Mock-Exam Questions

Question 1 carries 50 marks, questions 2 - 6 are shorter and carry 25 marks each.
Answer a set of questions carrying a total of 100 marks (namely, either QUESTION 1 and
TWO other questions or FOUR of questions 2 - 6).

Question 1. (50 points)
Part 1: Consider the language £ on the alphabet A = {0,1}:

£ = {0*10%|k > 0}

(a) Give context-free grammars G that generates precisely the language £ (you need only
one non-terminal symbol S, which is also the start symbol).
7 points.

(b) Is there a Finite State Automaton accepting (precisely) language £? Give a reason for
your answer.
10 points.

(c) Give the definition of the set £ of all reqular expressions over the aphabet {0,1}. Is £
a regular language, i.e., can £ be denoted by some expression in £7 Give a reason for your
answer.

8 points.

Part 2: Consider the following Turing Machine M = (A, S,v,(,0):

- the alphabet A is {0,1} U {>, U}, where the auxiliary symbol > marks the beginning of
the tape and U is the blank symbol;

- the set of states is {s, so, s, 51, ¢} U { “yes”, “no”} where s is the initial symbol;

- the next state function v, the output function ¢ and the direction function é are given in
list notation as follows:

(s0 sgp> —); (s1 s3> —); (s> s> —); (sU mno U —);
(s00 500 —=); (sol sgl —); (so U sy U <)
(s60 qU «); (sp1l mol=); (sp> nop> —);

(510 no0—=); (s11 nol—); (s1 U yes U —);

(@0 q0 «); (g1 gl «);  (gp> s> —).

The input to M always begins with the symbol > followed by a string x € {0, 1}* followed
only by symbols U (i.e., no blank symbols LI occur before the end of the input).

(d) Write the outcome (i.e., M(x) = “yes” or “not”) and the sequences of configurations
representing the computations of M (i) with input >010 and (ii) with input 0100.
10 points.

(e) Describe (in English) the behaviour of the machine M given in part (d).
8 points.

(f) What is the language £ C {0, 1}* accepted by M? Is the language £ decidable?
7 points.



Answers:

(a) L is generated by the grammar G = ({S,0,1},{0,1}, P, S) with start symbol S and
the following set of production rules P:

{S — 050, S —1}

(b) Let M be an automaton with n states accepting £: consider the string xlx where z is
the string 0™ (n occurrences of 0). M accepts zlz, since xlx is in L. After reading all of
x the machine has been twice in the same state reading the same input 0. Indeed, let s*
(for 0 < k < n) be the state of M after reading a prefix of x of length k: since there are
n + 1 prefixes of 0" (namely, ¢, 0!, 02, ..., 0") and only n states in M, by the pigeon-hole
principle we must have s* = s/ for some 0 < ¢ < j < n. It follows that M does also accept
a string y = 0F10” where k = n—j+1i < n. But y is not in £. (See Hopctoft, Motwani and
Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley,
2000, p.126.)

(¢c) The set & is the set of all expressions built up from @ (denoting the empty language),
¢ (denoting the language containing only the empty string), 0 and 1 (denoting languages
containing only a one-letter word) and closed under the operations of concatenation Lj - Lo,
union L; + Ly and Kleene’s closure L7.

Since a language is regular if and only if it is accepted by a Finite State Automata, by
part (b) there is no expression in £ denoting the language L.

(d)
(i) M(010) = “yes”: (ii) M(010) = “no”:
(U s >010) (U s ©0100)
(> s 010) (> s 0100)
(> so  10) (>> sp  100)
b1 so 0) (>>1 so 00)
(>>10  so L) (>>10 so 0)
b1 sy 0u) (>>100 so L)
> ¢ 1UL) (>>10 s 0U)
> ¢ »p>luwu) (>>1 ¢ 0U)
> s 1Uw) (>> ¢ 10U)
(>>> s UU) (> ¢ »10U)
(>>> yes LU). ( (> s 10I5|)
>>> s OU
(>>> no 0U)

(e) Let x be the input of a computation of M. A subroutine in the computation of M (x)
is as follows: M starts in state s reading a symbol >, then moves to the right.

e If the first symbol after > is the blank symbol U, then M enters state “no” and halts
rejecting.

e If the input after > is 1, M erases it, by replacing it with >, enters state s; and moves to
the right. If M currently reads U, then M enters state “yes” and accepts. Otherwise, M
enters state “no” and rejects.



e If the input after > is 0, then M erases it, by replacing it with the symbol > and entering
state sg. Next it moves to the extreme right of the tape, still in state sy until it finds a
blank symbol LJ; then it moves left in state s and reads the last non-blank symbol of its
current input.

