Final Exam 2002

May 4, 2004

FINAL EXAM 2002

Each question 1 - 8 carries 25 marks. Answer FOUR of questions 1 - 6.
Question 1. (25 points) Let A be the alphabet {a, c, t}.

(a) Write a Non-Deterministic Finite State Automaton (NFSA) N4 on the
alphabet A which accepts texts ending with the keywords cat or ac.
8 points.

(b) Characterize the language accepted by N4 by giving a regular expression
which denotes it.
7 points.

(c) Find a Deterministic Finite State Automaton (DFSA) M, on the alpha-
bet A which is equivalent to the NFSA N4 considered in part (a) and has
the same number of states.

10 points.

Answer: (a) Nga ={S, A,v,1, F} where the set of states S is {1,2, 3,4, 5,6},
the initial state is 1, the final states F' are {4,6} and the transition function
v is given by the following table:



a c i
1 1,5 1,2 1
2 3 - =
3 — - 4
¥4 | — - =
5 — 6 —
*46 | — - =

The transition diagram of N4 is the following:

act ¢ @ 8 ©) t
®—:°

(b) The language accepted by N4 is that denoted by the regular expression

(a+c+t)"(cat + ac).

(c) My = {S,A,v, 1, F} where the set of states S is {I, II, III, IV, V, VI}
with

I={1} IT={1,2} I = {1, 3,5}

IV={1,4} V={1,5} VI={1,2,6}
the initial state is I, the final states are IV and VI. The transition function
V' is given by the following table or diagram:

a c t

I vV 1I I

II | III 1I I
Im| v vl 1v

Iv,Vv 11 I

V|V VI I

VI | III 1I I




Question 2. (25 points) Consider the language £ on the alphabet A =

{0,1}:
L= {0F1™0™* | for all k,me N }

(a) Give a context-free grammar G that generates precisely the language L.
(Hint: Use three non-terminal symbols S, A and B, where S is the start
symbol. To see that G generates precisely L, derive the generic expression).

10 points.

(b) Is £ aregular language? If yes, define an automaton that accepts precisely
L; otherwise, use the “pumping lemma” to show that £ is not regular.
15 points.

Answers:
(a) L is generated by the grammar G = ({S, A4, B,0,1},{0,1}, P, S) with
start symbol S and the following set of production rules P:

S — €|A|B
A = 040 B |00
B — 1B0|10

To see that G generates £, we derive the generic expression 0¥1™0™k:



S = 040 = ...(k—1times)...= 0*A0F = 0FB0F
= 0°1B00* = ...(m — 2 times)... = 051™ 1BO™ 10k
= Oklmflloomflok — 0k1m0m+k

(b) Let M be an automaton with n states accepting L£: consider the expres-
sion 0¥1™0™** where n < k. Then before reading all of 0* the machine has
been twice in the same state with the same input. It follows that M would
also accept a string 0¢1™0™** for some ¢ < k. But 0°1™0™** does not belong
to £. (A more detailed argument would be welcome, but the above should
suffice.)

Question 3. (25 points) (a) Outline an elementary proof of Euclid’s theo-
rem: there are infinitely many prime numbers.
(10 points)

(b) Implicit in the proof there is an algorithm to define the following function:

p(n) = p,, the n-th prime number,

starting from p; = 2. Show that the function p(n) is primitive recursive.
You can use the fact that the factorial function z! is primitive recursive and
that the relations x < y and z|y (x divides y) are primitive recursive.

(15 points)

(Hint: Consider the predicate Pr(z) (z is prime) defined as
Priz) =1<z & —(Fel <c<z & ).

First show that Pr(z) is primitive recursive; then define the function p(x) by
the recursion scheme, using the bounded p-operator.)

Answer: (a) The number 2 is the first prime number, p; = 2. Let p,, be the
n-th prime number and consider ¢ = p,! + 1. The number c is greater than
1 and no prime p; with 7 < n divides c.

