 1. Typing judgements for NJrg

[ǫ]

...
ℓ′ : υ1 \ υ0

r-Ex : υ1

...
...

ℓ : υ0 ℓ : Υ

postpone (x :: ℓ) until (ℓ′) :•

This alternative definition gives proof-graphs for NJrg deductions
a suggestive geometric form, i.e., a NJ⊃∩ proof-tree turned upside
down; it shall be used in the examples in Section 6.5.

6.3. β-reductions. In rg the β-reductions for r and for g cor-
respond to the following transformations of derivations.
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r-REDUCTION:

ǫ ⊲ Υ, ℓ1 : υ1

ǫ ⊲ Υ, z : υ2, t : υ1 r υ2 x : υ1 ⊲ ℓ2 : υ2, ℓ′ : Υ′

ǫ ⊲ Υ, z : υ2, u : •, ℓ′[x/x] : Υ′

where t is continue from (z) using (ℓ1) and
u is postpone (x :: ℓ2) until (continue from (z) using (ℓ1)),

reduces to

ǫ ⊲ Υ, z : υ2, {z ::= ℓ2[ℓ1/x]}, ℓ′[x/x] : Υ′, {x ::= ℓ1}

After remote substitutions are performed, the sequent becomes

ǫ ⊲ Υ, ℓ′[ℓ/x] : υ2, ℓ′[ℓ/x] : Υ′

g-REDUCTIONS:

ǫ ⊲ Υ, ℓ0 : υ0

ǫ ⊲ Υ, inl(ℓ0) : υ0 g υ1

ǫ ⊲ Υ, casel inl(ℓ0) : υ0, caser inl(ℓ0) : υ1

reduces to

ǫ ⊲ Υ, ℓ0 : υ0

and

ǫ ⊲ Υ, ℓ1 : υ1

ǫ ⊲ Υ, inr(ℓ1) : υ0 g υ1

ǫ ⊲ Υ, casel inr(ℓ1) : υ0, caser inr(ℓ1) : υ1

reduces to

ǫ ⊲ Υ, ℓ1 : υ1

Remark. Notice that the assignment of lists of terms (instead of
just terms) to deductions in NJrg implements the implicit use of
Contraction right in minor premise of a r-E and in the r-reductions,
as described in the Remark on notation, section 5. Given a redex

postpone (x :: ℓ2) until continue from (z) using (ℓ1) : •

after the command {z ::= ℓ2[ℓ1/x]} is executed, a list of terms
ℓ2[ℓ1/x] = (r1, . . . , rk) has been substituted for z : υ2. If υj oc-
curs below υ2 and its term assignment was s(z) : υj, then it is
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s(r1, . . . , rk) : υj after the β-reduction. Now term expansion trans-
forms

s(r1, . . . , rk) : υj into (s(r1), . . . , s(rk)) : υj

This implements precisely the implicit action of Contraction right,
merging the conclusion classes (υj) after a possible action of copying
required by the β-reduction.

6.3.1. Commutations. In the assertive fragment the commutation
y : Θ ⊲ t : ϑ x : ϑ, x : Θ′ ⊲ true (x, x) :

∨

y : Θ, x : Θ′ ⊲ true (t, x) :
∨

 c

y : Θ, x : Θ′ ⊲ true (y, x) :
∨

can be stipulated as a single-step rewriting rule as well as the result
of several rewritings, corresponding to the one-step commutations
indicated in Table 7.

In the conjectural fragment the commutation
...

ǫ ⊲ ℓ :
∧

∧
-E

ǫ ⊲ false (ℓ) : υ1, . . . , false (ℓ) : υn

...
...

ǫ ⊲ ℓ1 : Υ1, . . . , ℓn : Υn

commutes to ( c)

...

ǫ ⊲ ℓ :
∧

∧
-E

ǫ ⊲ false (ℓ) : Υ1, . . . , false (ℓ) : Υn

may be obtained through several one-step rewritings, defined in cor-
respondence to the one-step commutations indicated in Table 7.

6.4. Isomorphism theorem. Consider the map ( )⊥ of Lϑυ:

Definition 12. (Duality)

( ⊢ p)⊥ =df H¬p (H p)⊥ =df ⊢ ¬p
(
∨

)⊥ =df
∧

(
∧

)⊥ =df
∨

(ϑ1 ⊃ ϑ2)
⊥ =df ϑ⊥

2 r ϑ⊥
1 (υ1 r υ2)

⊥ =df υ⊥
2 ⊃ υ⊥

1

(ϑ0 ∩ ϑ1)
⊥ =df ϑ⊥

0 g ϑ⊥
1 (υ0 g υ1)

M =df υ⊥
0 ∩ υ⊥

1

Theorem 2. (isomorphism) Modulo α-equivalence, there exists a
bijection ( )⊥ between proof-terms for the assertive and the conjec-
tural fragments of PBL such that
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(i) if x : Θ ⊲ t : ϑ then (t)⊥ has the form ℓ and x : ϑ⊥
⊲ ℓ : Θ⊥

and conversely, if x : ǫ ⊲ ℓ : Υ then (ℓ)⊥ has the form t and
x : Υ⊥ ⊲ t : ǫ⊥; moreover, (t)⊥⊥ = t and (ℓ)⊥⊥ = ℓ.

(ii) if t0 β-reduces to t1 then (t0)
⊥ β-reduces to (t1)

⊥; conversely, if
ℓ0 β-reduces to ℓ1, then (ℓ0)

⊥ β-reduces to (ℓ1)
⊥.

Proof. We write x : Υ⊥ for x1 : υ⊥
1 , . . . xn : υ⊥

1 and false (x) : Υ
for falseυ1

(x) : υ1, . . . falseυn
(x) : υn, and so on. The duality ( )⊥

on proof-terms is defined as follows. Setting x⊥ = x, the judgement
x : ϑ ⊲ x : ϑ is mapped to x⊥ : ϑ⊥

⊲ x⊥ : ϑ⊥ and conversely.

