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1 Peano Arithmetic - Syntax and Semantics

We work with the language of First Order Predicate Calculus with identity.
The primitive symbols of Peano Arithmetic are: the individual constant “0”,
the symbol “S” for the successor function and the symbols “+” and “” for
the operation of addition and multiplication. The terms (expressions that are
to denote numbers) are defined by the following grammar (where x ranges
over an infinite list of individual variables):

t = 0‘$‘St|t1+t2‘t1 't2

In particular any natural number n can be denoted by a term of the form
S...50 (n occurrences of “S” before “0”), with n > 0. These terms are
called numerals; if n is a natural number, then n is the numeral denoting n.

Atomic formulas are equalities between terms: s = t. Complex formulas
are built up from these using connectives and quantifiers. A formula without
free variables will be called a sentence (or proposition). A formula containing
free variables will be called propositional function: these formulas express
arithmetic properties and relations).

Peano Arithmetic can be developed as a deductive system from the fol-
lowing axioms (Peano’s azioms):

Ax 1. Vz.~(Sz = 0);

Ax 2. VaVy.(Sz = Sy — = = y);
Ax 3. Vz.x 4+ 0 = z;

Ax 4. VaVy.z + Sy = S(z + y);
Ax 5. Vz.z -0 =0;



Ax 6. VaVy.z - Sy = (z-y) + v;
Ax 7. Axiom Scheme of Induction: for every propositional function A(z)

(A(0) A (Vz.A(z) — A(S7))) — (Vy.A(y)).

The induction principle is expressed here as an azriom scheme, rather than
a single axiom: such a scheme includes an infinity of axioms, one for each
propositional function. Intuitively, this means that we assume the principle
of induction for all arithmetic properties, i.e., for all properties expressible in
the formal language of arithmetic.

An interpretation in the language of arithmetic is obtained by fixing a
universe of discourse U and by assigning an individual of U to the individual
constant 0, a unary function (from U into U) to the symbol “S”, and two
binary functions to the symbols “+” and “”. A model of arithmetic is an in-
terpretation which verifies Peano’s axioms. In particular, these are evidently
verified by the intended model, called also the standard model: the set N of
natural numbers, with the usual interpretations of the arithmetic symbols
“S” “4+” and “.”. However, we shall see that there are also other models.

Two models M, M' (of arithmetic) are called isomorphic if there exists a
bijection f : M — M' which preserves the interpretations of the arithmetic
symbols. Namely, f maps the zero of M to the zero of M’', the successor of
an element m € M the successor of f(m) € N', and so on. Formally,

fOm) =0rr; f(Sm(a)) = Smr(f(a));
fla+wmb) = fla) +a f(b) fla-mb)=f(a) m f(b)

Such a function shall be called an isomorphism between M and M’.

Two isomorphic models can be regarded as “essentially the same model”,
in the sense that, although they may consist of different individuals, there s
abijection between the two sets of individuals and moreover each individual
behaves in the same way as its correspondent with respect to the arithmetic
operations.

An axiomatic theory is said to be categorical if all its models are iso-
morphic, i.e., if it has essentially only one model. Thus a categorical axiom
system identifies a well-specified mathematical structure.

Since Peano Axioms have been conceived to characterize the structure N
of the natural numbers with the familiar operations, i.e., the standard model,
it is natural to ask whether such an axiomatic system is categorical and hence
whether if it succeeds in determining the intended model. We shall see that
the answer is negative.



1.1 Non-standard models

We show that there are models of Peano Arithmetic non-isomorphic to the
standard model. We use the following theorem of first order logic:

Theorem. (Model existence) Every consistent set of formulas has a model.

This theorem is a corollary of the following fundamental theorem:
Completeness Theorem. Let A be a formula of a first-order language L.
If A is true in every interpretation M of L, then A can be deduced in (one
of the familiar) deductive systems for predicate logic.

Indeed, if a set I" of formulas does not have a model, then A A —A is true
in every model of I (trivially, since because there is no model of I'). By the
completeness theorem, there is a formal derivation of A A =A from I', and
this means that I' is not consistent, a contradiction.

Indeed, from the completeness theorem we can derive a more powerful
corollary:

Compactness Principle: If every finite subset of a set I' of formulas has
a model, then I" has a model.

