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Here you find more notions about bijections taken from P. M. Cohn,
Algebra, vol. 1, John Wiley and Sons, Second Edintion. Also you find some
facts about the cardinality of infinite sets which are essential for our course.

1 Properties of bijections.

Lemma. Let f: A— Bandg: B — A. If go f = 1,4, then f is injective
and g is surjective.

Proof. To see that f is injective, for z,y € A we have

flx)=fly) = gf(x)=9f(y)
= la(z) =1a(y)
= T=Y

To see that g is surjective, given a € A we have g(f(a)) = a, thus there is a
b € B, namely, f(a), such that g(b) = a.

Theorem. A function f : A — B is a bijection if there is a function
g: B — A such that

gof=1a fog=1s

If f is a bijection then it is a surjection and so for every b € B there isa € A
such that f(a) = b. Thus we can define g : B — A by setting b — a: this
association does define a function, because f is injective and therefore to
each b € B we can associate only one a € A in this way. Clearly g(f(a)) = a

and f(g(b)) = b.

Conversely, suppose f satisfies the two equations in the statement of the
theorem: by the first equation f is injective and by the second surjective.
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Theorem. (Pigeon-hole principle.) If A is finite, then an injective function
f:A— A s also surjective.

Proof. Let a € A, We write f"(a) for the application of f n times f ... f(n)....
Since A is finite, for some n and k with n > k we must have f"(a) = f*(a).
Since f is injective, f*~'(a) = f*"'(a), f*%(a) = f*2(a), ..., f"*(a) = a.
So there is an element o’ € A, namely, f* *71(a) such that f(a’) = a, hence
f is surjective.

2 Cardinality.

What does it mean “to count”? Cantor’s answer is by abstraction from the
operation of establishing a bijection. It is easy to see that the relation

A R B iff thereis a bijection f: A — B

is an equivalence relation. Given a collection A. the equivalence class [A] =
{B|A R B} contains collections B having the same “number” of elements as
A, or, as we say, the same cardinality. In this view, to count the elements of
B is to put B in the equivalence class [A] of a known collection A.

A set A is finite if there is a bijection f : n — A. A set A is countable if
either it is finite or there is a bijection f: A — N.

Fact. The integers are countable: the map f: N — Z given by
f(n)=n/2, ifnis even; f(n) =—(n—1)/2, otherwise;

is a bijection.

Fact. The set of all pairs of natural numbers is countable: the map

(m+n)(m+n+1)

J(m,n) = 5

is a bijection N x N — N (including zero) (Exercise).

Fact. The non-negative rationals are countable: since the rationals are equiv-
alence classes of fractions, i.e., of pairs of integers, the above map J does
establish this fact, using the following Lemma, whose proof is left as an
exercise.

Lemma. Let ¢ be a partial function from the set N of natural numbers onto
the set A. Show that either there is a bijection f : n — A wheren € N or
there is a bijection f : N — A. In other words, either A is finite or A has
the same cardinality as N. (Exercise).

2



3 Induction

The principle of mathematical induction is the following property:

(I) Let S be a subset of N such that 1 € S and n+1 € S whenevern € S.
Then S = N.

It follows immediately from the characterization of N as the smallest induc-
tive set: indeed by hypothesis S C N and S is inductive, hence N C §.

Two other forms of induction are often used:

(') Let S be a subset of N such that 1 € S and n € S whenever for all
m < n we have m € S. Then S = N.

(I”) Every non-empty set of positive integers has a least element.

These three principles are equivalent, see P. M. Cohn, op. cit. p. 24-25.

4 Integers and divisibility.

The basic theory of computability can be expressed entirely in terms of func-
tions over the natural numbers IN. However, it is useful to consider N as a
subset of the integers Z and exploit the properties of Z as a totally ordered
ring. This means that we regard the set Z together with the operations of
addition, subtraction, multiplication and the ordering “<”, assuming only
that they satisfy the following properties. For all x, y, z, we have

1. (associativity of the sum and product) (x +y) +z =z + (y + 2),

zy)z = z(y2)
commutativity of the sum and product) z +y =y + z, vy = yz;

existence of neutral elements of sum and of product ) z+0 = z, z1 = x;

distributive law) z(y + z) = xy + x2;
no zero divisors) if x # 0 # y then zy # 0; 1 # 0;

reflexivity) © < z; (transitivity) if z < y and y < 2z, then z < z;

(
(
(
(
4. (ezistence of additive inverse) x + (—x) = 0;
(
(
(
(totality) either x <y orz =y or y < x;

8. for all x1, 9, Y1, Yo, if 71 < 25 and y; < yo, then 1 +y1 < 29 + Yo;



9. ifx <yand z >0 then zz < zy

To characterize the integers Z among all totally ordered rings we add the
condition that the positive integers (which we may write as NT) are precisely
the natural numbers (without zero): this is achieved by postulating that N+
satisfies the Principle of Induction.

4.1 Divisibility.

For a,b € Z, we say that a is divisible by b (and write b|a) if there exists
¢ € Z such that bc = a. (Notice that Ola iff @ = 0 and |0 for all a in Z).
From the definition it is easy to prove the following facts about divisibility:

D.1 ¢|b and bla imply c|a (transitivity).
D.2 ala (reflexivity).

D.3 If alb and bla then a = b or a = —b.
D.4 bla; and blay imply b|(a; — as).

D.5 bla implies blac for all c.

A prime number is an integer p greater than 1 which can be divided only
by 1 and by p itself. Please review the proofs of the fundamental theorem of
arithmetic and of Euclid’s theorem (op. cit. pp.28-29)

Theorem. Fuvery positive integer a can be written as a product of prime
numbers

a=pip2---Pr
and this factorization is unique “modulo commutativity of multiplication”.
Euclid’s Theorem. The number of prime numbers is infinite. (Exercise.)

If po[= 2], p1[= 3|, ..., Pn, --. is an enumeration of all the primes in
increasing order, then every positive integer can be written uniquely in the
form

a=pHpd? ... pon (o > 0,0, #0)

Thus each positive integer a corresponds to one and only one sequence
(ai,-..,q,) of non-negative integers. Since p) = 1, we may complete ev-
ery sequence with infinitely many zeros; thun we obtain a bijection between
the positive integers N and the set of all sequences of non-negative integers
which have only finitely many non-zero elements.



