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Here you find a few notions you already know, some notations you have
seen before and some reflections about them you need to be aware of.

1 Sets, functions and relations

The notion of a set is so general that we cannot define it without using a
similar notion, such as that of a collection, a multiplicity. Following the
German mathematician Georg Cantor, we agree that when we define a set
(1) we collect in our thought a multiplicity of objects (its members) into a
unity and (2) we regard this collection itself as an object that can be member
of other sets.

Examples: (i) We can consider the set of the days of the week and write
D = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday},
but also

D = {z|x is a day of the week }

(ii) Within the set N of natural numbers, we can consider the set P of prime
numbers. Since this set is infinite, we cannot list all its members. If we write
informally {2, 3, 5, 7, ... }, the dots suggest an infinite list, but we can only
grasp the set P by giving a property that characterizes it:

P = {z|z is a prime number }

where, as we know, the property “x is a prime number” is defined thus: z is
a natural number, which is different from 1 and divisible only by x and by 1.

Remarks. If ¢(z) is a property of z, then the notation {z|¢(x)} makes and
assumption about a universe of discourse. Consider

S ={z|x > 2}



If x ranges over real numbers R then x = 2.5 and x = 7 (3.14...) are in S; if
x ranges over the integers Z, then 2.5 and 7 are notin S. So when we define
a set from a property ¢ as

S = {z|o(z)}

we must ensure that we have specified the universe of discourse U; explicitly,

S ={zeU|o(x)}.

When we write such a definition, we are assuming that if U is a set, then
also S is a set. This assumption can be made explicit in logical symbols as
follows

JyVe. (v ey >z el o(x)).

Every such formula is called a comprehension aziom. There is a very serious
issue lurking here, see below the paragraph on Russell’s paradoz.

1.1 Properties of sets

Equality of sets. When we define a set, the order in which its elements are
considered does not matter: thus

{p,q,r s} ={r,p,s,q}.

Also it doesn’t matter how many times we may have stared at its elements:

{p,p,q,q,7, s} ={p,q,7, s}
Indeed, A and B are the same set (A = B) if and only if A and B have the
same elements, exactly. This principle is called extensionality axiom.
The following definitions are certainly familiar to you:

Empty set. We can define a set with no elements, e.g.,
{z e U|z # z}.

By extensionality, there is only one empty set, the empty set ) = { }.

Subsets. We write A C B if and only if for all z, x € A implies x € B. We
write AC Bif AC Band A # B.
Thus ) C A C U, for all sets A (exercise).

Powerset. We write p(A) (the powerset of A) for the set of all subsets of
A. E.g., if A={1,2,3}, then

p(4) ={0, {1}, {2}, {3},{1,2},{1,3},{2,3},{1,2,3}}.
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If a set A has n elements, then p(A) has 2™ elements.

Ordered pairs. We write (a,b) for the pair having a and b as first and
second element, respectively. How can we write this using only set-theoretic

notions?
(a,b) = {{a,b}{a}}.

This may be regarded as an encoding of the notion of an ordered pair. It
works: indeed, an ordered pair is uniquely identified as soon as we know its
elements {a, b} and moreover a distinguished element, e.g., the first one {a}.

Operations on sets. Given two sets A and B, we define
A (the complement of A) = {x € U|x ¢ A};
AU B (the union of A and B) = {z € U|z € A or z € B};

A U B (the intersection of A and B) = {x € Ulx € A and z € B} =
{z € Alz € B},

A\ B (A less B) = {z € A|z ¢ B};

A x B (the product of A and B) = {(a,b)|a € A and b € B}.

Exercise: From these definitions you should be able to prove the funda-
mental algebraic properties of the operations of union and intersection, their
associativity and commutativity, the distributivity of union over intersection

and of intersection over union, De Morgan’s laws, etc. Namely, for all sets
A, B, C' we have

(AUB)UC =AU (BUCQC) (AnB)NC=An(BNC(C)
AUB=BUA ANB=BnNA
Au(BNnC)=(AuB)N(AUC) ANn(BUC)=(ANB)U(ANC)
AUA=U ANA=10

AUA=A=ANA AU(ANB)=A=ANn(AUB)
AUup=A ANU=A
Auld=U ANBP=0

AUB=ANB =AUB

A

(A\B)xC=(Ax(C)\ (B

More generally, if A; is a set for all 4 € I, then we can write
UierAi = {z € U|x € A; for some i € T}

and
niEIAi = {fL‘ € Z/{|.’L' € Az for all 7 € I}

Also for all sets A, B, C' we have



Ax(BUC)=(AxB)UAx(C) (BUC)xA=(BxA)U(CxA)
Ax(BNC)=(AxB)N(AxC) (BNC)xA=(BxA)N(CxA)

Is it true (under our set-theoretic definition of ordered pairs) that

AxB=BxA and (AxB)xC=Ax(BxC()?