Indeed, if I" did not have a model we could derive a contradiction A A —-A
from a finite subset 'y of I': indeed, a derivation of any formula is a finite
entity, which contains only a finite number of formulas in I'. But then there
can be no model of Ty, because = A\(T") is valid, i.e., true in every models.
Here we have used also the converse of the Completeness theorem:

Soundness Theorem: Let A be a formula of a first-order language L. If A
can be deduced in (one of the familiar) deductive systems for predicate logic,
then A 1is true in every interpretation M of L.

In the language £ of arithmetic we can define an order relation:
a>b=g3dz.(-z=0Na=0b+1z).

Let £ be the language obtained from £ by adding a new individual constant
c. Consider the following infinite sequence H of formulas of £':

H={c>0,c>1,...,c>nec>n+1,...}

Let V be the set of formulas of £ which are true in the standard model. We
claim that the set VUH has a model. Indeed, let H, = {¢ > 0,¢>1,... ,¢>
n}; then for every n, we have that V U H, has a model, because we may
interpret ¢ as n+ 1. By compactness, V U H has a model M, which is called
a non-standard model. In M there are all the standard numbers, namely, the



interpretations of the numerals n. But there are also non-standard numbers,
such as c. Notice that the presence of ¢ implies the existence in M of infinitely
many non-standard numbers greater than c¢: indeed, the formula Vx.3y.y > «
is true in the standard model N, and so it must be true also in M. Similarly,
Vr.—x =0 — Jdy.z > y is true in the standard model NV, and therefore in M,
and since —-¢ = 0, (¢ — 1) = 0, ... are all true, this implies that there are
infinitely many non-standard numbers less than ¢. Now it is obvious that M
cannot be isomorphic to N. If f : N — M is an injective function which
preserves the successor function, then it can only send an element of N into
the standard part of M, i.e., the non-standard numbers cannot be in the
codomain of f from N to M, hence f is not surjective and thus cannot be
an isomorphism.

We have shown that the axiom system of Peano Arithmetic is not cat-
egorical. We cannot obtain categoricity by suitably expanding this axiom
system by taking other formulas of the language £ as new axioms. Indeed
let A be any set of axioms expressible in £: if A describes correctly the
intended model N, then A must be a subset of the set V of formulas of calL
which are true in N; but then A cannot be categorical, because V itself is
not categorical. In this sense we can say that Peano Arithmetic is essentially
non-categorical.

Let us regard M as an interpretation of the language £ (thus, not includ-
ing the symbol ¢ for a non-standard number): then the same set of formulas
in the language of £ is true in M and in N. This means that the language £
of arithmetic cannot distinguish between N and M. Two interpretations of a
given language £ which satisfy the same set of formulas are said elementary
equivalent. Thus we can say that M and N are not isomorphic, but they are
elementary equivalent.

However the fact that Peano arithmetic is non-categorical does not rule
out the possibility that there could be a complete azriomatization, i.e., a
system of axioms A such that every formula true in N is deducible from A.
The famous incompleteness theorem by (Godel rules out this possibility, as we
shall see now.

1.2 Coding and arithmetic representability

The expressions of the language £ of arithmetic (terms, formulas, proposi-
tional functions, finite sequences of formulas, etc.) are an effectively enu-
merable set. This means that there is a mechanical procedure (an algorithm)
which establishes a correspondence between linguistic expressions and natu-
ral numbers; given a linguistic expression we can compute a number which
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codes it, called its Gddel number; if A is a linguistic expression, we denote
the Gédel number of A by "A™.

Recall the following definitions:

e A set of numbers S is decidable if there exists an algorithm such that,
given a number n € N decides whether or not n belongs to S.

e A function f : N — N is effectively computable if there exists an
algorithm such that, for each argument n, computes the value f(n) (an
similarly for n-ary functions).

e To every subset S of N, we can associate the characteristic function
Xs : N — {0,1} such that f(n) =1if x € S and f(n) = 0, otherwise.

Thus a set is decidable if and only if its characteristic function is effectively
computable.

If Church’s thesis is true, then in the above definitions effective com-
putability is synonymous with Turing-computability. It is possible to prove
the following theorem:

Representability Theorem. For every Turing-computable function f :
N — N, there exists a propositional function A(x,y) in the language L of
arithmetic such that for all m, n € N

o if f(m) = n then A(m,n) is derivable from Peano’s axioms;
e if f(m) # n then —A(m,n) is derivable from Peano’s axioms.