(1.1) (x :
∧
⊲ false (x) : Υ)⊥ = x : Υ⊥ ⊲ true (x) :

∨

(1.2) (x : Θ ⊲ true (x) :
∨

)⊥ = x :
∧
⊲ false (x) : Θ⊥

(2.1) (z : ϑ1 ⊃ ϑ2, y : ϑ1 ⊲ y : ϑ2)
⊥ = x : ϑ⊥

2 ⊲ y : ϑ⊥
1 , r : ϑ⊥

2 r ϑ⊥
1

(2.2) (x : υ1 ⊲ y : υ2, r : υ1 r υ2)
⊥ = y : υ⊥

2 , z : υ⊥
2 ⊃ υ⊥

1 , ⊲ zy : υ⊥
1

where r = continue from (y) using (x).

(3.1) (y : ϑ0 ∩ ϑ1 ⊲ π0(y) : ϑ0)
⊥ = x : ϑ⊥

0 ⊲ inl (x) : ϑ⊥
0 g ϑ⊥

1

(3.2) (x : υ0 ⊲ inl (x) : υ0 g υ1)
⊥ = y : υ⊥

0 ∩ υ⊥
1 ⊲ π0(y) : y : υ⊥

0

(4.1) (y : ϑ1 ∩ ϑ1 ⊲ π1(y) : ϑ1)
⊥ = x : ϑ⊥

1 ⊲ inr (x) : ϑ⊥
0 g ϑ⊥

1

(4.2) (x : υ1 ⊲ inr (x) : υ0 g υ1)
⊥ = y : υ⊥

0 ∩ υ⊥
1 ⊲ π1(y) : y : υ⊥

1

Now suppose

(x : Θ ⊲ ti : ϑi)
⊥ = yi : ϑ⊥

i ⊲ ℓi : Θ⊥

for i = 0 and 1. We set
(5.1) (x : Θ ⊲< t0, t1 >: ϑ0 ∩ ϑ1)

⊥ = z : ϑ⊥
0 g ϑ⊥

1 ⊲ r0 ∗ r1 : Θ⊥

where r0 = ℓ0[casel (z)/y0] and r1 = ℓ1[caser (z)/y1.
Next suppose

(yi : υi ⊲ ℓi : Υ)⊥ = x : Υ⊥
⊲ ti : υ⊥

i

for i = 0 and 1. We set

(5.2) (z : υ0 g υ1 ⊲ r0 : Θ⊥
0 , r1 : ϑ⊥

1 )⊥ = x : Υ⊥ ⊲ < t0, t1 >: υ⊥
0 ∩ υ⊥

1
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where again r0 = ℓ0[casel (z)/y0] and r1 = ℓ1[caser (z)/y1.

Now suppose

(x : ϑ1, x : Θ ⊲ t : ϑ2)
⊥ = y : ϑ⊥

2 ⊲ ℓ1 : ϑ⊥

1 , . . . , ℓm : ϑ⊥

1 , ℓ : Θ⊥

We set

(6.1) (x : Θ ⊲ λx.t : ϑ1 ⊃ ϑ2)
⊥ = z : ϑ⊥

2 r ϑ⊥
1 ⊲ ℓ[y/y] : Θ⊥, u : •

where u = postpone (y :: ℓ1 ∗ . . . ∗ ℓm) until (z). Finally suppose

(x : υ1 ⊲ ℓ1 : υ2, . . . , ℓm : υ2, ℓ : Υ)⊥ = y : υ⊥

2 , x : Υ⊥
⊲ t : υ⊥

1

We set

(6.2) (z : υ2 r υ1 ⊲ ℓ[y/y] : Υ, u : •)⊥ = x : Υ⊥
⊲ λy.t : υ⊥

2 ⊃ υ⊥
1

where u = postpone (y :: ℓ1 ∗ . . . ∗ ℓm) until (z).

We need to show the following fact:

Lemma 3. If

(i) (Θ2 ⊲ u : ϑ)⊥ = a : ϑ⊥
⊲ ℓ2 : Θ⊥

2

and

(ii) (x : ϑ, Θ1 ⊲ t : ϑ0)
⊥ = b : ϑ⊥

0 ⊲ ℓ1 : Θ⊥

1 , ℓ : ϑ⊥

then

(Θ2, Θ1 ⊲ t[u/x] : ϑ0)
⊥ = b : ϑ⊥

0 ⊲ ℓ1 : Θ⊥

1 , ℓ2[ℓ/a] : Θ⊥

2

and simmetrically for substitutions in the conjectural part.

We prove the lemma by induction on t. Let us consider the case
of t = λy.s. Given (i) and

(ii) (x : ϑ,Θ1 ⊲ λy.s : ϑ1 ⊃ ϑ2)
⊥ =

b : ϑ⊥
2 r ϑ⊥

1 ⊲ ℓ1[c/c] : Θ⊥
1 , ℓ[c/c] : ϑ⊥, r : •

where r = postpone (c :: ℓ1) until (b), we need to show that

((λy.s)[u/x])⊥ = ℓ1[c/c], ℓ2[ℓ[c/c]/a], r : •.

We may assume that (ii) results by an application of (6.1) and thus
that we have

(iii) (x : ϑ, y : ϑ1,Θ1 ⊲ s : ϑ2)
⊥ = c : ϑ⊥

2 ⊲ ℓ1 : Θ⊥
1 , ℓ1 : ϑ⊥

1 , ℓ : ϑ⊥

The induction hypothesis is that

(iii) (y : ϑ1,Θ1,Θ2 ⊲ s[u/x] : ϑ2)
⊥ =

c : ϑ⊥
2 ⊲ ℓ1 : Θ⊥

1 , ℓ1 : ϑ⊥
1 , ℓ2[ℓ/a] : Θ⊥

2 .