1.2 Relations

Let A and B be sets. A relation R (between A and B) is any subset of
A x B, ie., RC A x B. (Notice the extensional approach to relationships!)
We write aRb for (a,b) € R. If R C A x A, then R is called a relation on (or
over) A.

Let R be a relation on A. (We write “iff” for “if and only if”.)
e R is reflexive iff aRa for all a € A.

o R is symmetric iff aRb implies bRa, for all a,b € A.

e R is transitive iff aRb and bRc imply aRc, for all a,b,c € A.

e R is antisymmetric iff aRb and bRa imply a = b, for all a,b € A.

A R relation on A is called an equivalence relation if it is reflexive, sym-
metric and transitive.

A partition of A is a collection of sets {Aq,..., A,} such that
e cach A; is nonempty;

o fori#j, AinNA;=0;

o U, A=A

Lemma. FEvery equivalence relation R on A determines a partition of A as
follows: given a € A, define the equivalence class [a] of a by

[a] = {z € AlaRz}

Then the set {[a]|la € A} is a partition of A.

Proof. Each [a] is nonempty, since a € [a]; it is also clear that U,c4[a] = A.
It remains to show that if [a] N [b] # 0, then [a] = [b]. Suppose ¢ € [a] and
¢ € [b] thus aRec and bRe, thus by symmetry cRb. From aRc and cRb by
transitivity we obtain (1) aRb. Now for every z € [b], using (1) we have aRb
and bRz, so by transitivity aRx; therefore [b] C [al.
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Next, from (1) by symmetry we obtain (2) bRa. Now for every y € [d]
using (2) we have bRa and aRy, so by transitivity bRy; therefore [a] C [b].
Since [b] C [a] and [a] C [b], we conclude [a] = [b], as required.

Lemma. Every partition {A;,..., A,} of A determines an equivalence rela-
tion, given by

aRb if and only if for some i, a € A; and b € A;.

It is easy to prove that R is reflexive, symmetric and transitive.

Closure. If R is a relation on A, then the reflexive [symmetric, transitive]
closure of R is the smallest reflexive [symmetric, transitive| relation that has
R as a subset.

Example: Let R = {(0,1),(1,1),(1,2)}.
The reflexive closure of R is {(0,0),(1,1),(2,2),(0,1),(1,2)}.
The transitive closure of R is {(0,1),(0,2),(1,1),(1,2)}.

Exercise: Write the symmetric closure of R.

1.3 Orderings

Pre-orderings. A relation R on A which is reflexive and transitive is called
a pre-ordering.

Orderings. A pre-ordering R on A is called an ordering if R is also anti-
symmetric.

Lemma. FEvery pre-ordering R on A determines a partial ordering, defined
as follows. For each a € A let

[a] ={b€e A | aRb and bRa}
and define [a|R'[b] iff aRb. Then R' is a partial ordering on the set
Ajp=1{la] | a € A}.
Proof. Since R is reflexive, R’ is also reflexive. Since R is transitive, so is
R'. Now suppose [a]R/[b] and [b]R'[a], so that we have aRb and bRa. For
every x € [a], xRa and aRb imply xRb and also bRa and aRz imply bRz,

therefore z € [b] and [a] C [b]. Similarly we show that [b] C [a] and therefore
[a] = [b] as required.

Partial, total orderings. If an ordering R exists on A, then we say that A
is partially ordered by R. An ordering on A is total if A has no incomparable
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elements with respect to R, i.e., for all a,b € A either aRb or a = b or bRa.
A total order is also called a linear order and if A is totally ordered, then it
is also called a chain.

Examples: The relation < on the integers Z is not a partial order, but its
reflexive closure < is a partial order, which is also total.

Strict orderings. The relation < on Z is called a strict order, and it is
total. The symmetric closure of < is the relation of inequality .

Well-orderings. A relation R on A is called well-founded if every non-
empty subset X of A has a minimal element with respect to R, i.e., for every
X C A there exists g such that (z,x¢) ¢ X for all z € X. A well-orderis a
well-founded total order.

