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INTRODUCTION

The lambda-caleulus was invented in the early 1930's, by A. Church, and has been
considerably developed since then. This book is an Introduction to some aspects of the
theory today: pure lambda-calculus, combinatory logic, semantics (models) of
lambda-celeulus, type systems. All these areas will be dealt with, only partially, of course,
but in such a way, I think, as to illustrate their interdependence, and the essential unity of
the subject.

No specific knowledge is required from the reader, but some familiarity with mathematical
logic is expected ; in Chapter II, the concept of recursive function is used ; parts of
Chapters VI and VII, as well as Chapter IX, involve elementary tepics in predicate
calculus and mode! theory.

For about fifteen years, the typed lambda-calculus has provoked a great deal of interest,
because of its close connections with programming languages, and of the link that it
establishes between the concept of program and that of intuitionistic proof : this is known
ag the “Curry-Howard correspondence”. After the first type system, which was Curry's,
many others appeared : for example, de Bruijn's Automath system, Girard's system 7,
Martin-Lof's theory of intuitionistic types, Coquand-Huet's theory of constructions,
Constable's Nuprl system...

This book will first introduce Coppo and Dezani's intersection type system. Here it will be
called “system 7", and will be used to prove some fundamental theorems of pure
lambda-caleulus. It is also connected with denotational semantics : in Engeler and Scott's
models, the interpretation of a term is essentially the set of its types. Next, Girard's
system 7 of second order types will be considered, together with a simple extension,
denoted by FAs (second order functional arithmetic). These types have a very transparent
logical structure, and a great expressive power, They allow the Curry-Howard
correspondence to be seen clearly, as well as the possibilities, and the difficulties, of using

these systems as programming languages.

Chapter I

SUBSTITUTION AND BETA-CONVERSION

The terms of the A-caleulus (also called A~terms) are finite sequences formed with the
symbols “(,),A” and with variables x,y,... (the set of variables is assumed to be countable).
They are obtained by applying, a finite number of times, the following rules :

any varizble x is a A-term ;
whenever { and u are A-terms, then so is (u)t ;
whenever { is a A-term and x is a variable, then Ax t is a A-term.

The set of al} terms of the A-calculus will be denoted by L.

The term (u)t should be thought of as “u applied to t”; it will also be denoted by ut if
there is no ambiguity ; the term (.{{(u}ti}t2)...)tx will also be written utits...ty or

(u)tsta... by
By convention, when k = 0, (u)tsto...4x will denote the term u,

The free occurrences of a variable x in a term t are defined, by induction, as follows :
if t is the variable x, then the oceurrence of x in t, i3 free ;
if t = (u)v, then the free cceurrences of x in t are those of x inu and v ;
ift = Ay u, the free occurrences of x in t are those of x in u, except if x = y ; in that
case, no occurrence of x in t is free.

A free variable in ¢ is a variable which has at least one free occurrence in t. A term which
has no free variable i3 called a elosed term.
A bound variable in t is & variable which occurs in t just after the symbol A,
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1. Simple substitution

Let u,ty,..,bx be terms and xg,.,xy distinct variables; the term U<y /X, b /x> I8
defined s the result of the replacement of every free occurrence of x; in u by t: {1 <1< k).
The definition is by induction on u, as follows

ifu=x;(1<1<k), then u<tyfxy,.,bi/xx> =t ;

i u 15 a variable and v # X3,..x, then u<ty/X,. b /x> = u ;

ifu={w)v, then u<ty/xq,..,tx/ x> = (Wt /2 b X vty g 30

if u= Axjv (1 < <K), then

U<t/ Xy b /x> = PN S AT N Y S IR TRY I o o

ifu=JAyv,withy# x,...,xi, then

Wb Kty bl /3> = Ay Vb1 Xt /X0

Such a substitution will be called 2 “simple” one, in order to distinguish it from the
substitution defined further on, which needs a change of bound variables. Simple
substitution corresponds, in computer science, to the notion of “macro-instruction”,

With the notation u<ty/xy,...,tx/xx>, it is undersiood that Xiy...,Xk are distinct variables.
Moreover, thelr order does not matter ; in other words :

Wby fXpenbie /30> = Uy X g, by /%y, > fOT any permutation o of {1,....k}
The proof s immediate by induction on the length of 1 ; also immediate is the following ;

If each of the terms ty,...,tx are variables, then the term u<ty/Xs,...,bx/Xx> has the same
length as u.

Lemma 1. Let vby,...tk04,..,u1 be A-terms, and RKiyoeey Xk F1,0-,¥1 distinet variables. If
Yip-o¥t are not dree in v, then :
v(tI/x;,...,tijk,ul/yh...,u]/yl)v = v<ty/xy. b x>

Proof by induction on v, The result is clear when v is either a variable or a term of the
form (vy)vy. Now suppose v = Ax w ; then ;

ifx=0x,say x, then:
v<t1/x1,...,t;(/xk,ul/yi,.'..,u1/y1>' = Axyw <to/Xa, b /Xl Y1y, 11y =
A%W<ta/¥p,.. tufxy > (by induction hypothesis) = Vb /Xy b/ X

if x = yy, say yy, then :
V< R b X s WY = AYWby /% b /X002 Y 2y 1 1
= Ayrw<ti/s1,.otefx> by induction hypothesis, (since ys,...y1 are not free in
W) = v<ty/xyy b X

SUBSTITUTION AND BETA-CORVERSION

H X # Xt yeeerXko¥iy-s¥1, B0 2
VLA Ry s b Ry ULV 1oy MY = AR Wb Rty sble /X300 /Y10 U1 31>
= Ax Wets/Xiybifxi> (by induction hypothesis) = v<ty /X1, ba /%>

Q.E.D.

Lemma 2. Let v,bi,..,bilgye,t be A-terms, and Xi,...Xk,¥i,..,y1 distinct variables. H

¥1,.,¥1 are not free in f1,...,4x, then :
VAL X e b f K UL T 1o U VEDS = VTh Xt T Xbg U f Yty 0 Y0

Proof by induction on the length of v :

i) vis a variable : '
if v =1x;, then the identity to be proved is t1<ui/y,...,u3/y1> = i , which follows

from lemma 1, since y1,...,¥1 are not, free in t3 ;
if v =1y, 00 ¥ # X1, Xk, ¥1,--,¥1, then the resalt is clear.
ity v = (vq)ve ; the result is obvicus, by applying the induction hypothesis to vi,v2.
i} v=Axw;
if x = x;j, say x1, then:
Vb /X e b /X <0V LWL 1> = AW <o) Xy b/ X <UL Y1500/ V1>
= Axyw<ty/Xa,e oo, b/ Xi it/ Y15, /715> Dy induction hypothesis,
= V<X b Xy W Y e 1 Y1
if x = y;j , 2y y1, then:
Vb /Xyl KU S U V1o WY1 = AYIW by /Xy b/ > <2 Y200 01 13>
= Ayiw<t /%y b/ X000/ ¥ayoun fys> by induction hypothesis,
= VbRl bl KW [T 1y ULV 5

i X #F Xty XYY 1, Then
Vb X yoe bl X P <UL e Y1 = AX WXy b2 <01 ¥y UL Y1

= AX W< /%1y sbk /X1 /Y1y U1 ¥1> by induction hypothesis,
== VXL bl Ml W/ ¥ 0oy UL/ IS
Q.ED.

Lemma 3. Let wty,...,tx be A-terms, and {x4,.., X}, {¥s,-..yx} two sets of variables such

that none of the y;'s eccur in u. Then :
BT KLy Tl K> < Yoo b V1> = B Xy b0

Proof by induction on u. If u is a variable (and thus u# y1,...,yx), then the conclusion is
obvious. So i3 it in the case u = (w)v. Ifu= Az v, then 2 ¢ {y1,..yx}. I 2 is an xy, say X1,
then  U<Y1/Xty oo/ XE> <O/ V1l i = (Aerv<ya/ X, Yi/ 562 Y<ba Ve b/ Y =
AXVCY e/ Xagee ooVl X < baf Y2, st/ Y>> (because of the assumption that yy does not occur
in Axyv, and therefore, meither in Jxiv<ys/Xg,..yi/X>) = dxv<tofxg,...tefxx> (by
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induction hypothesis) = u<ty/xy, ...t /xu>.

Iz ¢ {xy,...,xx}, then :

UYL Ky ¥/ %> U V1 b VS = Az v<y,/x1,...,yk/xp<t1/y1,...,tk/yk>
= Az v<by/X1,.. b x> (induction hypothesis) = U<t/ Kb /X

Q.E.D,

Lot R be a binary relation on L ; we will say that R is A-compatible if it is reflexive and

satisfies
tRt'2 Axt R Axt'; tRE e Ru's (W)t B (u)t' .

