Homework Assignment 4

Due Tuesday 17-02-04

1. Let α be Ackermann's function. Prove Lemma 2(ii):

 $y < n \Rightarrow \alpha(m, y) < \alpha(m, n),$ for all m, n and y.

(*Hint:* Use main induction on n and secondary induction on m. You may use Lemma 2(i) and Lemma 3.)

We say that a number a is congruent to b modulo m (written $a \equiv b \pmod{m}$) if and only if a - b = md for some $d \in \mathbb{Z}$. (Thus, if $a = md_0 + r_0$ and $b = md_1 + r_1$ with $0 \le r_0, r_1 < m$, then $r_0 = r_1$.)

2. Prove the Chinese Remainder Theorem: Let m_1, \ldots, m_r be any pairwise coprime integers, then the congruences

 $x \equiv a_i \pmod{m_i}$ $(i = 1, \dots, r)$

have a common solution, which is unique mod m, where $m = m_1 \cdot \ldots \cdot m_r$.

Moreover, writing $M_i = m/m_i$, we can obtain a solution in the form $x = \sum_{i \leq r} M_i x_i$, where x_i satisfies $M_i x_i \equiv a_i \pmod{m_i}$.

Hint: Read section 2.3 of Cohn's book and write exactly the part you need to prove theorem 5 (nothing less, nothing more).