Completeness of First Order Logic

Gianluigi Bellin
March 24, 2004

1 Propositional Calculus

1.1 Syntax and Semantics.

A language L for the propositional calculus is given by a (possibly infinite)
list Atoms of propositional letters pi, pa,

Formulas. The formulas of the language are given by the grammar
A=P | —-A | A()/\Al | AOVA1 |A0—>A1

A = B is defined as (A — B) A (B — A).

Note: A propositional letter p stands for a sentence, e.g., “I am bored’. The
thought expressed by a sentence is called a proposition. Propositions (and
sentences that express them) are entities that can be true or false. The truth
or falsity of a molecular statement depends uniquely on the truth or falsity of
the atomic components, i.e., propositional connectives are truth-functional.

An interpretation or valuation of a propositional language L is a total function
VY : Atoms — {T,F}, where “T', F” stand for the truth values true or
false. We extend valuations from atomic to molecular formulas inductively
as follows:

1. V(=A) =T if it is not the case that V(A) = T; V(—A) = F otherwise.

otherwise.
3. V(Ao\/Al) =Tif V(Ao) =T or V(Al) = T, V(A()\/Al) = F otherwise.

4. V(A() — Al) = T if either V(A()) = F or V(Al) = T, V(A() — Al) =F
otherwise.

Definition. A propositional formula is satisfied [falsified] by a valuation V
if V(A) = F [V(A) = F]. A proposition A is valid (or a tautology) if for
all valuations V we have V(A) = T, in symbols = A. A proposition A is
a contradiction if V(A) = F for all valuations V. A proposition A is logical
consequence (ot valid consequence) of a set of propositions I' (in symbols,
[' = A) if for every valuation V, we have V(A) = T whenever V(C) = T for
all C in I'. Two propositions A and B are logically equivalent if A = B and
B E A.

Exercise 1: Verify the following facts:
)=—|—|AEA |=—|(A/\B)E(—|A\/—|B))Zﬁ(AVB)E(—!A/\—!B)
)=—|(A—>B)E(A/\—|B))Z(A—)B)E(ﬁA\/B)

We say that a formula is in negation normal form if it is generated by the
following grammar:

Aw=p|-w|[A VA |AAA

Exercise 2. Using Exercise 1, show that for every formula A in £ there
exists a formula A’ in negation normal form such that = A = A"

1.2 “Semantic Tableaux” for propositional logic

We define a procedure “semantic tableauz” for propositional classical logic.
This procedure, given a formula A in £, accepts A if = A and returns a
model M such that =, A otherwise. In fact, we do something more: we
give a procedure which works for finite sets of formulas.

It is convenient to work with formulas in negation normal form. Thus
given a formula A which we want to test for validity, we first turn A into
an equivalent formula A’ in negation normal form (see Exercise 2). Let
I' =C, ..., C, be a finite set of formulas in negation normal form. A
formal expression of the form = I' will be called a sequent; the intended
interpretation of = I is

= (\ch)-

Definition. (valid, falsifiable sequent) Let S be the sequent = Ci,... ,C,.
We say that S is valid (in symbols, = S) if for every interpretation V

e V(C;) =T for some i < n.

A sequent which is not valid is falsifiable, i.e., there exists an interpretation
V such that

e V(C;) = F for alli < n.

Completeness Theorem. The following “semantic tableauz” procedure for
propositional logic given a formula A of L in negation normal form

o returns a tree of sequents T with = A at its root such that every sequent
in T is valid, if = A;

o it returns an interpretation V which falsifies A otherwise.

Procedure: Construct a tree of sequents 7 (with the root at the bottom),
called refutation tree, as follows.

Stage (0): let 79 be = A (the root of the tree);

Stage (n+1): for each sequent S which occurs at one of the leaves of
Ty, if S has the form of a sequent-axiom, then the procedure terminates
on that branch.

Otherwise S has the form of a sequent-conclusion of one of the rules in
Table 1; in this case write the appropriate sequent-premise(s) above it.

Let 7,,1 be the tree obtained in this way; if 7,1 = 7, then let 7 = 7, and
the procedure terminates.
Let S be = C4,...,C,. Let us define the size s(S) of S by letting

s(8) = (Ziis(Cy)

where s(p) =0 = s(—p) and s(AAB) =s(AV B) = s(A) + s(B) + 1.

Proposition 1. The refutation tree T is finite.

Proof: At each step of the procedure the size of each new leaf decreases.
O

Proposition 2. For each application of a logical rule the sequent-conclusion
of each rule is falsifiable if and only if at least one of the sequent premise is

falsifiable.