Lemma 4. H R i3 A-compatible and #; R -t Rt , then :
W< /Xyt /20> Ru<t] fxayeen b f 3>,

Immediate proof by induction on the length of 1.
Q.E.D.

Proposition 1. Tet R be a binary relation on L. Then, the least A-compatible binary
relation p containing R is defined by the following condition :

(1) t'p t ﬁ there exists terms Tybtyenybleybyye.- b and distinet variables Xtyvo-:Xk Such that :
R (1<i<k)andt = T<trfxpyonn bief5>, 0 = T<ty /oy b 34

Let ' be the least A-competible binary relation containing R, and p the relation defined b
cordition (1) above. It follows from the previous lemma that g' 3 p. Tt is easy to see tha)ff
£3 R (take T = x;). It thus remains to prove that g is A~compatible. )
By taking k = 0 ix condition (1), we see that p is reflexive,
Suppose t.= T<tyfotsy ot /x>, 1 = T<t/xg, b /%, Let ¥tye.,¥k be distinet: variables
:ozt \r;ccurrmg in T, Let V= T<ys /%ty ¥i/x>. Then, it follows from lemma 3 that

. .<t1/yh...,tk/yk> and t' = V<bi/ys,. bl fye>. Thus the distinet variables X, Xk N1
condition (1) can be arbitrarily chosen, except in some finite set. -
Now suppose . p tf and u pu';then :
b= T<te/xgpun tyfxe>, ' = T /% b Y0 with 4 R €
U= U<wfyg.ufys, o = U<y fys,...,u} /31> with u; Rlu} .
By the previoug remark, we can assume that X1y Xk 1y Y1 a7€ distinet, different from x
fl\nd &lso that none of the x4's occur in U, and none of the ¥j oceur in T T;xerefore ; '
,\i :';-,\(;\Jtil.T)<t[/x1,...,tk/xk>, Ax = (Ax T)<b]/xt /x>, which  proves  that
jlio}bjtllemma 1': t= I‘I‘<tl/x1,...,tk/xk,ul/yl,...,ul/y1>,
- Simﬂ;ﬁc;,;l..ik{;ck,uﬂfyl,...,ul'/y1> (since none of the yi's oceur in T) ;

= Uty /Rty b/ Xy /¥ 1001 Y1,

SUBSTITUTION AND BETA-CONVERSION

w = U<t /x40 /2008y, 0] /1> (since none of the xi's oceur in 7).
Let V =(U)T ; then (u)t = V<tg/xg, b/ X ut fyn,n,ufyr>,

(U = V<tl/xh, o b X0uy.u) fy1> and thus (u)t p {u')t".

Q.E.D.

2. Alpha-equivalence and substifution

We will now define an equivalence relation on the set L of all A-terms. It is called

a-equivalence, and denoted by =.
Intuitively, u = u' means that u' is obtained from u by renaming the bound variables in u;

more precisely, u = u' if and only if v and u' have the same sequence of symbols (when all
variables are considered equal), the same free occurrences of the same variables, and if each

A binds the same oceurrences of variables in u and in u",

‘We define u = u', on [, by induction on the length of u, by the following clauses :

if wis a varighle, then u = u' if and only ifu = u';
ifu=(w)v,thenu=zu'fandonlyif n' = {w')v', withv=v'and w=w';
if u=Mxv, then v=u' if and only if u'=Ax'v', with v<y/x> = v'<y/x'>

for ali variables y except a finite number.
{Note that v<y/x> has the same length as v, thus is shorter than u, which guaraniees the

correctness of the inductive definition).

It can be seen immediately, by induction on the length of v, that
if u=u', then u and u' have the same free variables and the same length.

The relation = is an equivalence relation on L.

Indeed, the proof of the three following properties, by induction on u, is trivial :
nzu;uzsu'zsu=u;usv, ' =" 3usu".

Proposition 2. Let u,u',ty,...,tx be A-terms, and xy,...,xx distinct variables. If u=u' and if
no free variable in ty,...,t) is bound in u,u', then :
u<t1/x1,...,tk/xk> = u‘<t1/x;,...,tk[xk>.

Note that, since u = u', u and u' have the same free variables. Thus it can be assumed that
Xiy.0,Xx aI€ free in v and u': indeed, if xq,...,%1 are those x; variables which are free in u
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and u', then, by lemma 1 :

U<1/%g 0, bk /XS = U<hyfX, b1 /x> and U<ty /s, b x> = <ty /g b /x5

The proof of the proposition procesds by induction on u. The resylt is immediate if nis 2
variable, or u = (w)v. Suppose u = Ax v. Then u' = Ax' v’ and vy /x> = v'<y/x'> for all
variables y except a finite number.

Since xp,..xx are free in u and w', x and x' are different from XyyeeyXte This
U< /X, b x> = Ax V<1 /X1y, by /x> and

Wby fx, b /X> = AX V<t /Xy b /x>, Hence it ds sufficient to show that
V<t Xy b X <y x> = v'<ty /Xy ac <y /x> for all varfables y except a finite
number, Since x,x' are not free in tyenty, it follows from lemma 2 that
Vb /X b3 <y x> = vy /Xt Ry /x> and

Vi<t Xty e <y x> = vy ot Wy F X, then, again by
lemma 2 : V<Xt X <y x> = vy <tyfxg,.. bz and

Vb /Xy b 2 <Y /XIS = vy x> <ty x>

Since v<y/x> = v'<y/x'> for all variables y except a finite number, and v<y/x> is
shorter than u, the induction hypothesis gives :

VY <ty b x> = vy /x> <y fxg g b /x>, thus ;

Vb Ky b xRS <y x> = v <y /x> <y/x'> for el variables y except a finite
number,

Q.E.D.

Corollary. The relation = is A-compatible.
Suppose u = u'. We need to prove that Ax v = Ax u', that is to say u<y/x> = v'<y/x> for
all variables y cxcept a finite number. But this follows fram the previous proposition,

provided that y is not a bound variable in 1 or fn ',
Q.E.D.

Corollaty. I t1,...,tp, b}, ,t) are terms, and Xiy, Xy are distinct wvariables, then:
= ¢! -
b=t b St 3 uhy /oyt = by g, b fo>.

This follows from the previous corolary and lemmg 4.

However, note that H is not true that uzu' = u<t/x> = u'<tfx>, For example
- . Py ) '

Ayx= dzx, while Ay y# Azy. This is the reason why the simple substitution is not the

appropriate one.

Lemma 5. Xx u = Ay u<y/x> whenever y is a variable which does not, occur in u.

SUBSTITUTION AND BETA~-CONVERSION

By lemma 3, u<z/x> = u<y/x><zfy> for any variable 2, since y does not occur in u.
Hence the result follows from the definition of =.
Q.E.D.

Lemma 6. Let t be a term, and xy,...,x; be variables. Then there exsts a term ¢!, ' =t,

such that none of xy,...,xy are bound in t'.

The proof is by induction on t. The result is immediate if t is a variable, or if t = (v)u. If
t = Ax u, then, by induction hypothesis, there exists & term u', u' =u, in which none of
Xi,-..,Xx are bound. By the previous lemma, t = Ax u' = Ay u'<y/x> with y # x1,...,xx. Thus
it is sufficient to take t' = Ay u'<y/>x>.

Q.E.D.

From now on, a-equivalent terms will be identified ; hence we will deal with the quotient
set L/=; it is denoted by A,

For each variable x, its equivalence class will still be denoted by x (it is actually {x}).
Furthermore, the operations u,v = (v)u and ux - Ax u are compatible with = and are

therefore defined in A.
Moreover, if u=u', then u and u' have the same free variables, Hence it is possible to

define the free variables of & member of A.