By applying (6.1) to (iii) we obtain



34 GIANLUIGI BELLIN

(Θ1,Θ2 ⊲ λx.s[u/y] : ϑ1 ⊃ ϑ2)
⊥ =

b : ϑ⊥
2 r ϑ⊥

1 ⊲ ℓ1[c/c] : Θ⊥
1 , ℓ2[ℓ/a][c/c] : Θ⊥

2 , r : •

Since we may assume that (λx.s)[u/y] = λx.s[u/y] and since the
variable c does not occur in ℓ2 , the desired result follows.

Part (i) of Theorem 2 is proved by a straightforward induction on
t or ℓ. To prove part (ii) of Theorem 2 there are four cases to check;
we consider only that of a r-reduction. Let

ℓ = (ℓ1, c, ℓ2[a/a], s)

where s = postpone (a :: ℓ2) using (continue from (c) using (ℓ1))
and suppose

ℓ  β ℓ1, c, ℓ2[a/a]{a ::= ℓ1}, {c ::= ℓ2[ℓ1/a]}

A typing derivation of ℓ is obtained as follows: we have a derivation
d1 ending with the inference

(o)
ǫ ⊲ ℓ1 : Υ1, ℓ1 : υ1

ǫ ⊲ ℓ1 : Υ1, c : υ2, r : υ1 r υ2

where r = continue from (c) using (ℓ1) and also a derivation d2 of

(i) a : υ1 ⊲ ℓ2 : υ2, ℓ2 : Υ2

and we apply the inference r-E to the conclusions of d1 and d2,
yielding

ǫ ⊲ ℓ1 : Υ1, c : υ2, ℓ2[a/a] : Υ2, s : •

But the same typing of ℓ may also be obtained by first deriving

(ii) b : υ1 r υ2 ⊲ ℓ2[a/a] : Υ2, s(b) : •

from (i), where s(b) = postpone (a :: ℓ2) using (b) and then substi-
tuting r for b in the terms in (ii) which contain it free, i.e., in the
“control term” s(b). Moreover, we have

(iii) (ǫ ⊲ ℓ1 : Υ1, ℓ1 : υ1)
⊥ = x : υ⊥

1 , y : Υ⊥

1 ⊲ u : ǫ⊥

and

(iv) (a : υ1 ⊲ ℓ2 : υ2, ℓ2 : Υ2)
⊥ = y : υ⊥

2 , x : Υ⊥

2 ⊲ t : υ⊥

1

By applying Lemma 3 to (iii) and (2.2) we have

(v) (ǫ ⊲ ℓ1 : Υ1, c : υ2, r : υ1 r υ2)
⊥ =

y : υ⊥
2 , z : υ⊥

2 ⊃ υ⊥
1 , y : Υ⊥

1 ⊲ u[zy/x] : ǫ⊥

By applying Lemma 3 to (iv) and (6.2) we have
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using

postpone(f::

y

n:

f:

y:

N

x: υ

υυ

υ

f: θ θ θx :

: θ θ

N:

θ:

: υ υ

‘‘one’’: λ f. λ x. f x : N

postpone(y::x) until f

continue from

continue from x

nuntil x)

λx.fx

λx.fx

fx

λ f.

‘‘co−one’’: n: N postpone
postpone

(y::x)
(f::

until f
continue from x usingy)until n

Figure 1. Church’s one.

(vi) (b : υ1 r υ2 ⊲ ℓ2[a/a] : Υ2, s(b) : •)⊥ =
x : Υ⊥

2 ⊲ λy.t : υ⊥
2 ⊃ υ⊥

1

Again by Lemma 3 applied to (v) and (vi) we conclude

(vii) (ǫ ⊲ ℓ1 : Υ1, c : υ2, ℓ2[a/a] : Υ2, s : • =
= y : υ⊥

2 , y : Υ⊥
1 , x : Υ⊥

2 ⊲ u[(λy.t)y/x] : ǫ⊥

Now the right-hand side of (vii) reduces to u[t/x]. But also by
Lemma 3 applied to (iii) and (iv) we obtain

(ǫ ⊲ ℓ1 : Υ1, ℓ2[ℓ1/a] : υ2, ℓ2[ℓ1/a])⊥ = y : υ⊥
2 , y : Υ⊥

1 , x : Υ⊥
2 ⊲ u[t/x] : ǫ⊥

and the argument of the left-hand side is exactly what ℓ reduces
to when the global substitutions are eventually performed. This
concludes the proof.

6.5. Examples. In the case of deductions in the purely implica-
tive and subtractive fragments, it is possible to give a suggestive
graphic representation of the isomorphism ( )⊥.
In Fig. 1 we have drawn a refutation

n : N⊥ ⊲ postpone (y :: x) until (f) : •
postpone (f :: continue from (x) using (y)) until (n) : •

which is formally given in NJr as follows:
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n:

f:

N

υυ

υ

x : θf: θ θx :

θ θ

θ

: θ

Redex!

υz:

s : υ υ

: N

: θ θ

z

usings) until n

postpone(x::z)until f

λ f. λx. ( λx.x) f x : N

postpone(y::y)

υy:

x:

s: υs
x : υ υ

continue from 

continue from 

postpone(f ::continue from 

x) usinguntil (continue from

using

using

s

z

λx.x : f x

( λ θ:

Redex!

x.x)f x

x.x)f xλx.(λ

λ f. x.x)f xλx.(λ

postpone (x::z) until f
(f ::continue from usingz s) until n

n: N
postpone
postpone (y::y) until (continue from s usingx) 

‘‘co−succzero’’: 
‘‘succ zero’’: 

Figure 2. “succ zero”.

n : N⊥
⊲ n : N⊥

f : υ r υ ⊲ f : υ r υ

y : υ ⊲ y : υ

y : υ ⊲ x : υ, s : υ r υ

f : υ r υ ⊲ t : •, s[y/y] : υ r υ

n : N⊥
⊲ t : •,u : •

where s = continue from (x) using (y),
t = postpone (y :: x) until (f) and
u = postpone (f :: continue from (x) using (y)) until (n).

