Ackermann's function

Definition. Ackermann's function is recursively defined as follows:

$$\alpha(m,0) = m+1$$
(i)
(i) (ii) (ii)

$$\alpha(0, n+1) = \alpha(1, n) \tag{11}$$

$$\alpha(m+1, n+1) = \alpha(\alpha(m, n+1), n). \tag{11}$$

The Ackermann function is well defined, i.e., we can prove the following lemma:

Lemma 0. For all $y, x \in \mathbf{N}$, there exists a $z \in \mathbf{N}$ such that $\alpha(x, y) = z$.

Proof. By a main induction on y and a secondary induction on x.

The Ackermann function is *strictly increasing*:

Lemma 1. For all $m, n \in \mathbb{N}$, $\alpha(m, n) > m$.

Proof. By a main induction on n and a secondary induction on m.

In fact, the Ackermann function is *monotonic* in both arguments:

Lemma 2.(i) For all $y, z, x \in \mathbf{N}$, if x < z then $\alpha(x, y) < \alpha(z, y)$.

Proof. By a main induction on y and a secondary induction on z.

Lemma 2.(ii) For all $y, z, x \in \mathbf{N}$, if y < z then $\alpha(x, y) < \alpha(x, z)$.

Proof. Similar.

The following Lemma is very helpful:

Lemma 3. For all $m, n \in \mathbf{N}$, $\alpha(m, n+1) \ge \alpha(m+1, n)$.

Proof. By principal induction on n and secondary induction on m.

Main base case: $\forall m.\alpha(m,1) \geq \alpha(m+1,0)$. We prove it by a secondary induction on m. For m = 0 we have

 $\alpha(0,1) = \alpha(1,0)$

by definition of α , and this proves the secondary base case.

Suppose $\alpha(m, 1) \ge \alpha(m+1, 0)$ (secondary inductive hypothesis):

$$\begin{array}{ll} \alpha(m+1,1) = \alpha(\alpha(m,1),0) = \alpha(m,1) + 1 & \quad \text{def. of } \alpha; \\ \geq \alpha(m+1,0) + 1 & \quad \text{secondary ind. hyp.} \\ = m+3 & \quad \text{def. of } \alpha; \\ = \alpha(m+2,0) & \quad \text{def. of } \alpha. \end{array}$$

This concludes the *secondary inductive step*, and thus the main base case.

Suppose $\forall m.\alpha(m, n+1) \geq \alpha(m+1, n)$ (main inductive hypothesis); we want to show that $\forall m.\alpha(m, n+2) \geq \alpha(m+1, n+1)$ (main inductive step). To do this, we need a secondary induction on m: the secondary base case is proved using the definition of α :

$$\alpha(0, n+2) = \alpha(1, n+1).$$

Now suppose $\alpha(m, n+2) \geq \alpha(m+1, n+1)$ (secondary inductive hypothesis). Then

$$\begin{array}{l} \alpha(m+1,n+2) = \alpha(\alpha(m,n+2),n+1) & \text{def. of } \alpha; \\ \geq \alpha(\alpha(m+1,n+1),n+1) & \text{secondary ind. hyp., Lemma 2(i)} \\ \geq \alpha(m+2,n+1) & \end{array}$$

The last step follows from Lemma 2(i), using $\alpha(m+1, n+1) \ge m+2$; this follows from $\alpha(m+1, n+1) > m+1$, which holds by Lemma 2(i). This concludes the *secondary inductive step* and therefore also the main inductive step. The proof of Lemma 3 is finished.

We consider the recursion scheme in the following restricted form: If the unary function h is primitive recursive, then so is f defined as follows:

$$\begin{array}{c} f(0) = 0\\ f(n+1) = h(f(n)) \end{array}$$

(Using suitable codings, it can be shown that every primitive recursive function can be defined using only the above scheme.)

Now we can prove the Majorization Lemma:

Majorization Lemma: For every primitive recursive function $f(x_1, \ldots, x_k)$ there exists an $n \in \mathbb{N}$ such that

$$f(x_1,\ldots,x_k) < \alpha(max(x_1,\ldots,x_k),n)$$

for all $x_1, ..., x_k$.