Consider terms 1u,ty,...,bx and distinct variables xy,...,xx. The term u[ti/xy,...,bx/xx] (being
the result of the replacement of every free occurrence of x; in v by &3, for i =1,...,k) is
defined as u'<t1/xy,...,bk/xk>, where u' i a term such that u' = u and no bound variable in
' is free in ty,...,ty 1 this is possible because, first of all such a term u' exists (this has just
been proved) ; then, by proposition 2, the equivalence class of u'<ty/xi,...,tk/xx> does not
depend on the choice of ', Hence uzu' = ufty/x1,..b/xx] = W' [11/X 150005/ %]

Finally, it follows from a corollary of proposition 2 that

bE ] et St 3 ufbe/xeebi/xe] = uft] /x5

So the substitution operation wu,ty,...,bk = U[ty/%p,ete/x] 15 well defined in A Tt

corresponds to the replacement of the free occurrences of x; in u by t3 (1 <1<k}, provided
that a representative of © has been chosen which has no bound variable in t,...,0k-
Thus the substitution operation satisfies the following lemmas, already stated for the

simple substitution :

Lemma 7. Let bty bigtye,my be A-terms, and Xi,...Xp,¥1,..,y1 distinct variables. K

¥iq:-0,¥1 ar¢ Dot free in v, then :
V[t1/Xtyeee bl Kiey UL/ ¥t 1Y) = VIbg/ Xtperns b/ %]
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Lemma 8. Let v,ig,...,b5,Uy,...,u1 be A-terms, and xy,...00,y1,...,71 distinet varisbles, If
¥t;.-.,¥1 aze not free in ty,...,tx , then :
V[b/ et/ xe] 01 /T tye 1 1] = v{tl/xl,...,tk/xk,ul/yl,...;u]/yl]_

Lemma 9. Let u, t4,...,5x be terms, and 2w}y {yo,-yi} two sets of variables, such that
none of the y;'s are free in u. Then ;
u[yl/xl,...,yk/xk]'[m/yl,...,tk/yk] = u[tI/Xh...,tk/Xk}.

However, the following lemma would not be true for the simple substitution.

Lemma 10. Let u,aq,...,8%,by,...,b1 be termms, and xy,...,X1,¥1,...,71 distinet variables. Then :
u[b1/y1,...,b1/y1] [&j/Xi,...,ak/Xk] = u[a1/x;,...,ak/xk,b{/yi,...,bl'/yg],

where b} == byfa; /x,...,ax/xy] (L < j <1).

Moreover, if y1,...,y1 are not free in 41,...,2%, then :
u[bI/yi,...,bI/yl]{aI/xl,...,ak/xk] = u[a;/xi,..‘,ak/xk][b}/y;,...,bi/y;].

The second part of the iemma follows from the first one and from lemms 8.

The proof of the first part proceeds by induction on u, The result is immediate if u is a

variable (examine the cases where that variable is x; or yi)sorif u = (wiv,

Suppose u = Az v. Choose representatives of U,81,00048%,by1,...,01 with bound variables

different  from Xty Xko¥1y-0¥l, and  not  free in U,a1,...,8%,b1,..,b). Then ;
u[bl/yl,...,b]/yl][m/xh...,ak/xk} = Az v<b1/y1,...,bl/y1><a1/xl,...,ak/xk>

= Az v[oy/ v, by [a1/ %8s .

By induction hypothesis,

vibi/yissnfyif{anfxa,. anfxy) = V{a1/Xt, 00/ X0, b /¥e,, bl fy1), which is equivalent fo

V<At /Xy, 80/ X0, 017100, /713>, according to the choice of the representatives of v,as,by.

Indeed, bj = bjla/xs,....a/x] = bj<arfxy,...,ak/%x>, hence the free variables in b! are not

bound in v, :

Therefore :

u[b1/y1,...,bl/y1][al/x1,...,ak/xk] =)z v<al/x1,...,ak/xk,b}/yh...,bl'/yp =

g\zExg<a1/xl,...,ak/xk,b;/y,,...,b{jyp = ufalfxl,...,ak/xk,bl'/yl,...,bi/yl].

As indicated above, this result does not hoid for the simple substitution :
if u=JAxy, b=x, then u<afx,b!fy> = Axb' = dxa (since b= bla/x]), while
u<b/y><afx> = Ax x.

SUBSTITUTION AND BETA-CONVERSION 9

3. Beta-conversion

Let R be a binary relation {on an arbitrary set) ; the least transitive binary relation which
contains R is obviously the relation R' defined by :

tR'u & there exist an integer n and ferms vp= t,v1,...,¥n-;,¥n= U such that vi R vis
(0£i<n).

R' is called the fransitive closure of R.

The Church-Rosser (C.-R.) property is satisfied by a relation R if and only if :
tRu,tRu' 2 forsomev, uRvandu' Rv.

Lemma, Let R be a binary relation which satisfies the Church-Rosser property. Then the
transitive closure of R also satisfies it.

Let R' be that transitive closure. We will first prove the following property :
tR'u,tRu' = forsomev,uRv and u'R'v.

t R' v means that there exists a Sequence vg = t,vy,...,¥n-1,Vn = U such that
(0<i<n).

The proof is by induction on n ; the case n = 1 is just the hypothesis of the lemma.
Now since t R' vy and t R v’ for some w, vpg Rw and v’ R' w, But vp.t Ru, s0 uR v
and w R v for some v (C.-R. property for R). Therefore u' R' v, which gives the result.
Now we can prove the lemma : the assumption is ¢ R' v and t R' v', so there exisis a
sequence ! (vo= t),¥5,..,Va-1,{vn = ') such that vi R vinn (0 <1< n).

The proof is by induction on n : the case n = 1 has just been setiled.

Since t R u and t R vy, by induction hypothesis, we have u R' w and vp4 R' w for some
w. Now vp1 R u', 50, by the previous property, w R v and u' R' v for some v. Thusu R' v.

QED,

vi R vig

Now we will consider binary relations on A. Such relations are identified with binary
relations on L, which are compatible with the equivalence relation = .

Proposition 3. H (Axu)t = (o u')t', then uft/x] = u'ft'/x"].

By definition of =, the assumption is: t =t' and Ax u = Ax' v'. Thus v<y/x> = v'<y/x">
for all variables y excepi a finite number. Choose representatives of u,u' with no bound
variable free in ¢ or t'. Then, by proposition 2, {u<y/x>)<t/y> = (W'<y/x">)<t/y>. Let
y be a variable which does not occur in u,u'. It then follows from lemms 3 that
u<t/x> = u'<t/x'> ; mereover v'<t/x"> =u'<t'/x"> (corollary of propasition 2). Thus
<t/ = u'<t'fx'>, that is uft/x]) = u'[t'/x"].

Q.E.D.
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A term of the form (Ax u)t is called a redes, ult/x] is called its cortractum. The previous
proposition shows that this notion is defined on A.
A binary relation ﬂo will now be defined on A ; t B, ¢ should be read as: “t' is ohtained
by contracting a redex (or by a f-reduction) in t ”. The definition is by induction on ¢ :

i t is a variable, then there is no t* such that ¢ ﬁo t';

ift = Axu, then t ,60 " if and only if ¢' = Ax u', with u 4. u' ;

if t = (v}u, then t ,6'0 t' if and only if : 0

etther t' = (vju' with u g,
or th=(viu with v B, v,
or eise v=JAxw and t' = wlu/x].

It is clear from this definition that, whenever ¢ ﬁo t', any free variable in t' is also free in &

The f-conversion is the least binary relation # on A, which is reflexive, iransitive, and
contains ﬂo .80 t 21" if and only if there exists a sequence (to = t),by,..,tn1,(tn = t') such
that 65 f, tix for 1<i<n-1(n30).

Therefore, whenever t #t', any free variable in t' is also fresin t.
The next two propositions give two simple characterizations of g

Proposition 4. The f-conversion iz the least transitive A-compatible binary relation # such
that (Ao w)t A ult/x) for all terms t,1 and variable x.

Clearly, EA,t u Byu' 2 Axt g Ax it and (u)t #(u)t'. Hence § is A-compatible.
Conversely, if R is a A-compatible binary relation and if (Ax u)t R uft/x] for all terms &,u
then it follows immediately from the definition of A that R2 8 (pravet g (st Rt ’b ’
induction on t). So, if R is transitive, then R 3 . ? ¢ ° g
QED.

Proposition 5. g is the transitive closure of the binary relation p defined on L by :

i 3 X
upu 4= there exist a term v and redexes t1y.. by With contractums tyesty suchk that
U = vl b x>, Ut = Vb Xy bl X0

_Indeed, according to proposition 1, p is the least A-tompatible binary relation on T, which

Is compatible with =, and such that ¢ p ¢' for any redex ¢ with contractum t'. Thus, by the
. 1. - ) ’

previous proposition, £1s the transitive closure of p.

Q.E.D.

Proposition 6. I t #1' and u fu' then ult/x] gu'lt’ fx].
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If u=1u', then the result is given by lemma 4, since the relation g is A-compatible (it is
assumed that the chosen representatives of u and u' have no bound variable free in t or t').
Hence it is sufficient to show that: t ft' and u f u' » uft/x] Fu'ft'/x].