(i) if the current input is empty, so M reads the symbol >, then the machine enters state
“no” and halts rejecting;
(ii) If this is 1 then M enters state “no” and halts;
(iii) otherwise, the symbol read is an occurrence of 0, so M replaces it with LI and moves
left in state ¢ until it reaches an occurrence of >, and starts a new subroutine.

(f) £ is the language
£ = {0*10*|k > 0}

of Part 1 and machine M decides £. Indeed in any computation of M (z) every subroutine
either terminates in a state “yes” or “no” or yields a new subroutine with a shorter current
input. Therefore every computation terminates and for every z in A* we have M (z) =
“yeS” or “I].O”.

Question 2. (25 points) Let N = (A, S, so, {s1}, A) be the Non-Deterministic Finite State
Automaton with alphabet A = {0, 1}, set of states S = {sq, s1, S2} where sq is the initial
state, sy is the only accepting state and A = {(so,0, so), (S0, 1, 80), (50,0,81)}, (s1,1,82)}
is the transition relation.
(a) What does it mean to say that a string x on the language A* is accepted by N?

(5 points)
(b) Use the powerset construction to convert N into an equivalent Deterministic Finite
State Automaton M. (See Homework 5 question 3.)

(10 points)

(c) If possible, simplify the automaton M you obtained in (b) (e.g., by eliminating states
unreachable from the initial state).

(5 points)
(d) Describe in English the language £ accepted by N or give a regular expression denoting
it.

(5 points)
Answer: (a) A string = agpa; ...a,_1 on the language A* is accepted by N if and only
if there is a sequence of states qg, q1, ..., ¢n—1, ¢n such that ¢g = sg, ¢,, = s1 and for each

i< n, (8;,a; 8i+1) € A (i.e., with input x there is a sequence of transitions admissible by
the relation A from the initial state sg to the finale state s7).

(b) Using the powerset construction M = (A, p(S5),{so}, {X C S|s1 € X},v) where v is
given by the table




{so} | {s0,s1} {so} |

{s1} | 0 {sa} |

{s2} | 0 0 |
{80781} ‘ {80781} {80732} ‘
{80382} ‘ {80781} {30}
{81; 82} } 0 {82} }

{80781782} {80781} {80,82}

(the transition function v can also be given as a flow-graph).

(c) In M the states 0, {s1}, {s2}, {s1,s2} and {sq, s1,s2} are never reachable from the
initial state {so}, as it is obvious from the flow-graph of v. Therefore M can be simplified
to M' = (A {X,Y,Z}, X, {Z},V') where X = {so}, Y = {so0,51}, 2 = {s0,s2} and v/ is
given by the table

| 0 1 |

{so} | {s0,s1} {so} |
{80781} | {80781} {80782} |
{50182} | {80551} {80} |

(or by the corresponding flow-graph).

(d) £ is the set of strings of zeros and ones that end with a substring of the form 01. A
regular expression denoting £ is the following: (0 + 1)*01.

Question 3. (25 points) (a) Outline an elementary proof of the theorem: there are

infinitely many prime numbers of the form 4k — 1.
(10 points)

(b) Implicit in the proof there is an algorithm to define the following function:
p(n) = pn, the n-th prime number of the form 4k — 1,

starting from p; = 3. Show that the function p(n) is primitive recursive.
You can use the fact that the factorial function x! is primitive recursive and that the
relations x < y and z|y (x divides y) are primitive recursive.

(15 points)
(Hint: Consider the predicate Pr(x) (z is prime) defined as

Prz)=1<z & —(Fel <e< x & clx).

First show that Pr(x) is primitive recursive; then define the function p(z) by the recursion
scheme, using the bounded p-operator.)

Answer: (a) The number 3 is the first prime number of the form 4k — 1, p; = 3. Let p,
be the n-th prime number of the form 4k — 1 and consider ¢ = 4(p,!) — 1.
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Suppose that there is no prime number p of the form 4k — 1 such that p, < p < ¢ and p|c.
We claim that under this hypothesis c is prime. Indeed the number c is greater than 1 and
it is not divisible by 2.

Suppose ¢ was divisible by a prime p of the form 4k — 1, i.e., p-d = ¢ for some d. Then by
our hypothesis p < p, and so p|4(p,!), namely, p-e = p,! wheree=4-p, - (pp —1)-...-
p+1)-(p—1)-...-1=4(p,!)/p. But then 1= (p-e) — (p-d) =p- (e —d) and this is a
contradiction, as no prime divides 1.)