Proof: Consider the A-rule. If there exists a valuation V such that V(C) = F
for all C' € I, and V(A A B) = F, then either

3

axiom
= Fapa PI, -p

structural rule
exchange:
=T, pt where p = p or —p.
= p=,T
logical rules

A V:
=>IA =1I,B =1I,A,B

= AAB,T = AVB,T

Table 1: Propositional rules

(1) V(A) = F, and in this case V falsifies the left sequent-premise = I, A,
or
(2) V(B) = F, and in this case V falsifies the right sequent-premise = T', B.
Conversely, let V be a valutation which falsifies one of the sequent premise,
hence V(C) = F per ogni C € I'. If V falsifies the left sequent-premise,
then V(A) = F, hence V(A A B) = F, hence the sequent-conclusion is
falsified. If V falsifies the right sequent-premise, then V(B) = F, hence again
V(A — B) =V, and the sequent conclusion is falsified.

O

An equivalent way to state Proposition 2 is the following: Propositional rules
preserve validity and are semantically invertible.

Proposition 3. A sequent of the form Azxiom is not falsifiable.

Proof: No valuation V can make both p and —p false.
O

A branch of the refutation tree 7 is closed if and only if its leaf is a sequent
of the form Axziom.

Proof of the Theorem. When the procedure terminates, two cases are
possible:

e All branches of 7 are closed. By induction on the depth of 7, using

propositions 2 and 3, we show that no sequent in 7 is falsifiable, hence
the root = A is not falsifiable, i.e., = A.

e A branch g = Sy, ..., Sy of 7, from the root Sy to the leaf S, =
= Ply- -+ sPmy q1y - - - , Gm, 18 open. Define V : Atoms — {7, F'} as
follows:

V(p;) = F, fori <m; V(g;) =T, for j <n;
V(p) = arbitrary, if p; # p # ¢, fori <m,j <n

By induction on the length of 3, using proposition 2, we show that V
falsifies every sequent S; in 5 hence V(A) = F.

|

1.3 Exercises.

Exercise 1. Show that if Xq, ... X, occur in the same line, then for all 7, j,
X; is logically equivalent to X ;. (Hint: Show that all the sequents = —~X1, X},
= X5, X3, ... = =X}, Xj, are valid, where X] [or = X}] is X;, [or = Xj] in
negation normal form.

(a) A --A; (AAA); (AVA); (AA(AVB)); (AV(AAB).

(b) —A4; A — (BA-B).
(c) -(AV B); (mAAN-B). (De Morgan)
(d) -(A A B); (mAV -B). (De Morgan)

(e) (AVvB); (BVA); (-B—A); -(-AAN-B); ((A— B)— B).
() (A A B); (B A A); -(A — —-B); —(=AV -B).

() (A — B); (—AV B); ~(AA-B); (=B — -A4).

(h) (A — -B); (B — —A). (contrapposition)

() (A B)=as (A= B)A(B > A) (AAB)V (~AA-B)).
G) (A« B); (AV B) A~(AN B)); ((=4) ¢+ B).

k) (AA(BVO)); (AAB)V(AAC)). (distributivity)

5

D (AV(BAQ)); ((AVB)A(AVO)). (distributivity)

(m) (AvB) = C); (A= C)AN (B — Q).
(n) (A= (BAQC)); (A= B)A (A — Q).
(0) (A— (B—0)); ((ANB) = C).

Exercise 2. Verify whether or not the following sequents are falsifiable:
(a) = ~(AV (BAC)),(CV (B A A)).

(b) = —(AA(BVC)),(CV(BAA)).

(c) = =(AV (BAC)),(CA(BVA)).

(d) = ~(A > (BVC)), (A= B)VC).

() = ~((4 = B)Vv()), (A= (BVC)).

(f) = ((A— B)—> A) = A.

2 Predicate Calculus

2.1 Syntax
A language £ = (Pred, Fun) of the calculus of predicates consists of

e aset Pred = {P", ..., P, ...} of predicate letters, where P/* has

K3

arity n; > 0. A O-ary predicate P° is a propositional letter.

e aset Fun = {f[", ..., f", ...}, of function symbols, where f/'* has

arity n;. A 0-ary simbol f° is a symbol of constant.

A first-order language always contains an infinite list of individual variables
Var: vy, vy, ... vy

Note: A predicate P™ with n > 0 is an “unsaturated” expression, with n
“holes”: e.g., P2 may represent a predicate “.
1s the father of — — =".