This is done by induction on the length of u. Tt follows from the definition of ﬁo that the
different, possibilities for u,u' are:

Hu=Adyv,u' =2dyv, andv ,HO v'. Then, by induction hypothesis, v[i/x] §v'[t'/x], and,
since fis A-compatible, Ay v[t/x] # Ay v'[t'/x], that is u[t/x] Su'[t'/x].

ii) u = (w)v and v’ = (w)v', with v f_ v'". Then, by induction hypothesis, v[t/x| Avittfx];
and, by lemma 4, w[t/x] fw[t'/x]. Therefore (wlt/x])v[t/x] B (wit'/x]}v'{t'/x], since § Is
A-compatible ; that is to say uft/x] gu'{t'/x].

iif) u = (w)v and u' = (w'}v, with w §, #'. Same proof.

iv) u=(dy w)v and u' = w[v/y]. Then uft/x] = (Ay wlt/x])v[t/x] (a representative of u
has been chosen in which neither x, nor any free variable of t are bound). Thus
uft/x] B, wlt/x][v[t/x]/¥] ; now, by lemma 10 : wit/x][v[t/x]/¥] = wiv/y][t/x] = v'[t/x], and
by lemma 4, u'[t/x] fu'[t'/x]. Hence uft/x] fu'ft'/x].

Q.E.D.

This proposition is also an immediate consequence of lemima 12.

A term t is said 1o be normal, ar to be in normal form, if it contains no redex.

So the normal terms are those which are obtained by applying, a finite number of times,

the following rules : .
any variable x is a normal term ;

whenever t is normal, so is Ax ¢ ;
if t,u are normal and if the first symbol in u is act A, then {u)t is normal.

This definition yields, immediately, the folloxving properties :
A term 35 normal if and only if it is of the form Axp.Axe{x)t1..tn (k0 2 0), where x is a

variable and ts,...,ty are normal terms.
A term t is normal if and only if there is no term t' such that t ﬁo th

Thus a normal term is “minimal” with respect to f, which means that, whenever t is
normal, t #4'3t = . However the converse is not true : take t = (Ax(x)x)Ax(x)x , then

t At' 3 t=1' althought is not normal.

A term t is said to be normalizableif t §t' for some normal term t'. A term 1 is said to be
strongly normalizable if there is no infinite sequence to = tyb1,bn ... Such that t; ,6’0 ia

for alli > 0 (the term § ig ther: obviously normalizable).
For example, JAxx is a normal term, {Ax(x)x)Axx is strongly normalizable,

w=(dx(x)x)Ax(x)x i5 not normalizable, (Ax y)w is normalizable but not strongly

normalizable.




12 LAMBDA-CALCULUS, TYPES AND MODELS

For nermalizable terms, the problem of the unigueness of the normal form arises. It is
solved by the following theorem :

Church-Rosser theorem. The #-conversion satisfies the Church-Rosser property.

This yields the uniqueness of the narmal form ; if ¢ Bt t fty, with t,ts normal, then,
according to the theorem, there exists a term ts such that t1 Bts, tg fta. Thusty = tg = tg.

In order to prove that A satisfies the Church-Rosser property, it is sufficient to exhibit a
binary relation p or A which satisfies the Church-Rosser property and has the
B-conversion as its transitive closure.

One could think of taking p to be the “reflexive closure” of ﬂo ; which would be defined by
Xpy 8 x=yorx ﬂo ¥~ But this relztion p does not satisfy the Church Rosser property :
for example, if t= (Ax(x)x)r, where r is a redex with contractum ', u = (r)r and
v = (Ax(x)x)r, then ¢ B, u and t 4, v, while there is no term w such that u fiy w and

v ﬁo W,

A suitable definition of 18 as the least A-compatible binary relation on A such that -
Lpthupu' 2 (Axult pu'lt'/x]

To prove that 83 p, it is enough to see that t At u fu' 3 (Ax wt fu'ft'/x]; now :
(Ax w}t A (Ax u')t’ (since 4 is A-compatible) and : (Ax u')t' fu'[t'/x] ; then the expected
result follows, by transitivity.

Therefore, £ containg the transitive closure £ of p. But of course p 3 ﬁo L5 p'o A

Hence ffis the tramsitive closure of p It thus remains to prove that p satisfies the
Church-Rosser property.

By definition, pis the set of ali pairs of (equivalence classes of) terms obtained by applying,
a finite number of times, the following rules :

Ntet;

ipt" 2 Axtpixt,

) tot and upr' 3 (u)t p (W ;

Htpivpu 3 (dxu)t put' /.

Lemma 11. 1) Ifxpt', wherexisa variable, then t'=x.
H) H Axupgt', then t' = Ax ', and u pu'.
ifi) I (vJupt', then either t'=(v)u' with u pu' and vpv', or
vEdxw and t'sw'[u'/x] with upu' and wpw'.
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i) x pt' could only be obtained by applying rule 1, hence £ = x.

ii} Consider the last rule applied to obtain JAxu pt'; the form of the term on the left
shows that it is necessarily rule 1 or rule 2 ; the result then follows.

ifl) Same method : the last rule applied to obtain (v)upt' is 1,3, or 4 ; this yields the
conclusion.

QED.

Lemma 12, Whenever t p§' and upgu', then ufi/x] p w'lt'/x].

The proof proceeds by induction on the length of the derivation of u g u' by means of rules
1,2,3,4 ; consider the last rule used :

if it is rule 1, then u = u', and the result follows by lemma 4 ;

if it is rule 2, then u= Ay v, u'=Ayv' and v pv". It ean be assumed, with a
suitable choice of the representatives of w,u', that y #x. Since tpt', the induction
hypothesis implies v[t/x] pv'[t'fx] ; hence Ay v(t/x] p Ay v'[t'/x] {tule 2), that is to say
alt/d p e/ ;

if it is rule 3, then u=(w)v and u'= (w')v', with vpv' and wpw' Thus, by
induction hiypothesis, v[i/x] pv'[t'/x] and w[i/x] g w'[t'/x]; Therefore, by applying
tule 3, we obtain (wlt/x]}v[t/x] g (w'[6' /x])v'[t" /], that Is u[t/=] p u'[i'/x] ;

i1t Is rule 4, ther u= (Ay w)v and u' = w'[v'/y], with vp+v' and wpw' . Thus,
by induction hypothesis, v[t/x] pv'[t'/x] and w[t/x] p w'[i"'/x]. By rule 4, it follow$ that
(Ay wt/x])v[t/x] p w' [t /x][v'[t' /x)/y] ; now Ay wit/x] = (Ay w)[t/x] (it can be assumed
that y#x, with a suitable choice of the representative of u). Therefore,
(Ay wlt/x])v[t/=] = u[tfx]. -
On the other hand, w'[t'/<][v'[t"/x]/y] = w'[+'/¥]['/x] (lemma 10 ; it can be assumed that
the variable y is not free in ¢') = n'[t'/x].
Q.E.D.

Now the proof of the Church-Rosser property for p can be completed. So we assume that

to p t1, to g ta, and we look for a term tg such that ty p ta, t2 p t3. The proof is by induction

on the length of to.

1) If to has length 3, then it is & variable ; hence, by lemma 11, tg = t; = tg ; take t3 = tq.

2) I to= Ax ug, then, since topty, tgpte, by lemma I1: t1= Axuy, ts2= Axug, and

tg p 1y, up 2 uz- By induction hypothesis, ur p ug and ua p vz hold for some term us, Hence

it is sufficient to take tg = Ax ug.

3) If tg = (vo)ug, then, since &g p £y, 1o p 6, by lemma 11, the different possible cases are :
a)te=(vi)u, te=(vo)us with uppw, vopwy, uppuy vopve By induciion

hypothesis, u; pus, uz pus, v1 p va, va p vs hold for some ug and vy. Hence it is sufficient

to take tz = (v3)us.
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b) t1 = (viJuy, with ug pug, vo pv1 ;5 vo = Ax Wo, ta = wolua/x], with ug p ug, wo p Wa.
Since vy p vy, by lemma 11, vy = Ax wy, for some wy such that wg p wy. Thus t; = (A% wi)w.
Since ug p uy, v p ug, and wo p wi, wa pws, by induction hypothesis, pug, up pua, and
Wi p w3, wa pwz hold for some uy and wa. Hence, by rule 4, (Ax wy)u p wafus/x], that is
t1 p wslus/x] . Now by lemma 12, wafug/x] g wslus/x] . So we obtain the expected resuit by
taking tz3 = Wa[lle,/x] R

¢) vo = Ax wo, t = wiluy/x], t2 = wolus/x], with g p wy, o p ug, wo p W, Wo p Wa
By induction hypothesis, w; p u3, w p ua, wi p w3, wa p wy hold for some ug and wa.
Hence, by lemma 12, wilu/x] p wslus/x], walus/x] pwlus/x], that is to say t; p walus/x],
t2 ¢ walug/%]. The result follows by taking t3 = wsfug/x].
Q.E.D.