Example: The relation < is a well-order on the natural numbers N but not
on the integers Z.

1.4 Functions

Partial functions. A partial function ¢ from A to B is a relation ¢ C AX B
such that for every a € A there is at most one b € B such that (a,b) € ¢. We
follow the unfortunate but almost universal convention of writing ¢(a) = b
whenever (a,b) € ¢. The domain of a partial function ¢ is the subset A’ of
A such that for every a € A’ there exists one b € B such that (a,b) € ¢.

Total functions. A function f from A to B is total if the domain of f is
precisely A. We write f : A — B when f is total from A to B. The set B is
called the codomain (or the range).

Surjections. A (partial or total) function ¢ from A to B is called surjective
(or onto B) if for every b € B there exists a € A such that (a,b) € ¢.

Injections. A (partial or total) function ¢ from A to B is called injective
(or one-to-one) if ¢(a1) = ¢(az) implies a1 = as.

Bijections. A function is called bijective if it is both injective and surjective.

Composition. Given two (partial) functions ¢ from A to B and ¢ from B
to C, the composition 1 o ¢ is a function from A to C defined by

(a,c) € (¢ o ¢) iff there exists b € B such that (a,b) € ¢ and (b, c) € 7.
Verify that composition of functions has the property that

(xo)og=xo(og).



Identity and inverses. The identity on A is the total function 14 =
{(a,a)la € A}. Thus 14 has the propery that 14(a) = a for all a € A.
The function g : B — A is an inverse of f: A — B if we have

gof=1y and fog=1p.

Lemma. An inverse g : B — A of f: A — B is unique.
Proof. Let g and ¢’ be inverses of f : A — B. Then

g=laog=(g'of)og=go(fog)=golp=4g
A function f: A — A is self-inverseif fo f =14.

1.5 Infinite sets

Consider four examples:
1. N, the natural numbers 0, 1, 2, ...
2. Z, the integers ..., -2,-1,0, 1, 2, ...

3. Q, the rationals;

W

. R, the reals.
Can we represent these infinite sets in set theory?

(1) We can represent N as follows. Define
e let 0 be the empty set {);

e define the function S(z) (successor of z) as x U {z}.

So1={0},2={0,{0}} 3=A{0,{0},{0,{0}}}, ...
We say that a set Y is inductive if it contains 0 and for all z, whenever x € Y
then S(z) € Y. We need the following aziom:

Axiom of infinity: there exists an inductive set.

Then by using comprehension we can define N as the smallest inductive set.
(2) Once we have N, we easily get Z.
(3) The rationals Q can be represented as pairs of integers.

(4) The reals R can be represented by their decimal expansion, as infinite
sequences of integers (in other words, as functions f: N — N).
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2 Russell’s paradox and axiomatic set-theory

The naif definition of a sets from an arbitrary properties

S = {zlo(x)}

leads to contradiction, as Bertrand Russell remarked in a famous letter to
the great German philosopher Gottlob Frege.

Suppose we can define S = {z|x ¢ =} as a set. This definition immedi-
ately yields a contradiction: S € S iff S ¢ S. The problem lies in the fact
that we consider an unrestricted universe of discourse U as a set, i.e., we use
an unrestricted comprehension axiom:

(1) S={rel|r ¢z}
By unrestricted comprehension, S is a set, so

(2) Seld

By definition (1)

(3) SeSifft Sedand S¢S

By (2) and (3) SesiEses
€01 .

In some sense, Russell’s paradox is a limiting result: it puts limits to our
capacity of defining abstract entities in a meaningful way.

A way out of Russell’s paradox is to distinguish between “small” col-
lections (sets) and “large” collections (classes). Then we allow ourselves to
write x € S only if x and S are sets. Therefore the collection of all sets i/ is
a class, not a set; the collection {x € U|x ¢ x} is a class, not a set. We build
up sets using restricted comprehension axioms

S={z€zlz ¢z}
where 2 is a set; in logical symbols
Vz.dyVe.(x € y & x € 2 A ¢(x)).

Next we need axioms to tell us how to enlarge our universe of sets by con-
structing new sets from given ones. Zermelo’s set theory has (1) restricted
comprehension axioms; (2) the axiom of extensionality; (3) the axiom of foun-
dation stating that € is a well-founded relation; (4) the pairing axiom which
given two sets x and y, allows us to build the set {z,y}; (5) the union axiom,
by which the generalized union of a set of sets is iteself a set; (6) the axiom
of infinity and (7) the powerset axiom.



