Pumping Lemma for Regular Languages

A language \mathcal{L} is *regular* if it is it exactly the set of words accepted by some automaton M. We shall consider a property of all regular languages, which also provides us with a technique to prove that some languages are not regular.

Pumping Lemma. Let \mathcal{L}_M be the language accepted by the automaton $M = \{A, S, \nu, s_0, F\}^1$ where the number of the states (the cardinality of S) is n. For every string w in \mathcal{L}_M of length $|w| \ge n$, we can break w into three string w = xyz such that

- 1. |y| > 0;
- 2. $|xy| \leq n;$
- 3. for all $k \geq 0$, the string $xy^k z$ is also in \mathcal{L}_M .

Proof. Let $w \in \mathcal{L}_M$ be a string of length $m \ge n$, i.e., $w = a_1 a_2 \dots a_m$, and let $s_0 s_1 s_2 \dots s_m$ a list of the states the automaton such that

- (i) s_0 is the initial state and
- (ii) $\nu(s_i, a_{i+1}) = s_{i+1}$, for all *i* such that $0 \le i < m$.

Namely, s_{i+1} is the state which M is in after reading $a_1 \ldots a_{i+1}$. Since $w \in \mathcal{L}_M$ is accepted by the automaton M, the state w_m is final ($w \in F$). Since M has only n states, it is not possible for the states s_0, \ldots, s_m to be all distinct (*pigeon-hole principle*). Therefore we can find natural numbers i and j with $0 \le i < j \le n$ such that $s_i = s_j$. Now we can break w = xyz as follows:

- 1. $x = a_1 \dots a_i$, the subword M reads before reaching state s_i starting from state s_0 ;
- 2. $y = a_{i+1} \dots a_j$, the string M reads before passing from state s_i to state $s_j = s_i$;
- 3. $z = a_{j+1} \dots a_m$, the rest of the string, which is read before reaching the accepting state s_m from state s_j .

¹Here A is the alphabet, S is the set of internal states, ν is the transition function, s_0 is the initial state and F is the set of final, or accepting, states.

Notice that x may be empty (in this case, i = 0) and z may be empty (in this case j = n = m) but the string y is nonempty, by the assumption that i < j.

Consider the behaviour of M with the inputs $xy^k z$ for $k \ge 0$. If k = 0, then after reading x the automaton M is in state s_i and reads the string z; since $s_i = s_j$, after reading the string z the automaton M reaches s_m from s_i . But s_m is an accepting state, hence M accepts the word xz, so xz must be in \mathcal{L}_M . If k > 0 then after reading x the automaton loops from s_i to s_i k times while reading y^k and then, after reading z, it reaches the accepting state s_m . Hence M accepts $xy^k z$ and $xy^k z$ is in \mathcal{L}_M . The proof is finished.

Example: We may use the Pumping Lemma to show that some languages are not regular. Let A be the alphabet $\{0, 1\}$ and let

 $\mathcal{L}_{eq} = \{ w \in A^* \mid w \text{ contains the same number of 0's and 1's } \}.$

Let M be any automaton which accepts all the words in \mathcal{L}_{eq} ; we show that M accepts also words which are not in \mathcal{L}_{eq} . Let n be the number of states of M and consider the word $w = 0^n 1^n$: certainly w belongs to \mathcal{L}_{eq} . If $s_0 s_1 \ldots s_n \ldots s_{2n}$ is the list of the states M is in while reading w, from the initial state s_0 to the accepting state s_{2n} , then we must have $s_i = s_j$ with $i < j \leq n$ (as M has only n states). Therefore w = xyz with $x = a_1 \ldots a_i$, $y = a_{i+1} \ldots a_j$ where x and y consist only of 0's. By the Pumping Lemma, any word of the form $xy^k z$ for $k \geq 0$ is also accepted by M. Hence xz is also accepted by M; but xz has less 0's than 1's (as y contained only 0's and has been removed from w); thus xz does not belong to \mathcal{L}_{eq} . Therefore the set \mathcal{L}_M of words accepted by M is strictly larger than the language \mathcal{L}_{eq} . Since this fact holds for any automaton M, the language \mathcal{L}_{eq} is not regular.

Exercise: Show that the set $\mathcal{L}_{(,)}$ of strings of balanced parentheses is not regular. (*Hint:* Let M be any automaton accepting $\mathcal{L}_{(,)}$, let n be the number of states in M, let 0 be "(" and 1 be ")" in the word w of the above example.)

Reference: J. H. Hopcroft, R. Motwani and J. D. Ullman. *Introduction to Automata Theory, Languages, and Computation*, Addison Wesley, Second Edition, 2001, pp. 126-130.