Logica Computazionale 2009-2010

Gianluigi Bellin

7 luglio 2010

1 Domanda 1 - Logica proposizionale

1.1 Procedura Semantic Tableaux classica

Si considerino i sequenti S_1 ed S_2

$$S_1: \qquad \neg p \to q \Rightarrow (p \to q) \to q$$

$$S_2: (p \to q) \to q \Rightarrow \neg p \to q.$$

(i) Si applichi la procedura semantic tableaux per verificare se S_1 ed S_2 sono validi o falsificabili nella logica classica.

punti 2

1.1.1 Soluzioni

$$\frac{\overline{p \Rightarrow q, p}}{\Rightarrow q, p, \neg p} \neg -R \quad \overline{q \Rightarrow q, p} \rightarrow -L \quad \overline{\neg p \rightarrow q, q \Rightarrow q} \rightarrow -L$$

$$\frac{\neg p \rightarrow q \Rightarrow q, p \quad \rightarrow -Q, p \rightarrow q}{\neg p \rightarrow q, p \rightarrow q \Rightarrow q} \rightarrow -R$$

$$\frac{\overline{p \Rightarrow q, p}}{\neg p \rightarrow q \Rightarrow q} \neg -L$$

$$\frac{\overline{p \Rightarrow q, p}}{\neg p, p \Rightarrow q} \neg -L$$

$$\frac{\overline{p \Rightarrow q, p}}{\neg p, p \Rightarrow q} \rightarrow -R \quad \overline{q, \neg p \Rightarrow q}$$

$$\frac{(p \rightarrow q) \rightarrow q, \neg p \Rightarrow q}{(p \rightarrow q) \rightarrow q \Rightarrow \neg p \rightarrow q} \rightarrow -R$$

1.2 Deduzione Naturale Intuizionistica

(ii) Si trovi una prova (cioè una deduzione senza assunzioni aperte) nel sistema di deduzione naturale $\mathbf{NJ}^{\rightarrow}$ di

$$((p \to \bot) \to q) \to ((p \to q) \to \neg \neg q).$$

punti 2

Suggerimento: Si assuma anche p e si scarichi questa assunzione derivando $p \to \bot$.

1.2.1 Soluzione ragionata

Poiché la conclusione della derivazione è una implicazione

$$(\neg p \to q) \to ((p \to q) \to \neg \neg p),$$

il compito si riduce a trovare una prova del conseguente $(p \to q) \to \neg \neg p$ assumendo l'antecedente (1) $\neg p \to q$: questa assunzione (1) verrà scaricata applicando la regola di introduzione dell'implicazione. Ripetendo questo ragionamento, e ricordando che $\neg \neg p =_{def} \neg p \to \bot$, il compito si riduce a trovare una derivazione d tale che

$$(3) \qquad (1) \qquad (2)$$

$$q \to \bot \qquad (p \to \bot) \to q \qquad p \to q$$

$$\vdots$$

$$d$$

$$(3) \frac{\bot}{\neg q \to \bot} \to -\mathbf{I}$$

$$(2) \frac{(3) \frac{\bot}{\neg q \to \bot} \to -\mathbf{I}}{(p \to q) \to \neg \neg q} \to -\mathbf{I}$$

$$(1) \frac{((p \to \bot) \to q) \to ((p \to q) \to \neg \neg q)}{((p \to \bot) \to q) \to ((p \to q) \to \neg \neg q)} \to -\mathbf{I}$$

Poiché la conclusione di d è la formula atomica \bot , nel sistema $\mathbf{NJ}^{\rightarrow}$ questa può essere ottenuta solo come conclusione di una regola di eliminazione; e poiché disponiamo dell'assunzione $q \to \bot$, è ragionevole cercare una deduzione d_1 tale che

$$(3) \qquad (1) \qquad (2)$$

$$q \to \bot \qquad (p \to \bot) \to q \qquad p \to q$$

$$\vdots$$

$$(3) \qquad \qquad d_1$$

$$q \to \bot \qquad \qquad q$$

$$\to -E$$

Di nuovo la conclusione di d_1 è la formula atomica q, quindi nel nostro sistema può essere solo la conclusione di una \rightarrow -E; ma ci sono due assunzioni disponibili, la (1) e la (2), che sono implicazioni con conseguente q: quale scegliere come premessa maggiore della $nostra <math>\rightarrow$ -E ?