In Fig. 2 we draw a part of the computation that succ(zero) =
one and its dual.

We leave it as an exercise to the reader to write the formal proof
corresponding to the drawing.
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§7. APPENDIX I. Completeness theorem for bimodal K and

S4. We outline a semantic tableaux procedure for bimodal K and S4.
Since these are classical systems, for simplicity we consider the fragment
of the language L2,2- consisting of formulas in negation normal form given
by the grammar

α := p | ¬p | ⊤ | α ∧ α | α ∨ α | 2α | 3α | 2- α | 3- α

Our calculi use succedent only sequents of the form ⇒ Γ and are based on
(a variant of) Gentzen-Kleene’s sequent calculus G3c for classical propo-
sitional logic (cfr.[34], p. 77), where the rules of weakening and contraction
are implicit. The axioms and the rules are given in Table 2. Given a notion

of semantic validity, a rule of the sequent calculus
S1, . . . , Sn

S
preserves

validity if for every instance of the rule, the sequent conclusion S is valid
whenever the sequent-premises S1, . . . , Sn are all valid; a rule is seman-
tically invertible if for every instance of the rule the sequent-premises are
all valid whenever the sequent-conclusion is valid.

Proposition 1. The propositional rules of the classical sequent calcu-
lus G3c preserve validity and are semantically invertible. The modal rules
for the systems bimodal K and S4 preserve validity and are semantically
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SEQUENT CALCULUS G3c FOR CLASSICAL LOGIC

axioms:
⇒ ∆, p,¬p

truth axioms:
⇒ ∆,⊤

right exchange:
⇒ ∆, α, β,∆′

⇒ ∆, β, α,∆′

right ∧:
⇒ ∆, α Γ ⇒ ∆, β

⇒ ∆, α ∧ β

right ∨:
⇒ ∆, α, β

⇒ ∆, α ∨ β

EXTENSION TO MODAL SYSTEMS

weakenings

⇒ 2α, 3∆

⇒ 2α, 3∆, 2Γ, 2- Γ′ 3- ∆′, Π

⇒ 2- α, 3- ∆′

⇒ 2- α, 3- ∆′, 2- Γ′, 2Γ, 3∆, Π
where Π is a sequence of atoms and negations of atoms.

rules for bimodal K

K-2-rule:
⇒ α, ∆

⇒ 2α, 3∆

K-2--rule:
⇒ α, ∆

⇒ 2- α, 3- ∆

rules for bimodal S4

3 right:
⇒ ∆, α, 3α

⇒ ∆, 3α

2 right:
⇒ α, 3∆

⇒ 2α, 3∆

3- right:
⇒ ∆, 3- α, α

⇒ ∆, 3- α

2- right:
⇒ α, 3- ∆

⇒ 2- α, 3- ∆

Table 2. Sequent calculi for bimodal K and S4

invertible with respect to their semantics. The rules of weakening preserve
validity but are not semantically invertible.

7.0.1. Semantic Tableaux procedure for K. The “semantic tableaux”
procedure decides whether a sequent S is valid in the semantics for bimodal
K by building a refutation tree labelled with sequents and with S at the
root; if S is valid, then it return a derivation of S in the sequent calculus



40 GIANLUIGI BELLIN

for bimodal K; if S not valid, it returns a counterexample M which refutes
S.

Starting with sequent S at the root, the procedure builds the tree by
inverting the propositional rules in some order on all branches, whenever
possible. A propositional rule cannot be inverted on a leaf of the form

⇒2- α1, . . . ,2- αm,3- Γ,2β1, . . . ,2βn,3∆,Π (†)

where Π is a sequence of atoms and negations of atoms. Rewrite the
sequent (†) as a hypersequent as follows:

⇒ [⇒ Π] . . . [⇒2- αi,3- Γ] . . . [⇒ 2βj ,3∆] . . . (‡)

We call this step a disjunctive ramification. Now there are three cases:

(a) an atom ⊤ or a pair pi, ¬pi occurs in Π: in this case the sequent (†)
is a logical axiom or a truth axiom and the procedure halts on this
branch, which is closed.

(b) otherwise, if (†) is not an axiom and m = 0 = n, then the procedure
halts on this branch leaving it open;

(c) otherwise, (†) is not an axiom and m + n > 0: in this case the pro-
cedures branches by inverting the 2--R or 2-R rules in the remaining
m + n sequents of the hypersequent.

We define inductively what it means for a refutation tree τ to be closed:
a logical axiom or a truth axiom is closed; the conclusion of a one-premise
[two-premises] inference rule is closed if and only the subtree[s] ending
with the premise[s] is [are] closed; a hypersequent resulting from an m+n
disjunctive ramification branching with τ1, . . . , τm+n subtrees is closed if
and only if at least one τi is closed, for i ≤ m + n.
Fact 1: The semantic tableax procedure for K terminates. Indeed at each
inversion step the complexity of the sequents is reduced.

Fact 2: If a refutation tree τ with conclusion S is closed, then we can
obtain a derivation of S in the sequent calculus for bimodal K. At each
disjunctive ramification branching with subtrees τ1, . . . , τm+n, first we
select a closed subtree τk and remove the others and the hypersequent
notation; then to the endsequent of τk has the form we apply weakening
to obtain the required sequent (†).