(Indeed, for every i < n, p;|p,!, namely, p; - e = p,!, where e = p,, - (pp, — 1) -
e i+ 1) - (i — 1) - .- 1 I pylpe! + 1, dee., p; - d = ¢ for some d, then
1= (p;-d)— (p;-€) = p;-(d—e) and this is a contradiction as no prime
divides 1.)



Suppose there were only n prime numbers, then ¢ is a prime number and
this is a contradiction, since ¢ > p,,. Therefore there is a prime number p,
with Pn < Pn+1 <c

(b) The relation Pr(z) = 1 < z & —(3e.l < ¢ < z & c|z) is primitive
recursive, because it is defined by conjunction, negation and bounded quan-
tification from the primitive recursive relations z < y and z|y. Now p(i) is
primitive recursive because it is defined by the scheme of primitive recursion
using also the composition scheme:

p(l) = 2
p(n+1) = x(p(n)), where x(c) = pTeczcar1Pr(z).

Question 4. (25 points) Let £ = (M;, My, ...) be an enumeration of the set
of all Turing Machines that compute partial functions from N to N and let
fi be the partial function computed by M,;.
(a) What does it mean to say that a Turing Machine MY is a universal
machine for the list L7 (You do not need to define one in detail).

(7 points)

(b) Using a universal machine MY show that there is a Turing Machine M’
which computes the following partial function g:

gn) = 0 if M,, with input n returns the value f,(n);
g(n) is undefined if M, with input n does not terminate.

(8 points)

(c) Show that there is no Turing Machine M which computes the following
partial function A:

h(n) = 0 if M, with input n does not terminate;
h(n) is undefined otherwise.

(10 points)

Answer. (a) A Turing Machine MV is universal for the list £ if MY behaves
as an interpreter for the Turing machines in £. Namely, MY takes as input a



coding M,, of Turing machine M,, (i.e., the program as a datum, representable
by the Gédel number of M,,) and an input & and behaves as follows:

MY (M,,k) terminates with output f,(k) if M, (k) terminates with output f, (k)
MY (My,k) undefined if M, (k) undefined.

(b) Define M" as follows: M'(M,,n) = 0if MY (M,, n) terminates; M'(M,, n)
undefined otherwise.

(c) Suppose M computed the partial function h. Then M occurs at some
point in the list £, say M*# = M,,. Now

h(n) = 0 if M,, with input n does not terminate in accepting state;
h(n) is undefined otherwise.

e Suppose h(n) is undefined: by definition of h, M,, with input n terminates
in an accepting state. But M,, = M¥ computes h, therefore h(n) is defined,
a contradiction;

e Suppose h(n) is defined: since M computes h, M with input n termi-
nates in accepting state; but M = M,,, so by definition of h, we have h(n)
undefined, a contradiction.

In either cases, we have a contradiction; the only remaining assumption, that
h is computable by a Turing Machine, is therefore false.

Question 5. (25 points) Outline proofs of the theorems in (a) and (b):

(a) The set of all functions f : N — N is not denumerable.
(10 points)

(b) The set of all total unary Turing-computable functions cannot be enu-
merated by a total Turing-computable function.
(10 points)

(c) Assuming Church’s Thesis, can we hope that a better characterization of
recursive functions could yield a recursive enumeration of the set of all total
recursive functions?

(5 points)

Answers: (a) Given an enumeration fi, fo, ..., f; of all functions N — N,



define the function

g(i)=3 if  fi(d) #3,

g@)y=2 if fi() =3.
Then g is a function N — N which is different from all functions in the list;
this contradicts the assumption that all the functions N — N are in the list.

(b) Suppose f : N — N was a total Turing-computable function such that
f (%) is the index of a Turing Machine computing a unary total function. Let
©Y(z,y) be the function computed by a Turing Machine MY which is uni-
versal for unary Turing-computable functions. Then the function g defined
by

g9(n) = " (f(n),n) +1

is also a unary Turing-computable function, and it is total because each f(7)
is the index of a total function; but ¢ is different from all the functions
whose index is given by f. Therefore the set of all total Turing-computable
functions is not enumerable by a Turing-computable total function.