Finally ¢ cannot be divided only by primes of the form 4k + 1: indeed it is easy to show
that any product of primes of the form 4k +1 is still of this form. Therefore our hypothesis
implies that ¢ is prime.

In conclusion, either our hypothesis is false or c is prime. In either case there is a prime
number p of the form 4k — 1 such that p, < p < c. We let p,41 be the least such p.

(b) The relation Pr(z) =1 < & ~(3e.1 < ¢ < x & c|z) is primitive recursive, because it is
defined by conjunction, negation and bounded quantification from the primitive recursive
relations < y and z|y. Now p(7) is primitive recursive because it is defined by the scheme
of primitive recursion using also the composition scheme:

p(l) = 3
p(n+1) = x(p(n)), where x(2) = px,crcPr(z)&rm(z,4) = 3.

Question 4. (25 points)

(a) Prove that the set of all reals r such that 0 < r < 1 is uncountable.

(8 points)
(b) Prove that the set of all Turing-computable functions f : N — N is countable.

(12 points)

(c) Say that a real r such that 0 < r < 1 is recursive if there is a total recursive function
f such that » = 0.f(1)f(2)f(3) .... Conclude that there are non-recursive reals.

(5 points)
Hints for (b): You may assume that every Turing machine is defined using the same
alphabet A and a unique set of symbols for states. Recall that every Turing Machine can be
uniquely identified by a sequence of quintuples {(a1, b1, c1,d1,€1), -« oy (Ans b, Cnydn,en)}
(lexicographically ordered). Moreover, you can assume that there exists a Gdodel numbering,
i.e., an injective mapping G : AU S — N for the symbols of the alphabet, from which you
will define a Godel numbering for the strings of symbols and for sequences of strings as
explained in class. More precisely, you must do the following:

(i) explain what the quintuples mean;

(2 points)

(ii) define a Gddel numbering of quintuples, given the Gédel numbering G : A — N for
the symbols of the alphabet (Hint: use prime numbers);

(2 points)

(7i7) define a Godel numbering of sequences of quintuples, given the Gdédel numbers of
quintuples (Hint: use prime numbers);



(2 points)
(iv) show that the Gédel numbering given by (i7) and (iii) is an injective map from the
set of quintuples to the natural numbers (Hint: use the fundamental theorem of
arithmetic).
(6 points)
This answers the question, because the mapping G gives an enumeration (with gaps and
repetitions) of all Turing computable functions and we can conclude that the set of all
Turing computable functions is countable.

Answer: (a) Lecture notes, page 1.14.

(b) (i) A quintuple (a, b, c,d, e) means: if in state a the machine reads the input symbol
b, then it goes to state c, prints symbol d and goes left or right depending on whether
e=L,H R (or e =,—,—).
(73) Given the Gédel numbering G(x) of the symbols, the Gédel numbering of the quintuples
is given by

G(a7 b7 c, da 6) = p?(a) ) pg(b) ) pg(C) ) pf(d) ) pg(e)a

where p; is the i-th prime number (starting from p; = 2).
(¢i7) If Qq, ..., @Qp are all the quintuples that define a Turing machine M (in the lexico-
graphical order or in the order given by their Gédel numbering), then

G(Ql""?Qn) :p?(Ql) ."'.p’I’CL;(Qn)

is the Godel number of the machine.

(iv) Suppose g is the Gédel numbering of two machines M and M’. By the fundamental
theorem of arithmetic g = p{* - ... p&» for some n and the factorization is unique. Since
g is the Godel number of a Turing Machine, ag, ..., a, are Godel numbers of quintuples,
hence o; = p?(ai) -pg(bi) -psG(Ci) -pf(di) -pg(e") for some quintuple (a;, b;, ¢;, d;, €;); again by
the fundamental theorem of arithmetic, this factorization is unique. This means that the
machines M and M’ contain exactly the same quintuples, i.e., they are the same machine.

(c) By Chapters 6, 7 and 8 of Boolos and Jeffrey, the class of partial recursive function and
that of Turing computable functions coincide. By part (b) there is an injection G from the
set of Turing Machines to the natural numbers N, while by part (a) there is no bijection
between the reals in (0,1) and N. Therefore there must be a real r which is not given by
any recursive function.

Question 5. (25 points) Consider the Ackermann function

a(m,0) = m + 1 (1)
a(0,n+1) = a(l,n) (ii)
am+1,n+1) = ala(mn+1),n) (iii)

(a) Prove by induction on n that
n+n < a(n,2).
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You may use the Fact, given in class, that a(m,n+1) > a(m+1,n), for all m, n, and also
the fact that the Ackermann function is monotone in both arguments (for i < j, m < n,
a(i,m) < a(j,m) and a(i,m) < a(i,n)).

