Some answers to Homework 7

May 5, 2004

Question 1. Define a Non-Deterministic Finite State Automaton /N on the
alphabet A = {0,1} which accepts exactly the language £ = {u € A* | u =
wO0zy}, i.e., precisely the words on A where the third letter from the end is
0. Define a Deterministic Finite State Automaton M equivalent to N and
find the minimal deterministic automaton equivalent to N.

Answer. N = {S A ,v,1,F} where the set of states S is {1,2,3,4}, the
initial state is 1, the only final state in F' is 4 and the transition function v
is given by the following transition diagram:

@ 0 @ 01 € 01

A Deterministic Finite State Automaton equivalent to N is M = {S’, A, v/, {1}, F'}
where the set of states S’ is

{{1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1, 3,4}, {1, 2,3,4} },

the set of final states F'is {{1,4},{1,2,4},{1,3,4},{1,2,3,4}} and the tran-
sition function v/ is given by the following diagram:



We need to show that the automaton M is minimal, i.e., that all states in
S’ are distinguishable from one another. To this purpose we construct the
following table:

{1,2} | o0
{123} || O 0
(F) {1234} || X | X X
{1,3} 0 0 00 X
(F) {1,34} | X | X X 00 X
(F) {124} | X | X X 0 X 0
(F) {14} X | X X 0 X 0 00
{1} [ {12} | {1.2,3} | {1,234} | {1,3} | {1,3,4} | {1,2,4} |

Since all states are distinguishable (by words of length at most 2), the au-
tomaton M is minimal.

Notice that we have applied the powerset construction in an abbreviated
form: the states of M are the set S’ of all subsets of S that are reachable
from the state {1} according to the definition of transition used in the pow-
erset construction. In fact, we could have defined M = {p(S), A,v', {1}, F'},
taking the set of all subsets of S (the powerset p(S) of S) as the set of states,
defining ¢/ as in the powerset construction. Later, when we look for a min-
imal deterministic automaton, we find that the subsets in the set S” = { 0),
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{2}, {3}, {4}, {2,3}, {2.4}, {3,4}, {2,3,4} } are not reachable from the
initial state {1}. Since the cardinality |p(S)| = 2/°' = 16 and " = p(S)\ 5"
and also we have shown that M is minimal, our construction yields pre-
cisely the deterministic automaton obtained by applying first the powerset
construction to N and then eliminating unreachable states.

Question 5. Show that there are infinitely many prime numbers of the form
6n — 1.

Answer: Write ¢, for the n-th prime of the form 6k — 1, i.e., ¢, is the n-
th prime equivalent to 5 (mod 6). Clearly ¢; = 5. For the inductive step,
suppose

qi,- - .,qn are all the prime numbers of the form 6k — 1 (%)

and let ¢ = 6(q; - ... ¢,) — 1. Notice that ¢ > ¢, > ... > ¢, hence if
assumption (*) is true, then ¢ cannot be prime, hence it must be divisible
by some prime. Now we consider all possible prime divisor p of ¢ and look
at p mod 6: by considering all possible cases we show that at least one
prime divisor p of ¢ must be equivalent to 5 (mod 6); thus it follows from
our assumption (*) that p must be one of the ¢; and from this we derive a
contradiction.

Let ¢ = py - ... pg be the prime factorization of ¢ (thus p, ..., p, are prime
numbers). We have the following cases:

1. for some j < ¢, p; =2 (mod 6); this is impossible, because ¢ is odd.

2. for some j < ¢, p; = 3 (mod 6); this is also impossible. Indeed, if
b= 3 (mod 6) and a =1 or 3 or 5 (mod 6), then also a - b = 3 (mod
6). Therefore if we had p; = 3 (mod 6), then we would have also
prL-...-pe =3 (mod 6); but c=5= —1 (mod 6).

3. for all j < ¢ p; =1 (mod 6); this is impossible, because in this case
pre...-pe =1 (mod 6), but ¢ =5 = —1 (mod 6). Hence ¢ cannot be
divided only by prime numbers of this form.

Therefore for some j < ¢, p; = 5 (mod 6). Our assumption (*) is that

1, - - -,qn are all the prime numbers of the form 6k — 1. Therefore p; = ¢; for
some 7 < n, and ¢; divides ¢, let’s write
c=q-a. (1)
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Now ¢; divides ¢; - ... - ¢, indeed, letting b =¢qy - ... - ¢i-1 - Gi+1 - - Qpn, WE
have

Gi-b=q-...-¢p=c—1L (1)
But then by (1) and (1) we have
1=(gi-a)—(¢i-b)=qi-(a—0) (%)

and this is impossible, because no prime number divides 1.

Therefore our assumption (*) that g1, ..., g, are all the prime numbers equiv-
alent to 5 (mod 6) is false and there is a prime number p in the prime fac-
torization of ¢ which is greater than ¢, and p < ¢. This concludes the proof.

Notice that the argument remains valid if we define
c=6(g,! —1)

where a! is the factorial function.

Notice that implicit in the proof there is an algorithm to compute the function
f(n) = qn, the n-th prime number of the form 6k — 1.
We can show that f is primitive recursive. Indeed define f(1) =5 and
f(n+1) = the least p < ¢ such that p is prime, p > f(n) and rm(p,6) =5
where rm(p, 6) is the remainder of the division of p by 6. Notice that
e f is defined by primitive recursion;
e in the base case f is the constant function 5;

e in the recursive step the function f is defined by bounded minimization
with bound ¢, using the predicate p is prime and the function rm(zx,y);

e the function rm(x,y) has been shown to be primitive recursive in the
Homework assignment 3;

e the bound c defined as 6(g,!)—1 is primitive recursive, because multipli-
cation and subtraction are primitive recursive and the factorial function
is also primitive recursive, as it is defined by primitive recursion from
the constant function 1 and multiplication:

0l =1, n+1D!=n!-(n+1);



e the predicate “p is prime”, defined as
p is prime =g p > 1 AVx < p.(x dividesp — =1V z =p)

is primitive recursive, because it is defined using conjunction, disjunc-
tion implication and bounded quantification from the primitive recur-
sive predicates “x > y” and “x divides y’.

Therefore f is primitive recursive.