(c) Church’s Thesis claims that every function which is effectively computable
by some mechanical procedure (abstraction being made on the resources
available for computation) is also computable by a Turing Machine. (This
claim is supported by evidence that the various formal definitions so far
proposed for effectively computable classes of functions have been proved
equivalent to the definition of Turing computability.)

By Church’s Thesis, effectively computable can be identified with Turing com-
putable. Therefore assuming Church’s Thesis, (b) shows that the set of all
total recursive functions is not recursively enumerable.

Question 6. (25 points) Consider the Ackermann function

a(m,0) = m+1 (i)
a(0,n+1) = «al,n) (ii)
am+1,n+1) = ala(m,n+1),n) (iii)

(a) The following Lemma has been proved in class:

Lemma: For every primitive recursive function f(x1,...,xy) there exists an
n € N such that

fze, ..., xk) < a(maz(zq,...,T),n)



forall xq, ..., zp.

The outline of the proof follows in Tables 1 and 2. You must complete the
proof by finding numbers By, ..., B5 which satisfy the inequalities in the
outline.

(15 points)

(b) Outline the proof given in class that the function f(n) = a(n,n) + 1 is
not primitive recursive. (Hint: Use the Lemma.)

(10 points)

PROOF OF THE LEMMA (outline):

The proof is by induction on the definition of a primitive recursive function.
There are five cases:

1. constant functions: there is a By such that
cg(z1,- .. 2n) =0 <maz(zy,...,z,) + 1 = a(maz(z,...,z,),B1).
What is B; here? (3 points)
2. projection functions: there is a Bo such that
(X1, .., Tn) = x; < maz(z1,...,2,) + 1 = a(maz(zy,...,z,),B2).
What is B, here? (3 points)
3. successor function: there is a B3 such that
succ(z) =z +1<z+2=alz+1,0) < a(z,Bs)
What is B here? (3 points)
CASES 1- 3 (continues in the next table)

Table 1: Proof of the Lemma, cases 1-3

Answer. (a) B; =0; B, =0; B3 = 1; By = maz(Cy,...,Cy, D);

(b) Suppose (n) was primitive recursive. Then by the Lemma, there is a k

8



PROOF OF THE LEMMA (continued):

4. composition: let h(xi,...,z,) be defined by composition from primitive

recursive functions g(z1,...,z¢) and fi(z1,...,zy) for i < k. Suppose there
is a D such that for all yy, ..., yx

g(yla IR 7yk) < a(max(yla v 7yk)’D)
and suppose for each 7 < k there is a C; such that for all z4, ..., z,,
filz1,. ... xm) < a(maz(z,...,Tn), Cq).

We show that there is a B4 such that

a(maz(zi,...,2Tm) +1,Bs+ 1) (proved elsewhere)
ala(maz(zy,...,Tm),Bs+1),By) (def. of a)

a(mazi<p{fi(z1,...,2m)},Ba) (by hypothesis)
a(mazi<p{fi(z1,...,0m)},D)  (def. of By, monot.)

9(fi(z1, . yxm)y -y fu(T1,---,Tm)). (by hypothesis)

a(maz(zi,...,%Tm),Bs +2)

VIV V I IV

What is B, here? (3 points)

. recursion: Let f(y) be a primitive recursive and suppose h is defined by
recursion

h(0) =0 and h(n+1) = f(h(n)).

Suppose there exists a C such that f(y) < a(y,C), for all y. We prove by
induction that there ezists a Bs such that h(z) < a(z,Bs), for all x.

Base case:
h(0) = 0 < 1 =a(0,0) < «(0,B5)

Inductive step: Suppose h(n) < a(n,Bs) (inductive hypothesis).

Then

h(n +1) f(h(n))
a(h(n),C) (by assumption)
a(a(n,Bs),C) (by inductive hypothesis)
a(n +1,Bs) (by def. of Bs and of «)

A A

What is B; here? (3 points)

END OF PROOF OF THE LEMMA.

Table 2: Majorization Lemma
9



such that f(m) < a(m, k) for all m. Therefore

alk, k) +1 B(k) definition of 3

< ok, k) by the Lemma

a contradiction. Therefore 3(n) is not primitive recursive.
ADDITIONAL QUESTIONS

Question 7. (25 points) Let B the alphabet {a, b}.

