Due Friday 30-01-04

1. Let A be a set and $\wp(A)$ the set of all subsets of A. Show that there is no bijection $f: A \longrightarrow \wp(A)$.

Hint: Suppose $f: A \longrightarrow \wp(A)$ be a bijection. Consider the set

$$X = \{ y \in A | y \notin f(y) \};$$

show that there is an element x such that f(x) = X and consider both cases $x \in f(x)$ and $x \notin f(x)$.

2. Let A be a finite set of cardinality n. By induction on n, show that $\wp(A)$ the set of all subsets of A has cardinality 2^n .

3. Prove Euclid's theorem: There are infinitely many prime numbers. Hint: Suppose p_1, \ldots, p_k were all the prime numbers and consider the number $p_1 \cdot \ldots \cdot p_k + 1$. Can it be divided by some p_i ?