Homework Assignment 7

Due Friday 2-04-04

(Double Assignment)

Part I

1. Define a Non-Deterministic Finite State Automaton N on the alphabet $A = \{0, 1\}$ which accepts exactly the language $\mathcal{L} = \{u \in A^* | u = w 0 xy\}$, i.e., precisely the words on A where the third letter from the end is 0. Define a Deterministic Finite State Automaton M equivalent to N and find the minimal deterministic automaton equivalent to N.

(5 points)

2. Let $f: N \times N \to N$ be a total function. Given an Abacus Machine that computes f, define an Abacus Machine that computes the total function $h(m,n) = \mu y < n.f(m,y) = 0$, i.e., the function which maps the arguments m, n to the least y < n such that f(m, y) = 0, if such a y exists, and returns n otherwise.

(5 points)

3. Let A(x, y) be a binary predicate, and consider the following formulas $B = \forall x. \neg A(x, x)$ $C = \forall x. \forall y. \forall z. (A(x, y) \land A(y, z) \rightarrow A(x, z))$ $D = \forall x. \exists y. A(x, y)$ Thus $(P \land C) \land D$ going that the universe of discourse is a strict ordering without x

Thus $(B \wedge C) \wedge D$ says that the universe of discourse is a strict ordering without maximal points. Show that $(B \wedge C) \wedge D$ has an infinite model but no finite model.

(5 points)

Part II

4. Apply the "semantic tableaux procedure" to the following formulas. If the formula is not valid, construct an interpretation that falsifies it.

(i)
$$((A \to B) \to A) \to A$$
.
(2.5 points)

(ii)
$$(\forall x. \exists y. A(x, y)) \rightarrow (\exists y. \forall x. A(x, y))$$

(iii)
$$(\forall x.A(x)) \to (\forall y.B(y)) \to \exists x.\forall y.(A(x) \to B(y))$$

(2.5 points)

(2.5 points)

(5) Show that there are infinitely many prime numbers of the form 6n - 1.

(7.5 points)