A similar result holds also for n-ary Turing-computable functions. Intuitively,
this means that the computation of the values of f can be performed as a
formal computation within the deductive system of Peano. In this sense f is
arithmetically representable by the propositional function A(z,y).

It is actually convenient to expand the language £ adding to it a name
for each Turing-computable function. Thus, whenever we verify that f is a
computable function, then we assume that there is a name “f” for it in the
language of arithmetic £. In this way we can reformualate the representabil-
ity theorem in the following simplified form:

If f: N — N is a Turing-computable function, then for each pair m, n € N
e if f(m) =n then f(m) = n is derivable from Peano’s axioms;

e if f(m) # n then f(m) = n is derivable from Peano’s axioms.



In particular, a decidable set S is representable by a propositional function
A(x) such that

e if n € S then A(n) is derivable from Peano’s axioms;
e if n ¢ S then —A(n) is derivable from Peano’s axioms.

(To see this, just replace A(n) with equation xs(n) = 1, where yg is the
Turing-computable characteristic function of S.)

1.2.1 Diagonalization

Diagonalization Lemma. For every propositional function A(x) there ex-
ists a number k such that k ="A(k)™.

Proof. Let f: N — N be the function defined as follows. Given a number
n7

f(n) =TB(n)", ifn="B(z)", for some propositional function B(z);
f(n) =0, otherwise.

Notice that f is effectively computable according to the following instruc-
tions: given n, decode it and find the corresponding expression; if this is a
propositional function with one a free variable, then substitute the numeral
n for the free variable z in B(x) and compute the Gédel number of B(n);
otherwise, let f(n) = 0. Moreover, we can indeed produce a primitive re-
cursive function f that does precisely this job. Therefore f is arithmetically
expressible.

Now given a propositional function A(z), letting h = "A(f(z))™, we have

f(h) =TA(f(h)"="A(f(h))"

(using the fact that f belongs to the language £). This means that the code
of A(f(h)) is precisely f(h) (just look at the definition of f). Hence k = f(h)
is the required number. The proof is finished.

Intuitively, the lemma expresses the existence of “self-referential” state-
ments, in the following sense: if we interpret the numeral k£ as a name of the
sentence A(k) which it codifies, then this sentence says of itself (referring to
itself through the name k) that it has the property A(z).

1.3 Tarski’s Theorem

Theorem. There exists no propositional function in the language L of arith-
metic that is satisfied exactly by those numbers which code sentences that are
true in N.



Proof. Suppose, for the sake of contradiction, that there exists a proposi-
tional function V(x) in the language of arithmetic which is satisfied exactly
by the numbers coding sentences that are true in N. By applying the di-
agonalization lemma to the sentence =V (x), we find a number k such that
k ="=V(k)". There are two cases:

e If =V (k) is true, then % is not the code of a statement true in N; but &k
is the code of the statement -V (k), therefore =V (k) is false, and this
is a contradiction;

o If =V (k) is false, then V(k) is true, hence k is the code of a sentence
true in NV, and therefore =V (k) is true in N, again a contradiction.

We have obtained a contradiction from assuming that such a V(z) exists.
The proof is finished.

In particular, the set of all true sentences in the language of arithmetic
is not decidable: indeed, as we saw above, the decidable subsets of N are
arithmetically expressible. Thus there can be no algorithm to decide for each
arithmetical sentence, whether it is true or false.

Notice that the above proof can be regarded as a formal version of the
lier paradox: the sentence =V (k) says of itself that it is false. However, this
is not a paradox, but simply a proof by contradiction.

Of course, the fact that the arithmetical truth-predicate is not expressible
by a propositional formula of the language £ of arithmetic does not prevent
us from extending the language by introducing a new unary predicate symbol
to be interpreted as a truth-predicate. Thus let us extend the language L to
a language £ = LU {V (z)}. How shall we extend the standard model N to
interpret the new symbol V(z)? There are two possibilities:

1. We may intepret V(z) by the property of being the code of a sentence
of £ true in N;

2. we may interpret V' (z) by the property of being the code of a sentence
of £’ true in N.

If we adopt the second possibility, then we can actually reproduce the lier
paradox within our formal system. Hence, this interpretation is ill-defined.
However it is certainly possible to follow the first definition: indeed in this
case =V (z) is not a formula in the language £, thus its code k does not satisfy
the predicate V' (since this is satisfied only by the codes of true sentences in
the language L£). Hence in this case =V (k) is simply ¢rue and no contradiction
follows from this. Sure enough, we can extend £’ with a new truth predicate
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V'(x) which will be true exactly of the formulas of £ which are true in N,
but V'(z) will belong to a new language £” = £' U V’(x), and so on.

