Homework Assignment 4 - Extended hints
Due Friday 20-02-04
1. Let a be Ackermann’s function. Prove Lemma 2(ii):

y<n=alm,y) <alm,n), forall m, nand y.

(Hint: Use main induction on n and secondary induction on m. You may use Lemma 2(i)
and Lemma 3.)

Extended Hint: Ackermann’s function is recursively defined as follows:

a(m,0) = s(m) (i)
(0, s(n)) (i)
a(s(m),s(n)) = ala(m,s(n)),n). (iii)

In class the following facts have been proved. The Ackermann function is well defined:
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Lemma 0. For all y,x € N, there exists a z € N such that a(z,y) = z.
The Ackermann function is strictly increasing:

Lemma 1. For all m,n € N, a(m,n) > m.
The Ackermann function is monotonic in the first argument:

Lemma 2.(i) For all y,z,x € N, if x < z then a(x,y) < a(z,y).

The following useful fact has also been proved:

Lemma 3. For all m,n € N, a(m, s(n)) > a(s(m),n).

Using the above facts, we are asked to prove that the Ackermann function is monotonic in
the second argument:

Lemma 2.(ii) For all y,z,x € N, if y < z then a(z,y) < a(z, z).

We proceed by a main induction on z and a secondary induction on x. We must prove
Main base case: For ally,z € N, if y <0 then a(z,y) < a(z,0).

Proof: ... ... (Think logically!)

Main inductive step: Assume the truth of the inductive hypothesis

For ally,z € N, if y <n then a(z,y) < a(x,n).

We need to prove that

For ally,z € N, if y < s(n) then a(z,y) < a(z,s(n)).

We do this by a secondary induction on z:

Secondary base case: For ally € N, if y < s(n) then a(0,y) < a(0, s(n)).

Proof: ... ... ... (Since y < s(n), we have y < n. This fact can easily be proved by
induction [try it!] and you don’t need to write it down. Use Lemma 3, Lemma 2(i) and
the main inductive hypothesis.)



Secondary inductive step: Assume the secondary inductive hypothesis

For ally € N, if y < s(n) then a(m,y) < a(m, s(n))

We need to prove that

For ally € N, if y < s(n) then a(s(m),y) < a(s(m), s(n)).

Proof: ... ... ... (Apply the 3rd clause in the definition on a to a(s(m), s(n)), then the
fact that « is strictly increasing, Lemma 3 and the fact that y < n.

This concludes the proof of the secondary inductive step, thus of the secondary induction
and thus of the main inductive step. The proof is finished.

We say that a number a is congruent to b modulo m (written a = b (mod m) ) if and only if
a —b = md for some d € Z. (Thus, if a = mdy + ¢ and b = md; +r1 with 0 < rg,r < m,
then ro = ry.)

2. Prove the Chinese Remainder Theorem: Let my, ..., m, be any pairwise coprime
integers, then the congruences

r=a; (modmy) (i=1,...,7)

have a common solution, which is unique mod m, where m =mqy -...-m,.

Moreover, writing M; = m/m;, we can obtain a solution in the form x = X<, M;z;,
where x; satisfies M;x; = a; (mod m;).
Hint: Read section 2.3 of Cohn’s book and write exactly the part you need to prove
theorem 5 (nothing less, nothing more).

Tasks: This is an essay-like exercise. The proof at page 34 of Cohn’s book first shows that
the solution is unique mod m, then that a solution exists and has the form x = ¥ M;z;.

In the proof of uniqueness, Proposition 3(i) of paragraph 2.2 is quoted (page 28), which
was not proved in class and you need to write the proof of it.

In the proof of existence, there is an implicit use of Theorem 4, page 33, so you need to
write a proof of it. In the proof of Theorem 4, there is a reference to Theorem 1(iii), page
31, which you need to prove and to Proposition 2, page 32, which you also need to prove.
The proof of Proposition 2 relies on Bezout’s Lemma, which was done in class [but if you
really want your essay to be self contained, you may as well write it...|



Comment: The Chinese Remainder Theorem has an algebraic meaning which is spelt out
at page 34-35; for our purpose, it provides an alternative way to code sequences of natural
numbers. Considering the example of congruences mod 2 and mod 3, we have
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In general, there is a map Z/rs — Z/rxZ/s given by
form(z,rs) — (rm(z,r), rm(z, s))

and the Chinese Remainder Theorem proves that this map is biective if r and s are
coprime. In our example, since 2 and 3 are coprime the formula in the Chinese Remainder
Theorem gives us a coding of the pairs (y, z) with y < 2 and z < 3 into numbers z < 6,
and the remainder functions rm(z,2) and rm(z, 3) give us the decoding functions.