Fact 3: If a refutation tree τ with conclusion S is open, the we can
construct a Kripke model M over a frame (W,R1, R2) which refutes S.
For every two-premises logical rule, if the sequent-conclusion is open,
then we select one of the sequent-premises which is open. In this way
we eventually obtain a tree τ ′ where all branches are open. Consider all
fragments of branches β1, . . . , βz obtained from τ ′ by removing every
modal inference:

(i) identify βi with a possible world wi;
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(ii) put wiR1wj if and only if the lowermost sequent of βj is the sequent-
premise of a K-2-rule and the sequent-conclusion of such a rule
occurs in the hypersequent which is the uppermost sequent of βi;

(ii) put wiR2wj if and only if the lowermost sequent of βj is the sequent-
premise of a K-2--rule and the sequent-conclusion of such a rule oc-
curs in the hypersequent which is the uppermost sequent of βi;

(iv) let wi 
 pi if and only if ¬pi occurs in the uppermost sequent of βi.

From facts 1-3 we obtain the following theorem:

Theorem 3. The semantic tableaux procedure for bimodal K is sound
and complete with respect to Kripke’s semantics of bimodal frames F =
(W,R1, R2). The system bimodal K has the finite model property.

The procedure sketched here can be extended to bimodal S4, by stan-
dard techniques to guarantee termination: these require restricting the
inversion of the rules 3--R and 3-R, on one hand, and loop-detection, on
the other hand.

Remark. The restriction on the rules 3--R and 3-R, and also on 2--L and
2-L in two sided-sequents, can be obtained by marking the “contracted”
active formula in the sequent-premise and by removing the mark whenever
the corresponding symmetric rule is applied. For instance, in the case of
the 2-rules in two sided calculus we have:

2 left:

2α,α,Γ ⇒ ∆,

2α,Γ ⇒ ∆

2 right:

2Γ ⇒ α

2Γ ⇒ 2α

Thus the system bimodal S4 is sound and complete with respect to
Kripke’s semantics over preordered bimodal frames F .

Moreover it is an easy exercise to extend the above procedure to the
whole bimodal language using two-sided sequent calculi of type G3c for
K and S4.

7.1. Proof of Theorem 1. The intuitionistic sequent calculus PBL-

G3 without the rules of cut are sound and complete with respect to the
interpretation in bimodal S4.

Given a sequent S = Θ ; ǫ ⇒ ǫ′ ; Υ, we construct a “refutation tree”
τ for the sequent SM according to the semantics tableaux procedure for
bimodal S4 in the formulation using two-sided sequents. If the refutation
tree τ is not closed, then from an open tree τ ′ obtained by pruning τ we
obtain a countermodel for SM over a bimodal frame (F , R,R−1) which
may be regarded as a countermodel for S itself. If the refutation tree τ
is closed, then by the completeness for bimodal S4 we have a derivation
d of SM in the sequent calculus for bimodal S4 and we need to produce
a derivation of S in PBL-G3.
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Given a derivation d of SM in bimodal S4, the only difficulty to trans-
form it into a derivation of S in PBL-G3 lies in the rules ⊃-L [and r-R]16.
Indeed to a r-right rule

Θ ; ǫ ⇒ ; Υ, υ1 Θ ; υ2 ⇒ ; Υ, υ1 r υ2

Θ ; ǫ ⇒ ; Υ, υ1 r υ2

there corresponds in d a triple of inferences, i.e., a ¬-right, a ∧-right and
a 3--right application:

ΘM , ǫM ⇒ ΥM , υM
1 , (υ1 r υ2)

M

ΘM , ǫM ∗, υM ∗
2 ⇒ ΥM , (υ1 r υ2)

M

¬-R
ΘM , ǫM ,⇒ ΥM , (υ1 r υ2)

M ,¬υM
2

∧-R
ΘM , ǫM ⇒ ΥM , (υ1 r υ2)

M , υM
1 ∧ ¬υM

2
3--R

ΘM , ǫM ⇒ ΥM , 3- (υM
1 ∧ ¬υM

2 )

It is easy to see that the underlined formula (υ1 rυ2)
M (and its ancestors)

can be removed preserving provability. But in order for the sequent-
premise of the ¬-R inference to be the translation of a PBL-G3-sequent,
one of the two starred formulas ǫM ∗, υM ∗

2 has to be removed, and it is
not obvious how to do it.

Definition 13. Let us call the inferences 2-R, 3-L 2--R and 3--L pro-
motions and promoted formula their principal formula. We may assume
that only 2-R or 3--L inferences occur in a cut-free PBL-G3 derivation
d of the sequent SM .

Let τ be a fragment (a “truncated subtree”) of the derivation tree d
such that

• the root of τ is the conclusion of d or the sequent-premise of a pro-
motion inference;

• the leaves of τ are either axioms or conclusions of a promotion in-
ference in d;

• no promotion inference occurs in τ .

We say that a formula-occurrence A in a sequent of τ is traceable to axioms
or promotion if an ancestor of A in a leaf of τ is a principal formula of an
axiom or was a promoted formula in d.

Remark. Three obvious remarks are essential here.
(i) If a starred formula ǫM ∗ or υM ∗

2 is not traceable to an axiom or
promotion, then it can be removed from the proof-tree d together with
all its ancestors: indeed, all its ancestors in the leaves of τ are formulas
introduced by weakening.

16The difficulty is related to the well-known fact ⊃-L is invertible only in the
right subderivation but not in the right one; similarly, r-R is invertible in the
left subderivation but not in the right one.
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(ii) If the formula υM ∗
2 is removed, then the right-uppermost sequent in

the figure coincides with the lowemost one, so all the inferences in the
figure can be removed, together with the left branch.
(iii) An inference I of classical propositional logic or 3--R or 2-L can
always be permuted above any inference whose principal formula is not
active in I.

We show how to transform the fragment τ of the given derivation d
into another where only one occurrence of the two the starred formulas
ǫM ∗ and υM ∗

2 occurs in any sequent. This actually proves the theorem,
because by iterating the given procedure we eventually obtain a derivation
d+ of SM where in every sequent there is exactly one occurrence of either
a formula 3- A in the antecedent or a formula 2A in the consequent.

