Ackermann’s function

Definition. Ackermann’s function is recursively defined as follows:

a(m,0) = m+1 (i)
a(0,n+1) = a(l,n) (ii)
am+1,n+1) = ala(m,n+1),n). (iii)

The Ackermann function is well defined, i.e., we can prove the following lemma:

Lemma 0. For all y,z € N, there exists a z € N such that a(z,y) = z.

Proof. By a main induction on y and a secondary induction on z.
The Ackermann function is strictly increasing:

Lemma 1. For all m,n € N, a(m,n) > m.

Proof. By a main induction on n and a secondary induction on m.
In fact, the Ackermann function is monotonic in both arguments:

Lemma 2.(i) For ally,z,x € N, if = < z then a(z,y) < a(z,y).

Proof. By a main induction on y and a secondary induction on z.

Lemma 2.(ii) For all y,z,x € N, if y < z then a(z,y) < a(z, 2).
Proof. Similar.

The following Lemma is very helpful:

Lemma 3. For allm,n € N, a(m,n+1) > a(m+1,n).

Proof. By principal induction on n and secondary induction on m.

Main base case: Ym.a(m, 1) > a(m + 1,0). We prove it by a secondary induction on m.
For m = 0 we have
a(0,1) = «(1,0)

by definition of «, and this proves the secondary base case.
Suppose a(m,1) > a(m + 1,0) (secondary inductive hypothesis):

am+1,1) = a(a(m,1),0) = a(m,1) + 1 def. of «;
> a(m+1,0)+1 secondary ind. hyp.
=m+4+3 def. of a;
= a(m+2,0) def. of a.

This concludes the secondary inductive step, and thus the main base case.

Suppose Vm.a(m,n + 1) > a(m+ 1,n) (main inductive hypothesis); we want to show
that Vm.a(m,n + 2) > a(m + 1,n + 1) (main inductive step). To do this, we need a
secondary induction on m: the secondary base case is proved using the definition of «:

a(0,n+2) = a(l,n+1).
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Now suppose a(m,n +2) > a(m + 1,n + 1) (secondary inductive hypothesis). Then

am+1,n+2) = ala(m,n+2),n+1) def. of a;
> ala(m+1,n+1),n+1 secondary ind. hyp., Lemma 2(i)
> a(m+2,n+1)

The last step follows from Lemma 2(i), using a(m + 1,n + 1) > m + 2; this follows from
a(m-+1,n+1) > m+1, which holds by Lemma 2(i). This concludes the secondary inductive
step and therefore also the main inductive step. The proof of Lemma 3 is finished.

We consider the recursion scheme in the following restricted form:
If the unary function h is primitive recursive, then so is f defined as follows:

f(0)=0
f(n+1)=h(f(n))

(Using suitable codings, it can be shown that every primitive recursive function can be
defined using only the above scheme.)

Now we can prove the Majorization Lemma:

Majorization Lemma: For every primitive recursive function f(x1,...,xy) there erists
an n € N such that

f(z1,...,2) < a(maz(zy,...,xE),n)

for all x4, ..., Tk.

The proof is by induction on the definition of a primitive recursive function. There
are five cases:

constant functions: let B; = 0; then
cg(z1,...,zn) =0 < max(zy,...,z,) + 1 = a(maz(z,-..,2,), B1).
projection functions: let By = 0; then
T (T, .oy Tn) = g < max(xq,...,2,) + 1 = a(maz(z,...,T,), Ba).
successor function: let By = 1; then
succ(z) =z +1<zx+2=a(zx+1,0) < a(z,B;)

Composition: let h(zy,...,z,;,) be defined by composition from primitive recursive func-
tions g(z1,...,zk) and f;(z1,..., 2, ) for i < k. Suppose there is a D such that for all y;,

g(yh .. ayk) < a(max(yla .- '7yk)7 D)

and suppose for each ¢ < k there is a C; such that for all z4, ..., x,,
filx1, ... xm) < a(maz(zy,...,2Tm), C;).
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Let B4 = maz(Cy,...,Cg, D). Then

a(max(zi, ..., Tm),Bs +2)> a(max(x1,...,2m) +1,Bs+ 1) (Lemma 3
a(a(maaz(:vl, ey Ty), By +1),By) (def. of «
a(maxz<k{a(max(a:1, ey Tm), Ci) }, By) (def. of B and monot.

\/|\/\/\/||I\/

Primitive Recursion: Let f(y) be a primitive recursive and suppose h is defined by
recursion

hO0)=0 and  h(n+1) = f(h(n)).

Suppose there exists a C such that f(y) < a(y, C), for all y. Let B; = C+ 1. We prove
by induction that h(z) < a(z,Bs), for all x.
Base case:

h(0) = 0 < 1 =a(0,0) < a(0,1) < a0, Bs)

Inductive step: Suppose h(n) < a(n,Bs) (inductive hypothesis).

Then

h(n+1) = f(h(n))
< «a(h(n),C) (by assumption)
< a(a(n,Bs),C) (by inductive hypothesis and Lemma 2)
= a(a(n,C+1),C) (by def. of Bj)
= a(n+1,Bs) (by def. of «)

END OF PROOF OF THE LEMMA.

Theorem. The Ackermann function is not primitive recursive.

Proof. Define 3(n) =4 a(n,n) + 1, where « is the Ackermann function. Suppose « is
primitive recursive, then also 3 is primitive recursive. So by the Lemma, there is a k such
that B(m) < a(m, k) for all m. Therefore

alk,k)+1 = p(k) definition of 8
< a(k, k) by the Lemma

a contradiction. Therefore « is not primitive recursive.
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