Questa è la decisione cruciale nel nostro esercizio: conviene studiarla bene.

- Se scegliamo (2) p → qcome premessa maggiore della →-E, la premessa minore sarà p e dovremo trovare una derivazione d₂ dalle stesse assunzioni con conclusione p; ma nessuna assunzione ha conclusione p. Potremmo pensare di assumere (4) p, ma questa assunzione non potrebbe mai essere scaricata al di sotto della nostra inferenza: non vi è alcuna →-I che possa scaricare (4).
- Se scegliamo (1) $(p \to \bot) \to q$, la premessa minore sarà $(p \to \bot)$ e dovremo trovare una derivazione dalle stesse assunzioni con conclusione $p \to \bot$. Ma questa conclusione non è atomica e può dunque essere conclusione di una regola di introduzione; questo significa che il nostro problema si riduce a trovare una derivazione d_2 di \bot dalle stesse assunzioni ed in aggiunta anche da (4) p, dove l'assunzione (4) sarà scaricata dalla \to -I con conclusione $p \to \bot$. Questa è dunque la scelta più promettente.

$$(3) \qquad (2) \qquad (4)$$

$$q \to \bot \qquad p \to q \qquad p$$

$$\vdots \qquad \qquad \vdots$$

$$d_2 \qquad \qquad d_2 \qquad \qquad d_2$$

Non è difficile a questo punto trovare d_2 e concludere la prova come indicato più sotto.

$$(1) \qquad \frac{q \to \bot \qquad \frac{(2) \qquad (4)}{p \to q \qquad p}}{(4) \frac{\bot}{p \to \bot} \to -E} \to -E$$

$$(3) \qquad \frac{(p \to \bot) \to q)}{(4) \frac{\bot}{p \to \bot} \to -E} \to -E$$

$$(4) \qquad \frac{(2) \qquad (4)}{q \qquad p \qquad p} \to -E$$

$$(4) \qquad \frac{\bot}{p \to \bot} \to -E$$

$$(2) \qquad \frac{(3) \qquad \bot}{\neg q \to \bot} \to -E}$$

$$(2) \qquad \frac{(3) \qquad \bot}{\neg q \to \bot} \to -E}$$

$$(1) \qquad \frac{(2) \qquad (4)}{p \to q \qquad p} \to -E$$

$$(1) \qquad \frac{(2) \qquad (4)}{p \to q \qquad p} \to -E$$

1.3 Calcolo dei sequenti intuizionistico

(iii) Si costruisca una derivazione senza taglio nel calcolo dei sequenti intuizionistico $\mathbf{LJ}^{\rightarrow}$ del sequente S_3

$$S_3: (p \to \bot) \to q, \ p \to q \Rightarrow \neg \neg q$$

punti 1

Nota. Il calcolo dei sequenti intuizionistico $\mathbf{LJ}^{\rightarrow}$ richiede che in ogni sequente della derivazione vi sia al massimo una formula a destra di \Rightarrow .

1.3.1 Soluzione

Si noti che la scelta formula introdotta a sinistra nelle inferenze (*) e (**) è analogo alla "decisione cruciale" nell'esercizio precedente. Se nella inferenza \rightarrow -L più bassa avessimo scelto di introdurre a sinistra la formula $\mathbf{p} \rightarrow \mathbf{q}$, allora la formula \mathbf{p} sarebbe comparsa a destra di \Rightarrow in tutti i sequenti del sottoalbero sinistro; quindi avremmo dovuto introdurre $(\mathbf{p} \rightarrow \bot) \rightarrow \mathbf{q}$ nell'inferenza \rightarrow -L più alta e nel sequente-premessa sinistro di quella inferenza avremmo dovuto avere due formule a destra di \Rightarrow .