Suppose ǫM ∗ is traceable to an axiom or to a promotion: then on each
branch leading to such an axiom or a modal inference we permute the
indicated block of three inferences ¬-R, ∧-R and 3--R upwards; this is
possible by (iii). Eventually, on each such branch β the resulting sub-
derivation will have sequents where υM ∗

2 is no longer traceable to an
axiom or promotion, hence it can be removed together with the block of
three inferences located in β, according to (ii).

We may therefore assume that τ has been transformed into a fragment
τ ′ where ǫM ∗ is no longer traceable to an axiom or promotion; then ǫM ∗

can be removed together with its ancestors, in accordance with (i).

In conclusion, a block of three inferences indicated in the figure where

ǫM no longer occurs in the right branch and the underlined formula

(υ1 r υ2)
M does not occur in the left branch is the exact counterpart

in bimodal S4 of a r-L inference in PBL, as required.

§8. APPENDIX II: Rules for the Sequent Calculus PBL and

the Natural Deduction systems INPAC and PBN. In Tables 3 we

give the rules of the Sequent Calculus PBL. In Tables 4 to 7 we give

the Rules of Inference, Deduction, Reduction and Commutation of the

Natural Deduction System INPAC. In Tables 8 to 11 we give the rules

that are specific of the system PBN.
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Sequent Calculus PBL-G3: axioms and rules

identity rules
logical axiom:

ϑ, Θ ; ⇒ ϑ ; Υ
logical axiom:

Θ ; υ ⇒ ; Υ, υ

cut1:

Θ ; ⇒ ϑ ; Υ ϑ,Θ′ ; ǫ ⇒ ǫ′ ; Υ′

Θ, Θ′ ; ǫ ⇒ ǫ′ ; Υ, Υ′

cut2:

Θ ; ǫ ⇒ ǫ′ ; Υ, υ Θ′ ; υ ⇒ Υ′

Θ, Θ′ ; ǫ ⇒ ǫ′ ; Υ, Υ′

structural rules
exchange:

Θ, ϑ1, ϑ2, Θ
′ ; ǫ ⇒ ǫ′ ; Υ

Θ, ϑ2, ϑ1, Θ′ ; ǫ ⇒ ǫ′ ; Υ

exchange:
Θ ; ǫ ⇒ ǫ′ ; Υ, υ1, υ2, Υ

′

Θ ; ǫ ⇒ ǫ′ ; Υ, υ2, υ1, Υ′

ASSERTIVE LOGICAL RULES

validity axiom:

Θ ; ⇒
_

; Υ

(¶) right ⊃:
Θ, ϑ1 ; ⇒ ϑ2 ;

Θ ; ⇒ ϑ1 ⊃ ϑ2 ; Υ

left ⊃:
ϑ1 ⊃ ϑ2, Θ; ⇒ ϑ1 ; Υ ϑ2, Θ ; ǫ ⇒ ǫ′ ; Υ

ϑ1 ⊃ ϑ2, Θ ; ǫ ⇒ ǫ′ ; Υ

right ∩:
Θ ; ⇒ ϑ1 ; Υ Θ ; ⇒ ϑ2 ; Υ

Θ ; ⇒ ϑ1 ∩ ϑ2 ; Υ

left ∩:
ϑ0, ϑ1, Θ ; ǫ ⇒ ǫ′ ; Υ

ϑ0 ∩ ϑ1, Θ ; ǫ ⇒ ǫ′ ; Υ

CONJECTURAL RULES

absurdity axiom:

;
^

⇒ ; Υ

right r:
Θ ; ǫ ⇒ ǫ′ ; Υ, υ1 Θ ; υ2 ⇒ ; Υ, υ1 r υ2

Θ ; ǫ ⇒ ǫ′ ; Υ, υ1 r υ2

(¶) left r:
; υ1 ⇒ ; Υ, υ2

Θ ; υ1 r υ2 ⇒ ; Υ

right g:
Θ ; ǫ ⇒ ǫ′ ; Υ, υ0, υ1

Θ ; ǫ ⇒ ǫ′ ; Υ, υ0 g υ1

left g:
Θ ; υ1 ⇒ ; Υ Θ ; υ2 ⇒ ; Υ

Θ ; υ1 g υ2 ⇒ ; Υ

DUALITIES (MIXED-TYPE NEGATIONS):

(¶) right ∼:
Θ ; υ ⇒ ;

Θ ; ⇒ ∼ υ ; Υ

left ∼:

∼ υ,Θ; ǫ ⇒ ǫ′ ; Υ, υ

∼ υ, Θ ; ǫ ⇒ ǫ′ ; Υ

right a:

Θ, ϑ ; ǫ ⇒ ǫ′ ; Υ,a ϑ

Θ ; ǫ ⇒ ǫ′ ; Υ,a ϑ

(¶)left a:
; ⇒ ϑ ; Υ

Θ ; a ϑ ⇒ ; Υ

Table 3. The sequent calculus PBL-G3



DUAL LAMBDA CALCULUS 45

Natural Deduction INPAC - Rules of Inference

ASSERTIVE RULES

...
...

ϑ1 . . . ϑm ∨
-I

υ1 . . . υn

∨

...
...

...

[ϑ1]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

...
ϑ1 ⊃ ϑ2

...
ϑ1

⊃-E
ϑ2

...

...
ϑ0

...
ϑ1

∩-I
ϑ0 ∩ ϑ1

...

...
ϑ0 ∩ ϑ1 ∩0-E

ϑ0

...

...
ϑ0 ∩ ϑ1 ∩1-E

ϑ1

...

CONJECTURAL RULES

...
...

...∧
ϑ1 . . . ϑm ∧

-E
υ1 . . . υn

...
...

...
υ1

r-I
υ2 υ1 r υ2

...
...

...
υ1 r υ2

[υ1]

...
(υ2)

r-E

...
υ0

g0-I
υ0 g υ1

...

...
υ1

g1-I
υ0 g υ1

...

...
υ0 g υ1

g-Eυ0 υ1

...
...