REMARK. The intuitive meaning of the relation p is the following : t pt' holds if and only i
&' is obtained from t by contracting several redexes occurring in ¢,

For example, {Ax(x)x)Ax x p (Ax x)Ax x ; a new redex has been ereated, but it cannot be
contracted ; (Ax{x)x)dx x p Ax x does noi hold.

In other words, t gt' means that t and ' are construcied simultaneously : for ¢ the steps
of the construction are those described in the definition of terms, while for #', the same
rules are applied, except that the following alternative is allowed : whenever t = (Ax v, ¥
can be taken either as (Ax v'Ju’ or as v'[u'/x]. This is what lemma 11 expresses.

[F-EQUIVALENGE

The f-equivalence (denoted by sﬁ} is defined as the least equivalence relation which
contains ,60 (or 4, which comes to the same thing). In other words :

t M t' ¢ there exists a sequence (f1=t),ta,bnty(tn =1t"), such that t; B ti, or
b By for1¢i<m, ’

t g t' should be read as : t is B-equivalent to ¢!,

It follows from Church-Rosser's theorem that :

t % t' & tfuandt' fu for some term u.

The side « is obvious. For the purpose of proving =, consider the relation ~ defined by :
b '—"t' & tfuandt' fu for some term u.

T'hls :e]atmn contains f, and is reflexive and symmetzic. Tt is also transitive, for if t =~ ¢,
teth then ¢ gy, 1 Au, and t' v, t" fv for suitable u and v, By Church-Rosser's
theorem, u fw and v Aw hold for some term w ; thus t fw, t' Bw.

H & : . . -
QEECE 15 an equivalence relation which contains f, so it also containg =~ -
E.D.
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Therefore, a non-normalizable term cannct be J-equivalent to a normal term.

4. Eta-conversion
Proposition 7. Assume that x is not free in §, nor x' in ', If Ax(t)x = Ax'(t")x', then t = t%

By definition of =, if Ax(t)x = Ax'(t')x!, ther ((1)x)<y/x> = ((t")x")<y/x"> for all variables
v except a finite number ; this can be written (t)y = (£')y since x (resp. z') is not free in ¢

(resp. t'). By definition of = again, (1)y = (t")y = t=t".
QED.

A term of the form Ax(t)x (where x is not free in t) is called an p-redex, its contractum
being t. The previous proposition shows that this notion is defined on A.

A term of either of the forms (Ax u)t, Ay(v)y (where y i5 not free in v} will be cailed a

Pn-redex.

We now define a binary relation 7, on A; t 7, t' skould be read as “t' is cbtained by
contracting an -redex (ar by an greduction) in the term t ”. The definition is given by
induction on ¢, as for ,ﬂo :

if £ is a variable, then there is no t' such that t Ty £

ift = Axu, then Ty t' if and only if :

¢ither t'=dx v, with ug,u';

or u = {t'}x, with x not freein t';
ift = (v)u, then ¢ 1, t' if and only if :

either = (v’ with u g, o',

or = (v with vq, v

The relation t ﬁr,ro t' {which means : “1' is obtained from ¢ by rontracting a fy-redex”) is

defined as : ¢ £ t'ort g t'.
The s-conversion (Tesp. the Bg-conversion) is defined as the least, binary relatton » (resp.

) on A which is reflexive, transitive, and contains g, (resp. ﬂno).

Proposition 8. The fy-conversion is the least transitive A-compatible binary relation A7
such tliat (Ax w)t Ay u[t/x] and Ay{v)y Sy v whenever y is not free in v.

The proof is similar to that of proposition 4 {which is the analogue for §).
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It can be proved, as for §, that Ay is the transitive closure of the binary relation p defined
on L by: upu' & there exist a term v, and redexes t1ye..sty with contractims b
such that u = vty /3y, by /x>, 1 = V< Kb R

Similarly : if t By t', then every free variable in ¢' is also free in [
Proposition 9. If t fpt' and u gy, then ult/x] Ay u'ft!fx].

If uw=v', then the result foliows from lemma 4, since the relation fyis A-compatible. It is
encugh to show now that ¢ fyt' and u B u' = ult/x] fyuiit'/x).

The proof is by induction on the length of u. According to the definition of fn, , the
different, possibilities for u,u' are :

i) U= Ay v, u' = ,\yv',andvﬂno v,

if) u= (w)v and v' = (w)v', with v B, v'.

i}  u=(w)v andu' = (w')v, with w B, w'

iv)  u={(Aywlv andu' = wiv/y].

V) u = Ay(u")y, with y not free in u',

Cases i) to iv} are settled exactly as in proposition 6. In case v), a representative of u is
chosen of which no bound variable occurs in %tu'. So y is not a free variable in ¢ and
¥y # x. Thus uft/x] = Ap(u'[t/x]}y and y does not oceur in u'lt/x). Hence uft/x] B, uw'lt/x).
Moreover, v'[t/x] gy w'[t'/x] (lemma 4), since t Apt' and By is A-compatible. Therefore
uli/x] fyfi/x),

QED.

‘This proposition is also an immediate consequence of lemma 14.

A term 1 is said to be fn-normal if it contains no Bn-redex,
So the fy-normal terms are those obtained by applying, a finite number of times, the
following rules :
any variable x is a fn-normal term ;
whenever t iz fp-notmal, then so is Ax t, except if t = (u)x, with x not free in u ;
whenever t,u are fp-normal, then so is {u)t, except if the first symbol in u is A.

Theorem. ‘The fy-conversion satisfies the Chureh-Rosser property.

The proof is on the same lizes ag for the f-conversion. Here p is defined as the least
A-compatible binary relation on A such that :

bethupu' 3 Qxut gl

tot' =3 Ax(t)x gt whenever x is not free in 1,

The first thing to be proved is : fig 3 p.
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For that purpose, note that ¢ Apt', ufpu’ = (xuw)t pu'[t'/x]; indeed, since fn is
A-compatible, we have (Ax u)t Ap{Axu)t' and, on the other hand, (Ax u')t' Spu'ft'/x];

the result then follows, by transitivity. '
Now 1 fnt' = Ax(t)x Spt'; this is immediate, by transitivity, since Ax{t)x fgt.
Therefore fn is the transitive closure of p. Tt thus remains to prove that p satisfies the

Church-Rosser property. . '
By definition, pis the set of all pairs of (equivalence classes of) terms obtained by applying,

a finite number of times, the following rules :
Dtpt;

tpt’ 3 Axtpixt';

3)tpt and nput 2 {u)t p (WO
DHtptyupu' 2 (Axukpu'lt'/x].

5t pt’ 3 Ax(t)x pt' whenever x is not free in t.

The following lemmas are the analogues of lemmas 11 and 12.

Yemma 13. i) Hxpt', where x is a variable, then ' =x.
i) H Axupt', then either t' = Axu' andupu',or us (t)x and t pi', with

x not free in t.
ili) If (v)u p t', then either t'= (v")u' with upu'and vpv', arvzdxw

and t'=w'u'/x] with vpu' and wpw'
Same proof as for lemma, 11,
Lemma 4. Whenever t pt' and v pu', then wuft/x] pu'[t!/x].

The preof proceeds by induction on the length of the derivation of u pu' by means of rules
1 through 5 ; consider the last rule used :

if it is one of rules 1,2,3,4, then the proof is the same as in lemma 12 ;

if it is rule 5, then u=Ay(v)y and vpu', with y not free in v. With a suitabie
choice of the representative of u, it can be assumed that y is not free in t. By induction

3 1

hypothesis, v[t/x] pv'[t'/x], then, by applying rule 5, we obtain Ay(v[t/x])y pu'[t'/x]
(since y is not free in v[t/x]), that is u[t/x] pu'[t'/x].
Q.E.D.

