Homework Assignment 7 - Hints

Due Friday 2-04-04

(Double Assignment)

$\operatorname{Part} \mathbf{I}$

1. Define a Non-Deterministic Finite State Automaton N on the alphabet $A = \{0, 1\}$ which accepts exactly the language $\mathcal{L} = \{u \in A^* | u = w 0 x y\}$, i.e., precisely the words on A where the third letter from the end is 0. Define a Deterministic Finite State Automaton M equivalent to N and find the minimal deterministic automaton equivalent to N.

(5 points)

No hint here! (You know how to do this.)

2. Let $f: N \times N \to N$ be a total function. Given an Abacus Machine that computes f, define an Abacus Machine that computes the total function $h(m, n) = \mu y < n.f(m, y) = 0$, i.e., the function which maps the arguments m, n to the least y < n such that f(m, y) = 0, if such a y exists, and returns n otherwise.

(5 points)

An Abacus Machine is just a register machine! (You know how to do this.)

3. Let A(x, y) be a binary predicate, and consider the following formulas $B = \forall x. \neg A(x, x)$ $C = \forall x. \forall y. \forall z. (A(x, y) \land A(y, z) \rightarrow A(x, z))$ $D = \forall x. \exists y. A(x, y)$

Thus $(B \wedge C) \wedge D$ says that the universe of discourse is a strict ordering without maximal points. Show that $(B \wedge C) \wedge D$ has an infinite model but no finite model.

(5 points)

Hint: Suppose $\mathcal{M} : (M, <_{\mathcal{M}})$ is an interpretation for the language $\mathcal{L} = \{A^2\}$. What does it means that to say that a pair $\sigma = (\mathcal{M}, \alpha)$ satisfies B, C and D? Work through Tarski's definition, page 8 of Handout 5 (available here). Suppose M is finite and derive a contradiction, by showing that if the relation $<_{\mathcal{M}}$ on M is transitive and has no maximal points then it cannot be irreflexive - i.e., if $C^{\sigma} = T$ and $D^{\sigma} = T$ then $B^{\sigma} = F$.

Part II

4. Apply the "semantic tableaux procedure" to the following formulas. If the formula is not valid, construct an interpretation that falsifies it.

(i)
$$((A \to B) \to A) \to A$$
.

(2.5 points)

Hint: Apply the "semantic tableaux" procedure (pages 2-5 of Handout 5) to the formula $((\neg A \lor B) \land \neg A) \lor A$ which is logically equivalent to (i).

(ii)
$$(\forall x. \exists y. A(x, y)) \rightarrow (\exists y. \forall x. A(x, y))$$

(2.5 points)

Hint: Apply the "semantic tableaux" procedure (pages 10-14 of Handout 5) to the formula $(\exists x. \forall y. \neg A(x, y)) \lor (\exists y. \forall x. A(x, y))$ which is logically equivalent to (*ii*). After some steps you should be able to recognize that the procedure does not terminate, yielding an infinite open branch β . Let $M = \{a_0, a_1, a_2, \ldots\}$ be the set of parameters introduced in β . Set

 $\langle a_i, a_j \rangle \in \langle \mathcal{M}$ if and only if ...

in such a way that both $\exists x. \forall y. \neg A(x, y)$ and $\exists y. \forall x. A(x, y)$ are false in \mathcal{M} .

(iii)
$$(\forall x.A(x)) \to (\forall y.B(y)) \to \exists x.\forall y.(A(x) \to B(y))$$

(2.5 points)

Hint: Apply the "semantic tableaux" procedure (pages 10-14 of Handout 5) to the formula $(\forall x.A(x) \land \exists y. \neg B(y)) \lor (\exists x. \forall y. \neg A(x) \lor B(y))$ which is logically equivalent to (*ii*).

(5) Show that there are infinitely many prime numbers of the form 6n - 1.

(7.5 points)

Hint: Follow the proof of Exercise 1 in Homework 5. Write q_n for the *n*-th prime of the form 6k - 1, i.e., equivalent to 5 (mod 6). Clearly $q_1 = 5$. For the inductive step, suppose

$$q_1, \ldots, q_n$$
 are all the prime numbers of the form $6k - 1$ (*)

and let $c = 6(q_1 \cdot \ldots \cdot q_n) - 1$. Notice that $c > q_n > \ldots > q_1$, hence if assumption (*) is true, then c cannot be prime, hence it must be divisible by some prime. Now you have to consider all possible prime divisors p of c; here you have the following cases:

p = 2 (mod 6); (c is odd.)
p ≡ 1 (mod 6); (c cannot be devided only by prime numbers of this form.)
p ≡ 3 (mod 6); (can c be divided by a number of the form 6n + 3?)
p ≡ 5 (mod 6).

You must show that c must be divisible by some q_i and then conclude that this is impossible, hence assumption (*) is false and so there must be a prime $q_{n+1} \leq c$.