(15 points)

(b) Outline the proof given in class that the function 5(n) = a(n,n) + 1 is not primitive
recursive.
(10 points)

(Hint: Use the Lemma that for every primitive recursive function f(x1, ..., xx) there exists
an n € N such that for all 1, ..., zk, f(x1,...,2k) < a(max(x1,...,25),n). )

Answer. (a) We have the base case

a(0,2) = «l,1) by (ii)
= (a(0,1),0) by (i)
a(0,1)+1 by (i)
= «a(1,0)+1 by (ii)
= 3 by (i)
> 0=040

The inductive step is left as an exercise to you.

(b) Suppose (n) was primitive recursive. Then by the Lemma, there is a k such that
B(m) < a(m, k) for all m. Therefore

alk,k)+1 = pk) definition of ;3
< a(k, k) by the Lemma

a contradiction. Therefore S(n) is not primitive recursive.

Question 6. (25 points) Let L = (My, Ms,...) be an enumeration (without gaps and
repetitions) of the set of all Turing Machines that compute partial functions from N to N
and let f; be the partial function computed by M;.
(a) What does it mean to say that a Turing Machine MV is a universal machine for the
list £7? You may assume that such machines exist, but you do not need to define one in
detail.

(5 points)

(b) Using (a) show that there is a Turing Machine M’ which computes the following partial
function g:

gn) = 0 if M,, with input n terminates in accepting state;
g(n) is undefined otherwise.

(5 points)



(c) Show that there is no Turing Machine M# which computes the following partial func-
tion h:

h(n) = 0 if M,, with input n does not terminate in accepting state;
h(n) is undefined otherwise.

(5 points)
(d) Counsider the set

K = {M,|M,, with input n terminates in accepting state}

and its complement K. Explain what it means to say that a set A is recursively enumerable.
Show that the set K is recursively enumerable, but K is not.

(5 points)
(e) Explain what it means to say that a set A is semidecidable. Briefly recall Church’s
Thesis, and explain why, assuming Church’s Thesis, we can say that K is semidecidable
and K is not.

(5 points)

Answer. (a) A Turing Machine MY is universal for the list £ if MY behaves as an
interpreter for the Turing machines in £. Namely, MY takes as input a coding M, of
Turing machine M,, (i.e., the program as a datum, representable by the Gédel number of
M,,) and an input k£ and behaves as follows:

MY (M,,k) terminates with output f,(k) if M, (k) terminates with output f, (k)
MY (M,,k) undefined if M, (k) undefined.

(b) Define M’ as follows: M'(M,,,n) = 0 if MY(M,,n) terminates; M’(M,,n) undefined
otherwise.

(c) Suppose M computed the partial function h. Then M* occurs at some point in the
list £, say M7 = M,,. Now

h(n) = 0 if M,, with input n does not terminate in accepting state;
h(n) is undefined otherwise.

e Suppose h(n) is undefined: by definition of h, M,, with input n terminates in an accepting
state. But M,, = M computes h, therefore h(n) is defined, a contradiction;

e Suppose h(n) is defined: since M computes h, M with input n terminates in accepting
state; but M = M,,, so by definition of h, we have h(n) undefined, a contradiction.

In either cases, we have a contradiction; the only remaining assumption, that A is com-
putable by a Turing Machine, is therefore false.

(d) A set is A recursively enumerable if either A is empty or there is a total recursive
function f : N — A which is surjective. By Chapters 6, 7 and 8 of Boolos and Jeffrey, a
partial function is recursive if and only if it is Turing computable. Therefore we can say
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that a set A is recursively enumerable if and only if there is a total Turing computable
function f : N — A which is surjective. It has been shown in class (Proposition 4, page
3.16 in the lecture notes) that a set A is recursively enumerable if and only if there is a
Turing machine M which accepts A. By part (b) the set K is recursively enumerable and
by part (c) its complement K is not.

(e) Church’s Thesis claims that every function which is effectively computable by some
mechanical procedure (abstraction being made on the resources available for computation)
is also computable by a Turing Machine. (This claim is supported by evidence that the
various formal definitions so far proposed for effectively computable classes of functions
have been proved equivalent to the definition of Turing computability.)

By Church’s Thesis, effectively computable can be identified with Turing computable.
Therefore (b) shows that the set K is semidecidable and (c) shows that its complement K
is not semidecidable.