NEGATIONS

[υ]

...

(
∧

)
∼-I

∼ υ

...

...
∼ υ

...
υ

∼-E∧

...

...∨
a-I

ϑ a ϑ

...
...

...
a ϑ

[
∨

]

...
ϑ
a-E

Table 4. Natural Deduction INPAC - Rules of Inference
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Natural Deduction INPAC: Rules of Deduction

STRUCTURAL RULES

exchange:

Θ, ϑ, ϑ′,Θ′ − Υ

Θ, ϑ′, ϑ, Θ′ − Υ

contraction:
ϑ, ϑ, Θ − Υ

ϑ, Θ − Υ

weakening:

Θ − Υ

ϑ, Θ − Υ

exchange:

Θ − Υ, υ, υ′, Υ′

Θ − Υ, υ′, υ, Υ′

contraction:
Θ − Υ, υ, υ

Θ − Υ, υ

weakening:

Θ − Υ

Θ − Υ, υ

ASSERTIVE RULES

assumption:

ϑ − ϑ

substitution:
Θ − ϑ, Υ ϑ, Θ′, ǫ − ǫ′,Υ′

Θ,Θ′ − Υ,Υ′

validity axiom:

Θ −
W

, Υ

⊃-I:
Θ, ϑ1 − ϑ2,Υ

Θ − ϑ1 ⊃ ϑ2,Υ

⊃-E:
Θ1 − ϑ1 ⊃ ϑ2,Υ1 Θ2 − ϑ1,Υ2

Θ1,Θ2 − ϑ2, Υ1,Υ2

∩-I:
Θ − ϑ1,Υ Θ − ϑ2, Υ

Θ − ϑ1 ∩ ϑ2,Υ

∩0-E:

Θ − ϑ0 ∩ ϑ1,Υ

Θ − ϑ0, Υ

∩1-E:

Θ − ϑ0 ∩ ϑ1,Υ

Θ − ϑ1,Υ

CONJECTURAL RULES

assumption:

υ − υ

substitution:
Θ, ǫ − ǫ′,Υ, υ Θ′, υ − Υ′

Θ,Θ′ − Υ,Υ′

absurdity axiom:

Θ,
V

− Υ

r-I:
Θ, ǫ − ǫ′, Υ, υ1

Θ, ǫ − ǫ′, Υ, υ2, υ1 r υ2

r-E:
Θ, ǫ − ǫ′,Υ, υ1 r υ2 Θ′, υ1 − υ2,Υ′

Θ,Θ′, ǫ − ǫ′, Υ,Υ′
1

g0-I:

Θ, ǫ − ǫ′, Υ, υ0

Θ, ǫ − ǫ′, Υ, υ0 g υ1

g1-I:

Θ, ǫ − ǫ′,Υ, υ1

Θ, ǫ − ǫ′,Υ, υ0 g υ1

g-E:
Θ′, ǫ − ǫ′,Υ′, υ0 g υ1 Θ, υ0 − Υ Θ, υ1 − Υ

Θ′,Θ, ǫ − ǫ′,Υ, Υ′

NEGATION RULES

∼ -I:
Θ, υ −

V

, Υ

Θ − ∼ υ, Υ

∼ -E
Θ, ǫ − ǫ′,Υ, υ

∼ υ, Θ, ǫ − ǫ′, Υ

a -I:

ϑ, Θ, ǫ − ǫ′, Υ

Θ, ǫ − ǫ′, Υ, a ϑ

a -E:

Θ,
W

− ϑ, Υ

Θ, a ϑ − Υ

where the assumption ǫ is conjectural, the conclusion ǫ′ is assertive
and exacty one among ǫ and ǫ′ is in the consequence relation.

Table 5. Natural Deduction INPAC - Rules of Deduction
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Natural Deduction INPAC - Reduction Rules

∩-REDUCTION

...
ϑ0

...
ϑ1

∩-I
ϑ0 ∩ ϑ1

∩i-E
ϑi

...

reduces to

...
ϑi

...

⊃-REDUCTION

[ϑ1]

...

ϑ2
⊃-I

ϑ1 ⊃ ϑ2

...
ϑ1

⊃-E
ϑ2

...

reduces to

...

[ϑ1]

...
ϑ2

...
g-REDUCTION

...

υi

gi-I
υ0 g υ1

g-E
υ0 υ1

...
...

reduces to

...
υi

...

r-REDUCTION

...

υ1

r-I
υ2 υ1 r υ2

[υ1]

...

(υ2)
...

... r-E

reduces to

...
υ1

...

(υ2)
...

...
∼-REDUCTION

[υ]

...

(
V

)
⊃-I∼ υ

...
υ

⊃-EV

...

reduces to

...

[υ]

...

(
V

)

...
a-REDUCTION

...
W

r-I
ϑ a ϑ

[
W

]

...

ϑ
...

... r-E

reduces to

...

[
W

]

...

ϑ
...

...

Table 6. Natural Deduction INPAC - Reduction Rules
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Natural Deduction INPAC - Commutation rules

W

-COMMUTATIONS

...

ϑ1 . . .

...
...

ϑ′
1

. . . ϑ′
k

ϑi

...

. . . ϑn W

-I
W

υ′
1

. . . υ′
m

.

..
.
..

.

..

commutes to

.

..
.
..

.

..
.
..

ϑ1 . . . ϑ′
1

. . . ϑ′
k

. . . ϑn
W

-I
W

υ′
1

. . . υ′
m

...
...

...

and
...

...

ϑ′
1

. . . ϑ′
n W

-I
W

υ1 . . . υi . . . υm

...
... υ′

1
. . . υ′

k

...

...
...

commutes to

...
...

ϑ′
1

. . . ϑ′
n W

-I
W

υ1 . . . υ′
1

. . . υ′
k

. . . υm

..

.
..
.

..

.
..
.

..

.