$$(!?!) \xrightarrow{\neg q, p \Rightarrow p} \rightarrow -R \xrightarrow{\begin{array}{c} \overline{q \Rightarrow q} \\ \overline{\mathbf{q}, \neg q \Rightarrow} \end{array}} \rightarrow -L \\ (**) \xrightarrow{\begin{array}{c} \overline{\mathbf{q}, p \Rightarrow p} \\ \hline \neg q \Rightarrow p, \mathbf{p} \rightarrow \bot \end{array}} \rightarrow -R \xrightarrow{\begin{array}{c} \overline{\mathbf{q}, \neg q \Rightarrow} \\ \overline{\mathbf{q}, \neg q \Rightarrow p} \end{array}} \rightarrow -L \\ (*) \xrightarrow{\begin{array}{c} (\mathbf{p} \rightarrow \bot) \rightarrow \mathbf{q}, \ \neg q \Rightarrow \mathbf{p} \end{array}} \rightarrow -L \xrightarrow{\begin{array}{c} \overline{\mathbf{q}, (p \rightarrow \bot) \rightarrow q, \ \neg q \Rightarrow} \\ \hline \mathbf{q}, \ (p \rightarrow \bot) \rightarrow q, \ \neg q \Rightarrow \end{array}} \rightarrow -L \\ \xrightarrow{\begin{array}{c} \overline{\mathbf{p} \rightarrow \mathbf{q}, \ (p \rightarrow \bot) \rightarrow q, \ \neg q \Rightarrow} \\ \hline (p \rightarrow \bot) \rightarrow q, \ p \rightarrow q \Rightarrow \neg \neg q \end{array}} \rightarrow -R \end{array}} \rightarrow -L$$

2 Domanda 2 - Calcolo dei predicati

Si considerino i sequenti S_4 ed S_5 :

$$S_4: \Rightarrow \forall x. \exists y. \forall z. \big(T(x,y) \lor \neg T(x,z) \big)$$

$$S_5: \Rightarrow \big(\forall x. \exists y. T(x,y) \big) \lor \big(\forall x. \forall z. \neg T(x,z) \big).$$

Si applichi la procedura semantic tableaux per verificare se S_4 ed S_5 sono validi o falsificabili nel calcolo dei predicati per la logica classica.

punti 2

2.1 Soluzioni

$$\frac{a_{0}, a_{1}, a_{2}, a_{3}; \ T(a_{1}, a_{2}) \Rightarrow T(a_{1}, a_{2}), \neg T(a_{1}, a_{3}), \alpha, \beta, \gamma, T(a_{1}, a_{0})}{a_{0}, a_{1}, a_{2}, a_{3}; \ T(a_{1}, a_{2}) \Rightarrow T(a_{1}, a_{2}) \vee \neg T(a_{1}, a_{3}), \ \alpha, \beta, \gamma, T(a_{1}, a_{0})} \vee - R$$

$$\frac{a_{0}, a_{1}, a_{2}; \ T(a_{1}, a_{2}) \Rightarrow \forall z. T(a_{1}, a_{2}) \vee \neg T(a_{1}, z), \ \forall z. T(a_{1}, a_{3}) \vee \neg T(a_{1}, z), T(a_{1}, a_{0}), \alpha, \beta}{a_{0}, a_{1}, a_{2}; \ T(a_{1}, a_{2}) \Rightarrow T(a_{1}, a_{0}), \alpha, \beta} \vee - R} \forall - R$$

$$\frac{a_{0}, a_{1}, a_{2}; \ T(a_{1}, a_{2}) \Rightarrow T(a_{1}, a_{0}), \alpha, \beta}{a_{0}, a_{1}, a_{2}; \ \Rightarrow T(a_{1}, a_{0}) \vee \neg T(a_{1}, a_{2}), \alpha, \beta} \vee - R}$$

$$\frac{a_{0}, a_{1}; \Rightarrow \forall z. (T(a_{1}, a_{0}) \vee \neg T(a_{1}, a_{2}), \alpha, \beta} \vee - R}{a_{0}, a_{1}; \Rightarrow \forall z. (T(a_{1}, a_{0}) \vee \neg T(a_{1}, a_{1}) \vee \neg T(a_{1}, a_{1})), \alpha} \forall - R} \Rightarrow -R$$

$$\frac{a_{0}, a_{1}; \Rightarrow \forall z. (T(a_{1}, a_{0}) \vee \neg T(a_{1}, a_{1}) \vee \neg T(a_{1}, a_{1}))}{a_{0}; \Rightarrow \forall x. \exists y. \forall z. (T(x, y) \vee \neg T(x, z))} \vee - R$$