(a) Write a Non-Deterministic Finite State Automaton Np on the alphabet
B which accepts precisely the expressions whose penultimate symbol is b.
8 points.

(b) Using the powerset construction, find a Deterministic Finite State Au-
tomaton Mp on the alphabet B which is equivalent to the NFSA Nz con-
sidered in part (c).

10 points.

(c) If the DFSA Mp is not minimal, describe a minimal one.
7 points.

Answer. (a) Ng = {S, A,v,1, F} where the set of states S is {1,2,3}, the
initial state is 1, 3 is the only final state in F' and the transition function v
is given by the following table

The transition diagram of v is

abl (1) b (2 a

(b) Applying the powerset construction, we obtain:

MB = {p(S),B,I/I,{l},F}

where {1} is the initial state and the set F' of accepting states is {{3}, {1, 3},
{2,3} and {1, 2, 3}}, and the transition function v is as follows:

10



0
{1}
{2}
{3}

{1,2}

{1,3}

{2,3}
{1,2,3}

The transition diagram of v/ is

a b

0 0
1 1,2
{3} {3}

0 0
{1,3} {1,2,3}
{13 {1,2}
{3} {3}
{1,3} {1,2,3}

(c) From the transition diagram it is evident that the states {2}, {3}, {2, 3}
and () cannot be reached from {1}. We have v({1,2},a) = {1, 3}, which is
an accepting state, andv({1},a) = {1}, a non-accepting state; thus {1} and
{1,2} cannot be identified. Similarly we have v({1,3},a) = {1,2}, a non-
accepting state but v({1,2,3},a) = {1,3}, an accepting state; thus {1, 3}
and {1,2,3} cannot be identified. Thus a minimal automata is obtained by
removing {2}, {3}, {2, 3} from Mp.

Question 8. (25 points) Consider the Ackermann function

a(m,0)
a(0,n+1)
am+1,n+1)

m+1
a(l,n)
ala(m,n +1),n)

(i)
(i)
(iif)

It has been proved in class that the Ackermann function is monotone in both
arguments, i.e., for all 7, 7, m, and n,

if i < j, then a(i,m) < a(j,m)

and if m < n, then a(i,m) < a(i,n)

11



and also that it is strictly increasing, i.e., for all m,n

a(m,n) >m and a(m,n) > n.

(a) Prove that a(m,n + 1) > a(m + 1,n), for all m, n.

(Hint: Use monotonicity. The proof is by induction on n, with a secondary

induction on m.)
(15 points)

(b) Prove by induction on n that
n+n<an,?2).

(Hint: Use part (a).)
(10 points)

Answer. (a) Base case: we have
a(m,1) > a(m,0) = m+1,
by monotonicity, hence

a(m,1) > m+2 = a(m—+1,0).

Inductive step: Suppose Vm.a(m,n+1) > a(m+1,n). To prove Vm.a(m, n+
2) > a(m+1,n+ 1) we use a subsidiary induction on m.

Subsidiary base case: we have o(0,n +2) = a(1,n + 1) by part (ii) of
the definition.

Subsidiary inductive step: supposing a(m,n + 2) > a(m + 1,n + 1),
we have:

am+1,n+2) = ala(m,n+2),n+1) by def. of «
> aflam+1,n+1),n+1) by ind.hyp, monotonicity
> ala(m+1,n+1),n) by monotonicity,
= a(m+2,n+1) by def. of «

12



hence the subsidiary induction is concluded and Vm.a(m,n + 2) >
a(m+1,n+ 1) is proved.

Therefore the main induction is also concluded.

(b) We have the base case

a(0,2) = «

I
MO QR

> 0=0+0

and the inductive step: assuming n + n < «(n,2) (inductive hypothesis)

on+1,2) = ala(n2),1)
> «a(n+mn,l) by ind. hyp., monotonicity
> a(n+n+1,0) by the Fact

n+n+2=(Mn+1)+(n+1).
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