Now the proof of the Church-Rosser property for p can be completed. So we assume tl-lat
ta p b1, to o ta, and we look for a term i3 such that ty g ts, ta g ta. The proof is by induction

on the length of to.
1) If tg has length 1, then if is & variable ; hence, by lemma 13, tg = t1 = 19 ; take ta = to.
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2} If tp = Ax uy, then, since tg p ti, tg p tg, by lemma 13, the different possible cases are :
a}tr= Axuy, t2= Ax ug, and ug puy, 1y p U By induction hypothesis, u; g uz and
uz p ug hold for some term uz. Then it is sufficient to take t3 = Ax uz .
b) 1= Axug, and o pur; up = (t4)x, with x not free in tgy and t} g ta.
According to lemma 13, since up p ug and ug = (t5)x, there are two possibilities for vy :

i} w = (4)x, with & gt} Now tg # ta, thus, by induction hypothesis, ] pts
and t; ptg hold for some term ty. Note that, since t pt}, all free variables in t) are also
free in tg, so x is not free in t!. Hence, by rule 5, Ax(t{)x ptg, that is ty p t.

i} t) = Ay u}, ug = ulfx/y] and ug puy. Since pis A-compatible, Ay up p Ay uj,
that is t) p Ay uj. Now x is not free in t} , hence it is neither free in u} (provided that a
representative of t; has been chosen in which x is not bound). Since Uy g1, x I8 not free in
uj, hence (lemma 5) Ay uf = Ax ullx/y], in other words Ay s Axu =ty Now t) oty
because t§ p Ay uj ; and, since tg p b2, there exists, by induction hypothesis, a term t; such
that ty pt3, t2 p 13

¢ U= (t5)x, with x not free in t}, and th g%, tp Ata. The conclusion follows
immediately from the induction hypothesis, since t) is shorter than ty
3) If to = (vo)uy, then, since tg g by, to 2 t2, by lerama, 13, the different possible cases are :

a) b1 = (vi)uy, t2= (volus with uppur, v £y, Uppuy vgpve By induction
hypothesis, w p us, uz pua, v1 g Vs, v2 p vg hold for some uz and vz, Then it is suffictent to
take t3 = (v3)ua.

b) t1 2 (vijur, with ug puy, vo pvy; vo = Ax wo, tg = walug/x], with up p us, wo p wa.
Since vy p vy, and vg = Ax wo, by lemma 13, the different possible cases are -

i) v1 = Ax wy, with wo p wy. Then & = (Ax wiuy
Since up p ug, ug p g, and wy P W1, wo pwy, by induction hypothesis, uy pus, us pug, and
Wi pWs, Wy pws hold for some us, wa. Thus, by rule 4, (Ax wi)u p walug/x], that is
t pwslua/x]. Hence, by lemmsa 14, waluz/x] pwalus/x). The expected result is then
obtained by taking t3 = walus/x].

if) wo = (v})x, with x not free in v, and vipgvy Then (vi)x pws; since
U p Uz, it foliows from lemma 14 that {(vi)x)ue/x] p walug/x]. But x is not free in v, 80
this is equivalens to (vgug pta.

.Now vhpvi and ug pug Thus (v§)ug p (vi)uy, in other words : (v§)ug p t1. Since (vhluo
is shorter than t, {because vg = Ax(v})x), there exists, by induction hypothesis, a term tg
such that t; plz, s pts. .

¢ vo= Axwg, b= wilug/x], ta = wolua/x], with ug pug, ug P Up, Wp o Wy, Wo p Wa.
By induction hypothesis, w p us, up g g, W p w3, wg pws hold for some uz and ws.
Thus, by lemma 14, wilu/x] p walus/x], walus/x] pwslus/x], that is to say ty p walug/x],
gg ‘;‘)a[us/x]. The result, follows by taking tz = wslus/x].
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The fr-equivalence {denoted by :ﬁn) is defined as the least equivalence relation which

contains Bn. In other words :
tx, t' & there exists a sequence t = ty,ta,...,bn,tn = £, such that either t; By tiy or

i By ti, for 1 <i < n.
As for the F-equivalence, it follows from Church-Rosser's theorem that ;

tzﬂu t & tfpuandt' fyu for some term u.

The relation ~ ; satisfies the “extensionality axiom”, that is to say :
if (th ~ (t")u holds for all u, then ¢ 4 th

Indeed, it is enough to take u as a variable x which dees not occur in t,t'. Since o is

A-compatible, we have Ax(t)x = 41 Ax(t))x ; therefore, by p-reduction, t =~ 40 t'.
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Chapter II

REPRESENTATION OF RECURSIVE FUNCTIONS

1. Head normal forms

In every A-term, each subsequence of the form *{A” corresponds to a unique redex (this is
obvious since redexes are terms of the form (Ax w)t ). This allows us to define, in any non-
normal term t, the “leftmost redex in t*, Let t' be the term obtained from t by eontracting
that leftrnost redex : we say that t' is obtained from t by a Jeftmost f-reduction.

Let t be an arbitrary A-term. With t we associate a {finite or infinite) sequence of terms
tasbesesdn,e.. such that tp =1t , and tp. is obtained Irom by, by a leftmost f-reduction {if t,
is normal, then the sequence ends with t,). We call it “the sequence obtained from t by
leftmost #-reduction” (it is uniquely determined by t).

The following theorem will be proved in Chapter IV :

Theorem 1. If ¢ is a normalizable term, then the sequence obtained from t by leftmost
B-reduction ends with the normal form of t.

We see that this thearem provides & “normalizing strategy”, which can be used for any

normalizable term.

NOTATION. We will write t»> u whenever u is obtained from t by a sequence of leftmost

f-reductions.
The next proposition is simply a remark about the form of the A~terms :

Proposition 1. Every ferm of the A-caleulus can be written, in a unique way, in the form
A%t Axg(¥)teo bn , Where Xy,...,xn are variables, ty,...,iz are terms (myn > 0), and v is either
i) a variable or if) a redex ( v = (Ax )t ).
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Recall that (v)tr.tn denotes the term (...((v)t)...)in.

We prove the proposition by induction on the length of the considered term 7 : the result is

clear if 7 is a variable,
If r=Ax 7', then ' is determined by 7, and can be written in a unique way in the

indicated form, by induction hypothesis ; thus the same holds for 7.

If v = (w)v, then v and w are determined by r. If w starts with A, then 7 is 2 redex, so it is
of the second form, and not of the first one. If w does not start with A, then, by induction
hypothesis, w = (w")t1...t,, where w' is & variable or a redex ; thus = (w')ts...tav, which
is in one and only one of the indicated forms.

Q.E.D.

DEFINITIONS. A term 1 s 2 head normal form (or in head normal form) if it is of the first
form indicated in proposition 1, namely if 7 = AX1o AXa(X)t1...n, Where x is a varizble,
In the second case, if 7= Ax;...Axp(Ax u)tte..tn , then the redex (Ax ult is called the head

redexof 7.
The head redex of a term r, when it exists (namely when 7 is not a head normal form), is

clearly the lefimost redex in r.

It follows from proposition 1 that a term t is normal if and only if it is a head normal
form: 7= Axg. Axo(x)tr...be , where tq,...,tg are normal terms. In other words,; & term is
normal if and only if it is “hereditarily in head normal form”,

The head reduction of a term r is the (finite or infinite) sequence of terms rp,my,..., 7.
such that 7o = 7, and . is obtained from by a f-reduction of the head redex of y, if
such a redex exists ; if not, 7y is in head normal form, and the sequence ends with 7,

HOTATION. We will write t>u whenever u is obtained from t by a sequence of head
F-reductions.

A A-term t is said to be solvable if, for any term u, there exist variables X1y, Xk and terms
Wyeessllle; Veyenn V1, (K1 2 0) such that :
@) (Hug/xye e fx]) v 2.

We have the following equivalent definitions :

(ii) t is solvable if and only if there exist variables X1yeyXk and terms uy,..., 1k, vi,...,v] such
that (t[ur/x1,...,0/xu}ve...v1 =, I (1 is the term Ax x).,

(iii) t is solvabie if and only #, given any variable x which does not occur in t, there exist
teIms Wi,..., Uy, Vi,-..,v1 such that {t[uy/xi,...,uk/xx] vy vy ¥y X.
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Obviously, (i) 3 (i) # (i), Now if {tfus /%, ux/Xe]}v1..v1 g X, then :
(4[ug/Xyeepui/xi] [u/x]) v} ¥ 0, &nd  therefore  (t[uf/xr,...,uj/xu]Jvi...vi A where

u} = u;fu/x], vj = vy[u/x] ; so we also have (iit) = (i).

REMARES.

The following properties are immediate :

1) Let © be a closed term. Then t is soivable if and only if there exist terms vi,...,v3 such
that (£)ve..v1 g I

2) A term t {s solvable if and only if its closure t is solvable (the closure of t is, by
definitior, the term ¥ = Axy..A%nt, where xy,...,xq a1e the free variables occurring in t).