The proof is by induction on the definition of a primitive recursive function. There are five cases:

constant functions: let $\mathbf{B}_1 = 0$; then

$$c_0^n(x_1,\ldots,x_n) = 0 < max(x_1,\ldots,x_n) + 1 = \alpha(max(x_1,\ldots,x_n),\mathbf{B}_1).$$

projection functions: let $\mathbf{B}_2 = 0$; then

$$\pi_i^n(x_1,\ldots,x_n) = x_i < max(x_1,\ldots,x_n) + 1 = \alpha(max(x_1,\ldots,x_n),\mathbf{B}_2).$$

successor function: let $\mathbf{B}_3 = 1$; then

$$succ(x) = x + 1 < x + 2 = \alpha(x + 1, 0) \le \alpha(x, \mathbf{B}_3)$$

Composition: let $h(x_1, \ldots, x_m)$ be defined by composition from primitive recursive functions $g(x_1, \ldots, x_k)$ and $f_i(x_1, \ldots, x_m)$ for $i \leq k$. Suppose there is a **D** such that for all y_1 , \ldots, y_k

$$g(y_1,\ldots,y_k) < lpha(max(y_1,\ldots,y_k),\mathbf{D})$$

and suppose for each $i \leq k$ there is a \mathbf{C}_i such that for all x_1, \ldots, x_n ,

$$f_i(x_1,\ldots,x_m) < \alpha(max(x_1,\ldots,x_m),\mathbf{C}_i).$$

Let $\mathbf{B}_4 = max(\mathbf{C}_1, \ldots, \mathbf{C}_k, \mathbf{D})$. Then

$$\begin{aligned} \alpha(max(x_1,\ldots,x_m),\mathbf{B}_4+2) &\geq \alpha(max(x_1,\ldots,x_m)+1,\mathbf{B}_4+1) & \text{(Lemma 3)} \\ &= \alpha(\alpha(max(x_1,\ldots,x_m),\mathbf{B}_4+1),\mathbf{B}_4) & \text{(def. of } \alpha) \\ &> \alpha(max_{i\leq k}\{\alpha(max(x_1,\ldots,x_m),\mathbf{C}_i)\},\mathbf{B}_4) & \text{(def. of } \mathbf{B} \text{ and monot.}) \\ &> \alpha(max_{i\leq k}\{f_i(x_1,\ldots,x_m)\},\mathbf{B}_4) & \text{(by hypothesis and monot.)} \\ &\geq \alpha(max_{i\leq k}\{f_i(x_1,\ldots,x_m)\},\mathbf{D}) & \text{(def. of } \mathbf{B}_4) \\ &> g(f_1(x_1,\ldots,x_m),\ldots,f_k(x_1,\ldots,x_m)). & \text{(by hypothesis)} \end{aligned}$$

Primitive Recursion: Let f(y) be a primitive recursive and suppose h is defined by recursion

h(0) = 0 and h(n+1) = f(h(n)).

Suppose there exists a **C** such that $f(y) < \alpha(y, \mathbf{C})$, for all y. Let $\mathbf{B}_5 = \mathbf{C} + 1$. We prove by induction that $h(x) < \alpha(x, \mathbf{B}_5)$, for all x. Base case:

$$h(0) = 0 < 1 = \alpha(0,0) < \alpha(0,1) \leq \alpha(0,\mathbf{B}_5)$$

Inductive step: Suppose $h(n) < \alpha(n, \mathbf{B}_5)$ (inductive hypothesis). Then

$$\begin{array}{lll} h(n+1) &=& f(h(n)) \\ &<& \alpha(h(n), \mathbf{C}) & (\text{by assumption}) \\ &<& \alpha(\alpha(n, \mathbf{B}_5), \mathbf{C}) & (\text{by inductive hypothesis and Lemma 2}) \\ &=& \alpha(\alpha(n, \mathbf{C}+1), \mathbf{C}) & (\text{by def. of } \mathbf{B}_5) \\ &=& \alpha(n+1, \mathbf{B}_5) & (\text{by def. of } \alpha) \end{array}$$

END OF PROOF OF THE LEMMA.

Theorem. The Ackermann function is not primitive recursive.

Proof. Define $\beta(n) =_{df} \alpha(n, n) + 1$, where α is the Ackermann function. Suppose α is primitive recursive, then also β is primitive recursive. So by the Lemma, there is a k such that $\beta(m) < \alpha(m, k)$ for all m. Therefore

$\alpha(k,k) + 1$	=	eta(k)	definition of β
	<	lpha(k,k)	by the Lemma

a contradiction. Therefore α is not primitive recursive.