Pumping Lemma for Regular Languages

A language L is reqular if it is it exactly the set of words accepted by some au-
tomaton M. We shall consider a property of all regular languages, which also
provides us with a technique to prove that some languages are not regular.

Pumping Lemma. Let £,; be the language accepted by the automaton M
={A, S, v, so, F'}! where the number of the states (the cardinality of S) is
n. For every string w in Ly, of length |w| > n, we can break w into three
string w = zyz such that

L |y > 0;
2. |zy| < m;

3. for all k > 0, the string zy*z is also in L.

Proof. Let w € L), be a string of length m > n, i.e., w = ajas...a,, and
let s9s182.. .S, a list of the states the automaton such that

(1) so is the initial state and
(i) v(s;, air1) = Siy1, for all ¢ such that 0 < i < m.

Namely, s;1 is the state which M is in after reading a; . .. a;41. Since w € Ly
is accepted by the automaton M, the state w,, is final (w € F). Since M
has only n states, it is not possible for the states s, ..., s,, to be all distinct
(pigeon-hole principle). Therefore we can find natural numbers ¢ and j with
0 <1 < j <nsuch that s; = s;. Now we can break w = zyz as follows:

1. x = a;...a;, the subword M reads before reaching state s; starting
from state sg;

2. y = ajy1...a , the string M reads before passing from state s; to state
85 = Si;

3. 2 = @j41...0an, the rest of the string, which is read before reaching the
accepting state s,, from state s;.

!Here A is the alphabet, S is the set of internal states, v is the transition function, sq
is the initial state and F is the set of final, or accepting, states.



Notice that  may be empty (in this case, ¢ = 0) and z may be empty (in
this case j = n = m) but the string y is nonempty, by the assumption that
1< 7.

Consider the behaviour of M with the inputs zy*z for £ > 0. If £ = 0,
then after reading x the automaton M is in state s; and reads the string z;
since s; = s;, after reading the string 2z the automaton M reaches s,, from
s;. But s, is an accepting state, hence M accepts the word zz, so xz must
be in L£y;. If £ > 0 then after reading = the automaton loops from s; to s;
k times while reading y* and then, after reading z, it reaches the accepting
state s,,. Hence M accepts xy*z and xy*2 is in £;. The proof is finished.

Example: We may use the Pumping Lemma to show that some languages
are not regular. Let A be the alphabet {0, 1} and let

Leg={w € A" | w contains the same number of 0’s and 1’s }.

Let M be any automaton which accepts all the words in £.4; we show that
M accepts also words which are not in £L.,. Let n be the number of states
of M and consider the word w = 0"1": certainly w belongs to L. If
5081 ---Sp--.So, 1S the list of the states M is in while reading w, from the
initial state sy to the accepting state ss,, then we must have s; = s; with
i < j <n (as M has only n states). Therefore w = zyz with z = a; ... a;,
Y = @Giy1 - ..a; where 2 and y consist only of 0’s. By the Pumping Lemma,
any word of the form zy*z for k¥ > 0 is also accepted by M. Hence zz is also
accepted by M; but zz has less 0’s than 1’s (as y contained only 0’s and has
been removed from w); thus zz does not belong to L.,. Therefore the set
L of words accepted by M is strictly larger than the language L.,. Since
this fact holds for any automaton M, the language L., is not regular.

Exercise: Show that the set L) of strings of balanced parentheses is not
regular. (Hint: Let M be any automaton accepting £, let n be the number
of states in M, let 0 be ”(” and 1 be ”)” in the word w of the above example.)
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