V

-COMMUTATIONS

...
...

V

ϑ1 . . .

.

..
.
..

ϑ′
1

. . . ϑ′
k

ϑi

..

.

. . . ϑn V

-E
υ′
1

. . . υ′
m

.

..
.
..

commutes to

...
...

...
...

...
V

ϑ1 . . . ϑ′
1

. . . ϑ′
k

. . . ϑn V

-E
υ′
1

. . . υ′
m

...
...

and
...

...
...

V

ϑ′
1

. . . ϑ′
n V

-E
υ1 . . . υi . . . υm

..

. υ′
1

. . . υ′
k

..

.

...
...

commutes to

...
...

...
V

ϑ′
1

. . . ϑ′
n V

-E
υ1 . . . υ′

1
. . . υ′

k
. . . υm

.

..
.
..

.

..
.
..

V

/ ∼-COMMUTATION

...

∼ υ

...
V

V

-E
υ

∼-EV

.

..

commutes to

...
...

V

∼ υ
V

-E
V

.

..

a /
W

-COMMUTATION

...
W

a -I
ϑ a ϑ

W

-I
W

...

..

.

commutes to

.

..
W

W

-I
W

a ϑ

...
...

Table 7. INPAC - Commutation Rules
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Natural Deduction PBN - Restricted Rules of Inference

...
...

ϑ′
1 . . . ϑ′

m

[ϑ1] [ϑ′
1] . . . [ϑ′

m]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

...
υ1 r υ2

[υ1]

...

(υ2) (υ′
1) . . . (υ′

m)
r-E

υ′
1 . . . υ′

m

...
...

NEGATIONS

...
...

ϑ′
1 . . . ϑ′

m

[υ] [ϑ′
1] . . . [ϑ′

m]

...

(
∧

)
∼-I

∼ υ

...

...
a ϑ

[
∨

]

...

ϑ (υ′
1) . . . (υ′

m)
⌢-E

υ′
1 . . . υ′

m

...
...

Table 8. PBN - Restricted Rules of Inference

Natural Deduction PBN: Restricted Rules of Deduction

⊃-I:
Θ1 − ϑ′

1, Υ1 . . . Θn − ϑ′
n, Υn ϑ′

1 . . . ϑ′
n, ϑ1 − ϑ2

Θ1, . . . , Θn − ϑ1 ⊃ ϑ2, Υ1, . . . , Υn

r-E:
Θ, ǫ − ǫ′, Υ, υ1 r υ2 υ1 − υ′

1, . . . , υ′
n, υ2 Θ1, υ

′
1 − Υ1 . . . Θn, υ′

n − Υn

Θ, Θ1, . . . , Θn, ǫ − ǫ′, Υ, Υ1, . . . , Υn

∼ -I:
Θ1 − ϑ′

1, Υ1 . . . Θn − ϑ′
n, Υn ϑ′

1, . . . , ϑ′
n, υ −

V

Θ1, . . . , Θn − ∼ υ,Υ1, . . . , Υn

a -E:
W

− ϑ, υ′
1, . . . , υ′

n Θ1, υ
′
1 − Υ1 . . . Θn, υ′

n − Υn

Θ1, . . . , Θn,a ϑ − Υ1, . . . , Υn

Table 9. PBN - Restricted Rules of Deduction
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Natural Deduction PBN - Restricted Reduction Rules

⊃-REDUCTION

...
...

ϑ′
1 . . . ϑ′

m

[ϑ1] [ϑ′
1] . . . [ϑ′

m]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

ϑ1
⊃-E

ϑ2

...

reduces to

...
...

...

[ϑ1] [ϑ′
1] . . . [ϑ′

m]

...
ϑ2

...

r-REDUCTION

...

υ1

r-I
υ2 υ1 r υ2

[υ1]

...

(υ2) (υ′
1) . . . (υ′

m)
... r-E

υ′
1

. . . υ′
m

...
...

reduces to

...
υ1

...

(υ2) (υ′
1) . . . (υ′

m)

...
...

...

∼-REDUCTION

...
...

ϑ′
1 . . . ϑ′

m

[υ] [ϑ′
1] . . . [ϑ′

m]

...

(
V

)
∼-I

∼ υ

...
υ

∼-EV

...

reduces to

...
...

...

[ϑ1] [ϑ′
1] . . . [ϑ′

m]

...

(
V

)

...

a-REDUCTION

...
W

a-I
ϑ a ϑ

[
W

]

...

ϑ (υ′
1) . . . (υ′

m)
... r-E

υ′
1

. . . υ′
m

...
...

reduces to

...

(
W

)

...

ϑ (υ′
1) . . . (υ′

m)

...
...

...

Table 10. PBN - Restricted Reduction Rules
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Natural Deduction PBN - ⊃- and r-Commutations

...

ϑ′
1 . . .

...
...

ϑ′′
1 . . . ϑ′′

k

ϑ′
i

...

. . . ϑ′
m

[ϑ1] [ϑ′
1] . . . [ϑi] . . . [ϑ

′
m]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

commutes to

...
...

...
...

ϑ′
1 . . . ϑ′′

1 . . . ϑ′′
k . . . ϑ′

m

[ϑ1] [ϑ′
1]

[ϑ′′
1 ] . . . [ϑ′′

k ]

. . . ϑ′
i . . . [ϑ′

m]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

and

...
υ1 r υ2

[υ1]

...

(υ2) (υ′
1) . . . (υ′

m)
r-E

υ′
1 . . . υ′

i . . . υ′
m

... υ′′
1 . . . υ′′

k

...

...
...

commutes to

...
υ1 r υ2

[υ1]

...

(υ′
i)

(υ2) (υ′
1) . . . υ′′

1 . . . υ′′
k . . . (υ′

m)
r-E

υ′
1 . . . υ′′

1 . . . υ′′
k . . . υ′

m

...
...

...
...

Table 11. PBN - Commutation Rules


