Solutions Homework Assignment 3
Due Friday 6-02-04

Definition. We define the class PrimRec of primitive recursive functions as the smallest
set of total functions f : N™ — N for all n that includes the basic functions (zero, successor
and projections) and is closed under composition and primitive recursion. To give a formal
definition, we need a formal language to represent these functions.

The natural numbers are represented by numerals 0, 0/, 0” ... where the number n is
represented by 0 followed by n accents. We write n for the numeral which represents the
number n.

Informally, functions are represented in prefir notation, e.g., —z, in infix notation, e.g.,
T + y, or in postfiz notation x~1. The absolute value function |x| uses a prefiz and postfix
notation. It will be convenient to have a prefix notation for every function, so in our formal
language x + y will be written as sum(zx,y).

We say that a function f : N — N has arity n, where n > 0. Here we have given the
arity of f by specifying its type. If the symbol f represents a binary function, then we may

explicitly indicate the arity as a numerical postfix f2, e.g., sum?.

The basic functions are:

(1) the unary successor function, given by = +— x 4 1, for € N. In our formal language
we use the prefix symbol “s”; thus we have

s(n) =n'.

The accent could also be used as a postfix notation for the successor, i.e., s(x) = z’. The
arity of s can also be specified by giving its type, s : N — N.

(2) the projection functions: for all n € N and all i < n, the n-ary projection function is
given by (x1,...,2,) — x;. In our formal language we use the prefix symbol id;"; thus we
have

idin(.ifl, ceey .’lfn) = Z;.

The type of a projection function is id," : N" — N.

(3) for n > 0, the n-nary constant zero function is given by (z1,...,x,) — 0. We use the
prefix symbol z"; thus we have
z(x1,...,zn) =0.

The types of the zero functions are z : N — N for all n. In particular, the constant
symbol 0 is also a representation of the 0-ary zero function, like z°.

The schemes of Composition and Primitive Recursion are the following principles:

(4) (Composition): if g : N¥ — N is primitive recursive and for each i < k, h; : N* = N
is primitive recursive, then the function f : N" — N defined as follows

flar,..o,zn) =glhi(z1, .oy xn)ye ooy hr(T1, - oy 20))

is primitive recursive; we write f* = Cn[g*, A7, ..., hY];

(5) (Primitive Recursion): if g : N™ — N and h : N"*? — N are primitive recursive, then
f: Nt 5 N defined as follows

f(oa'rla"'axn) :g(xla"-axn)

fn4+1,2q,...,2,) = h(n, f(n,21,...,20),1,...,Tp)

is primitive recursive; we write f**! = Pr[g", h"+2].

Problem 1: Show that the following functions, defined on the non-negative integers N,
are primitive recursive. Give a formal definition using the basic functions, composition
and primitive recursion. You may assume that addition and multiplication are primitive
recursive in (c), (e), (f) and (g).

(a) predecessor pred(x), where pred(0) = 0;

(1 point)
Answer: The function pred : N — N is primitive recursive, because it is defined by
primitive recursion from the primitive recursive functions 2% € N and id? : N? — N by
the conditions

pred (0) = 0 pred' (s(n)) = n
=20 = id3(n,pred(n))

Thus:
pred' = Pr[2°, id3?].

(b) subtraction x—n, where x—n = 0 is x < n;

(2 points)
(Hint: By recursion on n, using the predecessor function.)
Answer: We write subtr(n,x) in prefiz notation, for x—n (infiz notation).
Now subtr: N? — N is defined by primitive recursion from the primitive recursive functions
id; : N — N and Cu[pred!, id3] : N®> — N, by the conditions

subtr®(0,z) = subtr®(s(n), z) = pred(subtr®(n,z))
= id; (z) = pred(id3(n, subtr*(n, x), x))
= Cn[pred", id3)(n, subtr?(n, z), z)

Thus
subtr® = Pr[id}, Cn[pred', id3]].

2

(c) the absolute value |x — y| of the difference between x and y; this is — y if y < x and
y — x otherwise;

(1 points)
Answer: We write abs(z,y) (prefiz notation) for |z — y| (infiz notation). Now abs(z,y) :

N? — N is defined by composition from the binary primitive recursive functions subtrac-
tion subtr and addition sum

[z =yl = (z—y) + (y—2).
or, using prefix notation

abs(w,y) = sum(subtr(z, y), subtr(id3(z, y). id3 (x. 1))

Thus
abs? = Cn[sum?, subtr?, Cn[subtr?, id%, id?]].

(d) the signature function sg(x), which returns 0 if x = 0 and 1, otherwise; the countersig-
nature function 5g(x) which returns 1 if z = 0 and 0 otherwise;
(2 points)

Answer: The countersignature function sg : N — N may be defined as
59(x) =0 — .
The signature function sg: N — N may be defined as

sg(x) = 0" = (0 - x)
= Cn[subtr?, 0, Cn[subtr®, 0, z]]

The signature function may also be defined by primitive recursion from the primitive
recursive functions z° € N and Cn[s, 22]: N* — N by the conditions

sg'(0) = 2% sg'(s(n)) = s(2*(n, s¢'(n)))
=0 =0
= 1.