1.4 Godel Incompleteness Theorem

Godel incompleteness theorem highlights an essential limitation of the ax-
iomatic method: no mathematical theory, which is rich enough to incude
arthmetic, can be axiomatized as a consistent and complete theory, i.e., a
theory where for every sentence A either A or —A follows from the axioms,
but not both.

We shall consider Godel’s proof in the specal case where T is a decidable
set of axioms in the language £ of arithmetic, including Peano’s axioms, and
such that the axioms of 7" are true in the standard model. Notice that it
is an essential property of an axiomatic system that one should be able to
decide whether or not a sentence is an axiom: indeed to check that a proof
is correct, one must be able to decide whether all its assumptions are axioms
of the theory.

The proof of Gédel’s theorem reproduces Tarski’s argument, using the
notion of formal provability in T instead of the notion of truth. Unlike the
set of sentences true in NN, the set of numbers which are codes of sentences
derivable in T is arithmetically representable. Indeed we may enumerate
all sequences s of expression of the language L; since the set of axioms is
decidable and so are the deduction rules, we can always decide whether or
not a finite sequence s is a proof of a formula A. As a matter of fact, we can
produce a primitive recursive binary function f such that

e f(m,n) = 1, if m is the code of a proof of a formula A such that

e f(m,n) =0, otherwise.

Therefore by the arithmetic representability theorem, there exists a proposi-
tional function P(y,x) such that for all m,n € N,

e br P(m,n) (i.e., P(m,n) is formally derivable in the theory 7)), if

f(m,n) =0;
e br =P(m,n), if f(m,n) = 1.

It follows that the expression D(z) =4 Jy.P(y,x) expresses the provability
predicate:



(*) for every n € N, D(n) is true in N if and only if n is the code of a
sentence provable in 7.

Godel’s Incompleteness Theorem. If T is a consistent theory whose
set of axtoms is decidable, true in the standard model and includes Peano’s
axioms, then there exists a sentence G which is true in the standard model
N but such that neither G nor =G is provable in T.

Proof. By the diagonalization lemma, we can find a number k£ such that
k ="=D(k)". Let G =4 —~D(k). In the syntactic interpretation, G says
that the sentence with Gédel number £ (i.g., G itself) is not provable. Now
if T is consistent, then G is certainly unprovable. Indeed,

suppose Fr G:

then by (x) D(k) is true,

and therefore for some j, f(j,k) = 1 (the search for such a j terminates);

hence Fr P(j, k) by arithmentic representability;

but from this we can derive Fr Jy.P(y, k), hence Fr D(k), i.e.,

Fr —=G(k) and so T is inconsistent.
Hence, if T is consistent, then G is unprovable, hence true. It follows that its
negation D(k) is false; but as we assumend that all axioms of T" are true in
the standard model and the rules of inference of Peano Arithmetic allow us to
infer true formulas from true formulas, it follows that D(k) is also unprovable
in T'. Thus we conclude that T is incomplete and that G is undecidable. The
proof is finished.

Notice that in proving the unprovability of G we have also recognized its
truth (after all, we proved it). This may seem paradoxical, but it is not. In
fact what we have shown is that G is true in the standard model (assuming
that the axioms of T are true in the standard model N). Indeed Godel
numbers are standard numbers and it is in the standard interpretation that
the propositional function D(z) represents deducibility from 7. But being
true in N does not imply being a logical consequence of T'. Tt follows from the
completeness theorem of first order logic that all sentences formally derivable
(by first order logic) from T are those which are true in all models of 7.
Thus on the semantical level, the undecidability of G means that G is false
in some non-standard model. Thus there exist non-standard models of Peano
Arithmetic which are not elementary equivalent to the standard model N.

Of course, once we have acknowledged the truth of G we mak extend T
to a theory 7" = T U {G}. But by repeating the same argument, from the
new set of axioms we will be able to produce a new statement G’ which is
true in the standard model and unprovable in 7’. No extension of 7' can
produce a system of axioms capable of determining all sentences true in N
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as its logical consequences. The phenomenon of deductive incompleteness is
therefore an essential limitation of the axiomatic method.
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