) I (t)v is a solvable term, then t is solvable.

4) Of course, the head norma! form of a term need not be unique. Neverthelsss :

If a term t has a head normal form fg = Axy...Axk{%)uy...1n, then any head normal form of t
can be written Axy...ox{x)uj...u) , with u; % us.

be another head normal form of t. By the

Indeed, let ti= Ayr..Ay1(¥)vi..vp '
Church-Rosser theorem, there exists a term tg which can be obtained by f-reduction from

to as well as from t;. Now, in tg (resp. 1) all possible g-reductions have to be made in
gyl (TESD. ¥iyeors¥p). Hence ta = Ay Axk(x)uf..up = Ay Ayi(y)vi.vy, » with ug Buj,

v; fv}. This yields the expected result.

The following theorem will be proved in Chapter IV (th. 3, p. 53) :

Theorem 2. For every A-term t, the following conditions are equivalent :

i} tissolvable;
ii} tis frequivalent to a head normal form ;
iii) the head reduction of t ends (with a head normal form).

2. Representable Functions

We define the Booleans 0= \xhyy and 1= Axhyx. Then, for ail terms ¢,u, ((0)6)u
can be reduced (leftwards) tou , while ((1)t)u can be reduced to t.

Given two terms t,u and an integer k, let {t)tu denote the term (t)...(tJu (with k

occurrences of t) ; in particular, (£)%a =u.
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We define the term k= Mix(fykx; k is called “the numeral (or integer) k of the
A-calculus” (also known as Church numeral k, or Church Integer k).

Notice that the Boolean 0 is the same term as the numeral 0, while the Boolean 1 is
different from the numeral 1.

Let p be a partial function defined on e | with valves either in K or in {0,1}. Given a
A-term B, we say that @ represents (resp. strongly represents) the function ¢ if, for all
Ki ooyt €W
if @k1,...,kn) is undefined, then (®)ki.. k. is not normalizable {resp. not solvable) ;
it @(ksy..kn) =k , then (@)ke.kn is S-equivaient to k {or to k, in case the range
of pis {0,1}).

Clearly, for total functions, these two notions of Tepresentation are equivalent.

Theorem. Every partial recursive function from Mk to N is (strongly) representable by a
term of the A-caleulus.

Recall the definition of the class of partial recursive functions.

Given fi,...,fk, partial functions from Mn to ¥, and g, partial function from N¥ to N, the
pariial function h, from Me to M, obtained by composition, is defined ag fol]ows‘:

h(piye,pn) = g(fl(pl,...,pn),...,fk(pl,...,pn)) if fl(pl,...,pn),...,fk(pg,...,pn) are ail defined, and
(pyy....pa) is undefined otherwise, ’

Let b be a partial function from N to B, If there exists an integer p such that h(p} =0 and
h{q) is defined and different from 0 for all q<p, then we denote that integer p by
#m{h(n) = 0} ; otherwise £n{h(n} = 0} is undefined.

We call minimization the operation which associates, with each partial function f from kv
to M, the partial function g, from W& to M, such that g(ng,...my) = i {f{ny,...,ne,n) = 0}

The class of partial recursive functions is the least class of partial functions, with
arguments and values in N, closed under composition and minimization, and containing :
the one argument constant function 0 and successor function ; the two arguments addition,
multiplication, and characteristic function of the binary relation x < y ; and the projections
Pk, defined by PH(x1,0%0) = X, ‘

So it is sufficient to prove that the class of partial functions which are strongly
Tepresentable by a term of the A-calculus satisfies these properties,

The constant function 0 is represented by the term Ad 0.
The successor function on i is represented by the term suc = ARARAx({()D) (Dx.
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The addition and the multiplication (functions from M2 to W} are respectively represented

by the terms AmaAnADix((m)f)((n)f)x and AmAn Af(m){m)f.
The characteristic function of the binary relation m ¢ n on H is represented by the term

M = dman({(m)A)Ad 1)((n)A)Ad © , where A = AfAg(g)f.
The function P¥ is represented by the term Axy...Axn Xx.

From now on, we denote the term (suc)n0 by fi ; so we have fi = g1 o, and (suc)ii = (n+1)".

REPRESENTATION OF COMPOSITE FUNCTIONS

Given any two A-terms t,u, and a variable x with no free occurrence in t,u, the term

Ax(t)(u)x is denoted by tou.

Lemma. (Ag gos)kh  Ax(h)(s)kx for all closed terms 8, and every integer k>1.

Recall that t > u means that u is obtained from ¢ by a sequence of head f-reductions.
We prove the lemma by induction on k. The case k = 1 is ¢lear. Assume the result for k ;
then
(Ag pos)k*th = (Ag gos)k(Ag gos)h » Ax((Ag gos)h)(s)kx
(by induction hypothesis, applied with {Ag gos)h instead of h)
> Ax(hos)(s)kx = Ax(Ay(h)(s)y)(s)lex » Ax(h)(s)+ix .
Q.ED.

Lemmia, Let &,v be two terms. Define : <@, = (((1)Ag gosuc)®)0. Then :

#f v is not solvable, then neither is <@,
if = n (Church numeral}, then <®,2> =, (@)n; and if @ is not solvable, then

neither is <®,v>.

The first statement follows from remark 3, p. 23.

If v=,n, then: (V)X gosuc = (n)Ag gosuc = (MAh(f)rh)Ag gosuc =, Ah{ag gosuc)th ;

by the previous lemma, this term gives, by head reduction, Ahdx(h}suc)rx .

Hence <&,v> =, (@)(sue)"0 = 2 (®)n. Therefore, if  is not solvable, then neither is <@>
(remark 3, p. 23).

Q.E.D.

The term <&,uy,...,0> 18 defined, for k > 2, by induction on k :
<P My > = < <D Ve B
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Lemma. Let ®,p4,...,04 be terms such that each ) is either f-equivalent to a Church
numeral, or not solvable. Then :

if one of the v 's is not solvable, then neither is <®,u,...,01> ;

if o, L 251 (1< < i<k), then <@,p,... 04> = = (®)ns...nk.

The proof is by induction on k: let ¥ = <& 14,....00> ; then <&, 04> = <, >, If
1 {8 not solvable, then, by the previous lemma, neither is <@,m>. If 1, is solvable {and
f-equivalent to a Church numeral), and if one of the 14's (1 €1 € k—1) is not solvable, then
¥ is not solvable (induction hypothesis), and hence neither is <@, (previous lemma).
Finally, if » 2y i {1 <i<k), then, by induction hypothesis, ¥ % (®)D1...0% ; therefore,
<Tpp>w %y {@)n1...nx (previous lemma).

Q.E.D.

Proposition. Let fy,...,fi. be partial functions from Ho to N, and g & partial function from Mk
to M. Assume that these functions are all strongly representable by A-terms ; then so is the
composite function g(fy,...fy).

Choose terms &,...,y,% which strongly represent the functions fy,...,fi,g, respectively.
Then Fhe term  x = Axp.. Axa<U, (@))%t Xnyoy {Pk)X1...Xn> strongly Tepresents the
composite function g(fy...Jx). Indeed, i pi,..,pbn are Church numerals, then
(%)D1.e-Bn =, <lIf‘, (®1)D1. Dasess (Pi)Drorpa>. Now each of the terms ($:)py...po 15, either
unsolvable (and in that case fi(ps,...,pa) is undefined}, or -equivalent to & Church numeral
gi {then f{py,...,pn) = qs). If one of the terms ($i}py...pn is not solvable, then, by the
gr;awo;lls lemma, neither is (x)pr.on. I (®1)pi-.-Dn % i (where 1<i<k and g; is a
urch numeral), then, by the previous lemma, we have
orD (0ptpa =5 (Phar-ake

3. Fixed point combinators

A fixed point combinator is a ciosed term M such that (M)F = (F)(M)F for every term F.
The main point is the existence of such terms. Here are two exa.mples

Let Y be the term M (Ax(f}(x)x} Ax(D)(x)x ; then, for any term F, (Y)F 2 (F)(Y)F.

Indeed, (Y)F » ()G , where G = Ax(F)(x)x ; therefore :
(YIF > (x(F)(x)x)G » (F)(C)C =, (E)(Y)F.
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Y is known as Curry’s fixed point; combinator. Note that we have neither (Y)F » (F)(Y)F,
nor (Y)F g (F)Y)F.

Now let © he the term (A)A, where A = Aarf(f){a)af. Then, for any term F, we have
(0)F » (FY}O)F,

Indeed, (Q)F = {AJAF » (F){A)AF = (F)(O)F .