dove poniamo $\alpha = \exists y. \forall z. (T(a_1, y) \lor \neg T(a_1, z)), \beta = \forall z. (T(a_1, a_1) \lor \neg T(a_1, z))$ e $\gamma = \forall z. T(a_1, a_3) \lor \neg T(a_1, z).$

falsificabile

La procedura termina: nel sequente-foglia non vi sono quantificatori universali a destra o esistenziali a sinistra, quindi nessun nuovo parametro a_i viene introdotto, e tutte le formule sono atomiche (eccetto $\exists y.T(a_1,y)$, ma tutti i parametri a_i sono già stati sostituiti per y in $\exists y.T(a_1,y)$).

¹Dunque possiamo costruire una struttura $\mathcal{M} = (M, T_{\mathcal{M}})$ in cui $M = \{a_0, a_1, a_2, a_3\}$

3 Domanda 3 - Logica modale K

(i) Si considerino i sequenti S_6 ed S_7

$$S_6: \Rightarrow \Box(\Diamond p \lor \Box \neg p)$$

 $S_7: \Rightarrow (\Diamond \Box p) \lor (\Box \Box \neg p)$

Si applichi la procedura semantic tableaux per la logica \mathbf{K} per decidere se S_6 ed S_7 sono validi o falsificabili in \mathbf{K} . Qualora un sequente sia falsificabile in \mathbf{K} , si costruisca un Modello di Kripke $\mathcal{M} = (W, R, \Vdash)$ che lo falsifica.

punti 3

3.1 Soluzioni

$$\frac{p \Rightarrow p}{\Rightarrow p, \neg p} \neg R$$

$$\frac{p \Rightarrow p}{\Rightarrow p, \neg p} KR$$

$$\Rightarrow \Diamond p, \Box \neg p$$

$$\Rightarrow \Diamond p \lor \Box \neg p$$

$$\Rightarrow \Box (\Diamond p \lor \Box \neg p)$$

$$con il sistema equivalente
dove \Box e \Diamond sono primitivi.$$

$$oppure$$

$$\frac{\Box \neg p \Rightarrow \Box \neg p}{\Rightarrow \neg \Box \neg p, \Box \neg p} \neg R$$

$$\Rightarrow \neg \Box \neg p, \Box \neg p$$

$$\Rightarrow \Diamond p, \Box \neg p$$

$$\Rightarrow \Diamond p \lor \Box \neg p$$

$$\Rightarrow \Box (\Diamond p \lor \Box \neg p)$$

$$con \Diamond definito come$$

$$\Diamond p =_{def} \neg \Box \neg p.$$

$$\frac{ramo \ aperto \ w_{2}}{ramo \ aperto \ w_{1}}$$

$$\frac{\Rightarrow p}{\Rightarrow \Box p} \mathbf{KR}$$

$$\frac{p \Rightarrow}{\Rightarrow \neg p} \neg R$$

$$\frac{\Rightarrow \neg p}{\Rightarrow \Box \neg p} \mathbf{KR}$$

$$\frac{ramo \ aperto \ w_{2}}{\Rightarrow \neg p} \Rightarrow \nabla R$$

$$\frac{\Rightarrow \neg p}{\Rightarrow \Box \neg p} \mathbf{KR}$$

$$\frac{\Rightarrow \neg p}{\Rightarrow \Box \neg p} \mathbf{KR}$$

$$\frac{\Rightarrow \Box p, \Box \neg p}{\Rightarrow \Diamond \Box p, \Box \Box \neg p} \mathbf{KR}$$

$$\Rightarrow (\Diamond \Box p) \lor (\Box \Box \neg p) \lor \neg R$$

nel sistema dove \square e \diamondsuit sono primitivi. Poiché l'albero è aperto, costruisco un contromodello $\mathcal{M} = (W, R, \Vdash)$, con ²

e $T_{\mathcal{M}} = \langle a_2, a_3 \rangle$. Qui per $a = a_0, a_1, a_3$ non esiste $a_j \in M$ tale che $\langle a, a_j \rangle \in T_{\mathcal{M}}$, dunque $\mathcal{M} \not\models \forall x. \exists y. T(x,y)$; ma abbiamo $\langle a_2, a_3 \rangle \in T_{\mathcal{M}}$, cioè $\mathcal{M} \models T(a_2, a_3)$, e dunque $\mathcal{M} \not\models \forall x. \forall z. \neg T(x,z)$. La definizione del contromodello non è richiesta per l'esame.

