Homework Assignment 5

Due Friday 27-02-04

We say that a number n is equivalent to $r \mod m$ (written $n \equiv r \mod m$) if and only if n - r = mq for some q. In particular if r is the remainder of the division of n by m, (i.e., n = mq + r with $0 \le r < m$) then $n \equiv r \mod m$.

1. (i) Show that if m and n are both equivalent to 1 mod 4, then so is $m \cdot n$. (In other words, if m = 4k + 1 and n = 4k' + 1 for some k, k', then $m \cdot n = 4k'' + 1$ for some k''.) (1 point)

(ii) Show that there are infinitely many primes of the form 4n - 1.

Hint for (ii): Modify the proof of Euclid's theorem. Write q_n for the *n*-th prime of the form 4k - 1. What is q_1 ? For the inductive step, suppose q_1, \ldots, q_n were all the prime numbers of the form 4k - 1. Let $c = 4(q_1 \cdot \ldots \cdot q_n) - 1$ and derive a contradiction by showing that c must be divided by one of the primes q_1, \ldots, q_n . Notice that to reach this conclusion you need to consider all possible divisors of c: first show that c is not divisible by 2; next, since odd numbers are either of the form 4k + 1 or of the form 4k - 1, show that the prime divisors of c cannot be only of the form 4k + 1.

(3 points)

(iii) Suppose in the inductive step you let $c = 4(q_n!) - 1$. Does the argument still hold? (1 point)

2. Define a finite state automaton M on the alphabet $A = \{0, 1\}$ which accepts a word w if and only if w is the binary representation of a number divisible by 5, (e.g., 1010).

(5 points)

Hint: The machine M reads from left to right the digits of the binary representation and remembers the value of what it has read so far, but only as a number $k \mod 5$. If a string w is the binary representation of a number equivalent to $k \mod 5$, what are the values mod 5 of the strings w0 and w1?

3. Consider the language \mathcal{L} on the alphabet $A = \{0\}$ defined by

 $\{0^n \mid n \text{ is a perfect square.}\}$

(We say that n is a perfect square if $n = m^2$, for some $m \in \mathbf{N}$.) Show that there is no automaton that accepts exactly the language \mathcal{L} (i.e., \mathcal{L} is not a *regular* language).

(5 points)

Hint: Let M be a deterministic automaton which accepts all the words in \mathcal{L} , let n be the number of states in M and consider the word $w = 0^{n^2}$, i.e., the word consisting of n^2 symbols 0. Show that M must also accept a word $w' = 0^m$ such that $n^2 < m < (n+1)^2$, i.e., a word which not in \mathcal{L} .