© iz called Turing's fixed point combinator.

REPRESERTATION OF FUNCTIONS BEFINED BY MINIMIZATION

Lemma. There exists a closed term A such that, for all terms $,n ;
(8)n » { (@)n)(A)B)(suc)n )n.

Let T = Adaphe{ ((¢)){(6)w)(suc)r v . Then A is defined as a fixed point of T, by means,
for example, of Curry's fixed point combinator : we take A = (D)D, where D = Ax(T){x)x.
Then

(A)on = (D)D®a » {(THD)D)®n = (T)A&n » { (($)n)((A)2)(suc)n )n.

Q.E.D.

Lemma. Let b,tp,t1 be terms, and suppose b » 5 1 (Boolean). Then (b)igts » fo.

We first prove that b » 1 ; indeed, by theorem 2, we have b » ¢, where ¢ i3 a head normal
form, and ¢ =, 1. Therefore, both 1 (which is AxAy x) and ¢ are head normal forms for b ;
hence, by remark 4, p. 23, we have ¢ = Axdy x.

Now the proof of the lemma proceeds by induction on the length of the head reduction of b.
I this length is 0, then b = I and the result is immediate.

If b does not start with A, and i b' is the term obtained from b by & head reduction, then
(b)oty » (b")toty > to, by induction hypothesis.

If b starts with X, then either b = Ax{z v)uut...ua , 0r b= AxAy(Az vuus...u; (note that
there are at most two occurrences of A in a head position in b, since b reduces to AxAy x by
head reduction). Consider for example the second case. By a head reduction in b, we obtain
b' = AxAy(v[u/z])us...uy. Tt is then obvious that :

(b%)ota > (v{u/z][to/x,be/y]}uk . up, where u} = u;fte/x,ty/y] (note that x,y do not occur in
to,h).

Now, by induction hypothesis, (b")tofs » to. Therefore :

) (vlu/elfeo/xtfyDukul > to
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On the other hand, we have (b)tots > (Az v[to/x,btr/y])u'ul...u), where u' = u[ty/x,t1/¥]. By
another head reduction, we obtain :

(btats » (vlte/xste/¥](u'/z])u.cny.

But, according to lemma L10, we have v[to/x,t1/¥][u’/2] = v[u/z][to/x,tc/y). It follows then
from (*) that {h)tots * to. ;

Q.E.D.

A shorter proof of this lemma can be given, which uses results from Chapters IIT and IV :
We have lm LX,Y - X, where X and Y are two type variables ; since b~ " 1, theorem
IV.1 shows that *27!2 b: XY+ X,

Let T be an interpretation, in the sense of Chapter III, such that :

IX{z={m 7>t} and |Y|p={r 7>t}

Since G, b: X,Y -+ X, it follows from the adequacy lemma (Ch. III) that b ¢ |X,Y = X| 7
Now we have clearly to € |X|; and t;€ |Y[;. Thus (b)tcts € |X{, which means that
(B)tgty zeduces to ty by head reduction.

QE.D.

Lemma. Lot ® be 2 A-term and n € H.

If (#)x is not solvable, then neither is (A)@p.

Ii (&)n 2, 0 {Boolean), then (A)@n 2pD.

K (2)n =1 (Boolean}, then ((A)®)i » ({A)®){suc)i.
(Recall that i = (suc)ng ).

Indeed, it follows from the lemma where A was defined that :

(A)%n + ({(3)n){(A)®)(suc)n )n. Hence, if (®)n is not solvable, then neither is (A)®n
(remark 3, p. 23). Obviously, if (®)n 2,0 {Boolean), then (A)&pn 21,

On the other hard, according to the same lemma, we also have :

(A)2fi > { ((®)3)((A)@)(suc)h }éi ; by the previous lerma, if (®)a 21 (Boolean}, then
((®R)((A)8)(suc)i )i » ((A)8)(suc)i

Therefore (A)®# > ((A)®)(suc)d.

Q.ED, ‘

Proposition. Let f(ny,...,ni,n) be a partial function from H*t to N, and suppose that it is
strongly representable by a term of the A-calenlus. Then the partial function defined by
Engy,my) = gm{i(ny,...,nx,n} = 0} is also strongly representable.

Let v be the partial function from Bk to {0,1}, which has the same domain as f, and such
that P(ng,..,npn) = 0 & f(ny,.,000) = 0. Then g(ng,...,ny) = in{ (B, myyn) = 0}
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Let F denote & A-term which strongly represents f ; then the term :
? = Any.. AnAn{l)(F)ny...opn, where I' = An((n)Ad 1)0, strongly represents ¢ (I

represents the characteristic function of N — {0}).
Now consider the term A comstructed above, The term G = Ang..Any((A)®ni...ny)0

strongly represents the function g. Indeed :
if g{ny,...,nx) Is defined and equal to p, then @(ny,...,0x,n) is defined and equal to 1

for n < p and to 0 for n = p. Thus (®)ny...n10 * 1 forn < p, and (9)ng...mxp e 0. Sowe

can successively deduce from the previous lemma (singe 0 = 0) :
((A)op1.0)0 > ((A¥ma) > ... » ((A)Bng...my)p =D
if g(my,...,nx) i3 undefined, there are two possibilities :
i} @(n4,...,nx,n) is defined and equal to 1 for n < p and is undefined for n = p. Then we can

successively deduce from the previous lemma (since § = f]) :
{(A)Bn1...n)0 > ((A)Bny.i)i > ... > (A)Pnr.my)p; the last term obtained is not
solvable, since neither is &ny...mp (previous lemma). Consequently, ((A)®m...ar)0 is not

solvable (theorem 2,iif) ;
ii) w(ny,...,ny,n) is defined and equal to 1 for all n. Then {again by the previous lemma) :

((AYEnp..m)0 » ((A)Pnp. i) » oo > ((A)B0p.mifi > ...
So the head reduction of ((A)®ns..n)t does not end. Therefore, by theorem 2,

{(A)®p...n5)0 18 not solvable.
Q.E.D.

It is intuitively clear, according to Church's thesis, that any partial funetion from Wk to B,
which i3 repregentable by a A-term, is partial recursive. We shall not give a formal proof of

this fact. Se we can state the

Church-Kleene theorem. The partial functions from Nk to il which are representable (resp.
strongly representable) by a term of the A-caleulug are the parfial recursive functions,

4. The second fixed point theorem

Consider a recursive enumeration : n—— t, of the terms of the A-calculus, The inverse
function will be dencted by t-—— [t] : more precisely, if ¢ is a A-term, then [t] is the
Church nurmeral n such that tn = t, which will be called the numeral of t.

The function n — [(ta)n) is thus recursive, from ¥ to N. By the previous theorem, there
exists 4 term § such that (8)n 2 [(tx)n], for every integer n.
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Now, given an arbitrary term F, let B = An{F)(#)n. Then, for any integer n, we have
{Bin % (Fyl(tn)n]. Take n=[BI, that is to say t, = B then (tn)n = (B)[B]. I we
denote the term (BY[B] by A, we obtain A % (F)[AL. S0 we have proved the

Theorem. For every A-term F, there exists a A-term A such that A ~ 4 (MIA].

Theorem. Let 1.} be two non-empty disjoint sets of terms, which are satwurated under the
equivalence relation =~ - Then X and ¥ are recursively inseparable.

Suppose that X and Y are recursively separable, This means that there exists a recursive set
ACA such that ¢ A and ¥ C A& (the complement of A). By assumption, there exist terms
€ and 7 such that £ € ¥ and 5 € ). Since the characteristic function of A is recursive, there is
a torm @ such that, for every integern: (@)a 2% 1 & tged and (O)n 20 th g A
Now let F = An(O)nné . According to the previous theorem, there exists a term A such
that (F)[A] % A, which implies (0)[Aln¢ 25 A

It Aed, then, by the definition of @, (®)[A] % 1, hence (O)[Alne 271 Therefore
Ax y Since 5 € Y Ac and ) is saturated under the equivalence relation ~, , we conclude
that A € J, thus A ¢ A, which is a contradiction. f

Similarly, if A ¢ 4, then (9)[A] R 0, hence (Q)[Aln¢ o £ and A ~ £ Since Eedc A
and & is saturated under the equivalence relation '"”ﬂ » we conclude that A € X, thus A £ A,
which is again a contradiction, ‘

Q.ED.

Coroliary. The set of normalizable (resp. solvable) terms of the A-calculus is not recursive.
Apply the previous result : take ¥ as the set of normalizable (resp. solvable) terms, and
F=r
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