²Qui i mondi possibili w_1 e w_2 sono associati ai frammenti di rami senza regole modali sottostanti alle foglie; il mondo w_0 è associato ai sequenti-premessa della "ramificazione

- i mondi possibili $W = \{w, w_0, w_1, w_2\},\$
- la relazione di accessibilità $R = \{ \langle w, w_0 \rangle, \langle w_0, w_1 \rangle, \langle w_0, w_2 \rangle \},$
- una valutazione che soddisfi $w_2 \Vdash p$, arbitraria per altri atomi.

Qui $w_1 \not\Vdash p$ e w_0Rw_1 , dunque $w_0 \not\Vdash \Box p$, ed inoltre $w \not\Vdash \Diamond \Box p$ perché w_0 è l'unico mondo cui w accede. Similmente $w_2 \Vdash p$ e w_0Rw_2 , dunque $w_0 \not\Vdash \Box \neg p$ ed inoltre $w \not\Vdash \Box \Box \neg p$ perché wRw_0 .

4 Un frammento della logica temporale

Si consideri il linguaggio della logica temporale \mathbf{LTL} ristretto alla grammatica

$$A := p \mid \neg p \mid \circ A \mid \Box A$$

Si ricordi che una interpretazione di una formula φ della logica **LTL** è una struttura $\mathcal{M}: (\mathbf{N}, \mathcal{V})$ in cui per ogni stato $i \in \mathbf{N}$ e per ogni atomo p, $\mathcal{V}(i, p) = V$ oppure $\mathcal{V}(i, p) = F$, ed inoltre

- $\mathcal{V}(i, \circ p) = V$ se e solo se $\mathcal{V}(i+1, p) = V$;
- $\mathcal{V}(i, \Box \varphi) = V$ se e solo se per ogni $j \geq i$ vale $\mathcal{V}(j, \varphi) = V$; eccetera.

Per esempio, una interpretazione in cui la formula $\varphi = \neg p \land \circ \neg p \land \circ \circ \Box p$ è vera nello stato 0 si può scrivere come

dove i puntini suggeriscono che in tutti gli stati a partire dal terzo la formula p è vera.

4.1 Domanda 4

(i) Si costruisca una interpretazione in cui la formula $\varphi = p \wedge \square \circ p$ è vera nello stato 0.

punti 1

Soluzione. Poniamo p vera in tutti gli infiniti stati del modello lineare.

$$p \mid p \mid p \mid \cdots \mid p \mid \cdots$$

disgiuntiva" ed alla premessa della $\mathbf{K}\mathbf{R}$ inferiore; il mondo w è associato ai due sequenti più bassi.

(ii) Esiste una interpretazione in cui $\varphi = p \wedge \square \circ p$ è vera nello stato n ma non nello stato n+1? Perché?

punti 1

Soluzione. Supponiamo che esista un modello lineare in cui $\varphi = p \wedge \Box \circ p$ sia vera nello stato n ma falsa nello stato n+1. Due casi sono possibili:³

- 1. p è falsa in n+1. Ma abbiamo supposto che $\square \circ p$ sia vera in n, quindi in particolare $\circ p$ è vera in n e questo significa che p è vera in n+1, e questa è una contraddizione.
- 2. $\Box \circ p$ è falsa in n+1, cioè esiste un $j \geq n$ tale che $\circ p$ è falsa in j+1. Ma abbiamo supposto che $\Box \circ p$ sia vera in n, dunque $\circ p$ è vera in tutti gli stati maggiori di n in particolare in j+1, contraddizione.

In entrambe i casi otteniamo una contraddizione; dunque un tale modello non esiste.

 $^{^3{\}rm Si}$ ricordi che " $\Box A$ " significa intuitivamente "Aè sempre vera", cioè vera in tutti gli stati del modello lineare.