In this case
sg = Pr[z%, Cn[s, 2?]].
Similarly we may define the countersignature function by recursion.
(e) the remainder rm(a, b) of the division of a by b;
(2 points)
Hint: rm(0,b) = 0; rm(n + 1,b) = (rm(n,b) + 1) - sg(|b — (rm(n,b) + 1)|).

Answer: The formal presentation of the definition in the hint is as follows. The remainder
function rm : N? — N is defined by primitive recursion from the primitive recursive

3

functions z' : N — N and Cn[prod®, Cn[s, id3], Cn[sg’, Cn[abs®, id3, Cnl[s, id3]]]] :
N? — N by the conditions

gl(b)
(rm(n,b) + 1) - sg(|b = (rm(n,b) +1)|)
prod(s(rm(n, b)), sg(abs(b, s(rm(n,b)))))
= pT‘Od(S(Zd% (na Tm(na b)a b))a
sg(abs(id3(n, rm(n, b),b), s(idi(n, rm(n, b),5)))))
— prod(Cals, id3)(n, rm(n, b),b),
Cnlsg', Cnlabs?, id3, s(id3)]](n, rm(n,b),b)))

rm(0,b) =

rm(s(n),b)

Thus
rm? = Pr[z!, Cn[prod®, Cnl[s, id3], Cn[sg!, Cn[abs 2, id3, Cn[s, id3]]]]]

(f) the quotient [a/b] of the division of a by b;

(2 points)
Hint: [0/b] = 0; [n+ 1/b] = [n/b] +5g(|b — (rm(n,b) + 1))).
Answer: The formal presentation of the definition in the hint is as follows. The quotient
function quot : N? — N is defined by primitive recursion from the primitive recursive
functions z' : N — N and Cn[sum?, id3, Cn[5g", Cn[abs®, id3, Cn[s, id3]]]] : N®* — N by
the conditions

quot(0,b) = z1(b)
=0
quot(s(n),b) = [n/b] + 5g(|b — (rm(n,b) +1)[)
= sum(quot(n,b), 5g(abs(b, s(quot(n,b)))))
= sum(id3(n, quot(n,b),b),
59(abs(id3(n, quot(n, b), b), s(id5(n, quot(n, b),b)))))
= sum(id3(n, quot(n,b),b),
Cn[sg', Cnlabs®,id3, Cn[s,id3]]](n, quot(n, b),b)

Thus
quot® = Pr[id3, Cn[sum?,id3, Cn[sg", Cn[abs?,id3, Cn[s, id3]]]]-

(g) the coding function J(m,n) = m + Yi<mint.
(2 points)

Answers: (1) Since the function Bigsum : N — N given by k — X< is defined recursively

Bigsum(0) = 0;
Bigsum(s(n)) = sum(s(n), Bigsum(n))

we may define J(m,n) = (m + Bigsum'(m + n)), i.e., we have
J? = Cn[sum?,id?, Cn[Bigsum', sum?]|

4

where
Bigsum' = Pr[z°, Cn[sum?, Cu[s, id3], id2]].

(2) The function J(m,n) may also be defined by recursion on n as
J(m,0) = Bigsum(m)
J(m,s(n)) = J(m,n) + (m+ s(n))
= Cn[sum, ids, Cn[sum, id3, Cnl[s, id3}]]](n, J(m,n), m)
and we obtain we have

J? = Pr[Bigsum', Cn[sum?,id3, Cn[sum?,id3, Cn[s,id3]]]]

where Bigsum is as above.

Problem 2: Prove the following facts:
(i) Forx >1landy >2,z-y >z +y.

(2 points)
Proof. We assume without proof the fact that

m<n=z+m<z+n, for all natural numbers m, n, x.

Basecase, x =2: 2-y=y+y>2+yify > 2.
Assuming the inductive hypothesis, that if n > 1 and y > 2, then n -y > n + y, we must

prove that if s(n) > 1 and y > 2, then s(n) -y > s(n) + y (inductive step).
Now

s(n)-y=(m-y)+y
> (n4+y)+y by inductive hypothesis and the fact,
>(n+1)+y since y > 2 using the fact,

= s(n) +y.
Now for x = 0,1 the statement is true by logic; as we have proved the base case and the
inductive step, the proof is finished.
(ii) rm(a,b) < b (where b > 0).
(2 points)

Proof: The fact that the remainder of the division of a by b is less than b is immediate
from the definition of the remainder (as the smallest r such that a = (b- q) + r for any q).
We want to verify the inequality from the primitive recursive definition of rem given in
part (e) of Problem 1. We argue by induction on a.
Base case: rm(0,b) = 0 by definition, and 0 < b by assumption.
Inductive step: We assume the inductive hypothesis that rm(n, b) < b, i.e., rm(n,b)+1 < b,
and we want to prove rm(s(n),b) < b.
Since rm(s(n),b) = (rm(n,b) + 1) - sg(|b — (rm(n,b) + 1)|), we have two subcases:

(a) if rm(n,b)+1 < b, sg(|b—rm(n,b)+1|) =1 and so rm(s(n),b) = rm(n,b)+1 < b;

(b) if rm(n,b) + 1 = b, then sg(|b — rm(n,b) + 1|) = 0 and so rm(s(n),b) =0 < b;
Since in both cases we obtain rm(s(n),b) + 1 < b, the inductive step is finished. As the
base case and the inductive step have been proved, the proof is finished.