7 13

. 1s equal to — — =" or

Terms. The terms of the language are defined by the grammar

t=cla| fft,-.-,tn)

where ¢ denotes a constant and z an individual variable.

We define closed terms and free occurrences of a variable in a term induc-
tively:

(i) a symbol for constant c is a closed term;
(ii) a symbol z is a free variable;

(iii) if ¢y, ... t, are closed terms, then f™(t1,...,t,) is a closed term; if x
occurs free in some term t;, then x occors free in f™(t1,... ,t,).

Formulas. Let Formulas be the language defined by the following gram-
mar:

A = Pn(tl, :tn) ‘ _|A|A0/\A1|AOVA1‘AO—>A1 |v.’,CA | dz.A

Formulas of the form P™(ti,... ,t,) are called atomic; let Atoms be the set
of all atomic formulas. Free and bound occurrences of variables in a formula
are defined thus:

(i) The free occurrences of variables in P"(t1, ... ,t,) are the free variables
Oftl, ey tna

(ii) The free occurrences of variables in = A, AgA Ay, AoV Ay, Ag — A; are
the free occurrences in A, Ay and Aj;

(iii) The free occurrences of variables in Vz.A and 3x.A, are the free occur-
rences of variables in A, less the free occurrences of x in A, which are
bound by the quantifier.

An occurrence of a variable is bound if it is not free. A formula is closed if

no variable occurs free in it.

2.2 Semantics

An interpretation M of the language £ consists of a non-empty domain M
and of a function ()¢ which assigns

e to each symbol of function f" an n-ary function f3, : M" — M;

7

e to each m-ary predicate symbol P" of £ an n-ary relation Py, C M".

A constant symbol is interpreted by an element of the domain M.

An assignment « is a function o« : Var — M. Given a language £, we use
the Greek letter o for a pair (M, «) where M is an interpretation of £ and
a : Var — M is an assignment of elements in the domain M of M to the
variables.

Given 0 = (M, «) where M is an interpretation and « an assignment,
the value t of a term ¢t under o will be an element of M, defined by induction
on the definition of a term:

(i) if ¢ is a constant ¢, then ¢ = ¢y € M;
(ii) if ¢ is a variable z, then 27 = a(x) € M;

(iii) If t = f(ty,... ,tn), then t = fre(ti%, ... ,t,°) € M.

Given an element d € M, we write af for an assignment which is like o for

all variables v; with j # 4, but assigns d to v;. Thus we have af(v;) = a(v;)

for all j # 4, but ad(v;) = d. Similarly we may write af,’f’ for the assignment,
which may differ from o only by setting v; — d and v; — d'.

Definition. (Tarski) We define what it means to say that a pair 0 = (M, «)
satisfies a formula A (in symbols M = A|a]) inductively as follows:

1. if A= P"(ty,...,t,) then M = Aqa] if and only if (¢],...,t7) € PYy;
2. M = —A[q] if and only if it is not the case that M = Ala];

3. M = Ap A Aqla] if an only if M E Agla] and M E Aa];

4. M = Ay V Aqla] if and only if M = Ag[a] or M = A;[al;

5. M E Ay — Aq[a] if and only if M | Apla] implies M E A;[a];

6. M = Ju;.Ala] if and only if for some d € M we have M = A[ad];

7. M = (Vv;.A)[a] if and only if for all d € M, M = A[ad].

Note: In the propositional calculus interpretations and valuations coincide:
they are simply assignments of truth values to propositional letter. On the
contrary, in predicate logic a wvaluation is given by an interpretation M of
the functions and predicates on a given universe of discourse M, and an

assignment o of elements of the universe M to the free variables: the truth
value of a first-order formula is only determined by a pair 0 = (M, «). By
clause 1, such a o determines a total function ()” : Atoms — {7, F'} where
T,F are the truth values true, false and clauses 2-7 extend such a total
function to all formulas ()7 : Formulas — {7, F'}. Some textbooks use the
notation A% =T if o satisfies A, i.e., M = Ala], and A7 = F if o does not
satisfy A.

A formula A is true in the interpretation M, (in symbols, M = A), if and
only if M = Ala] for every assignment «. In this case we also say the M is
a model of A. Similarly, if I' is a set of formulas, an interpretation M of I is

model of T (in symbols M [=T) if and only if M is a model of every formula
Cerl.

A formula A is logically valid if and only if for every interpretation M and
every assignment « it holds that M = Ala]. If T is a set of formulas and A is
a formula, we say that A is valid consequence of I' if for every interpretation
M and every assignment «

MECla]forall C € I' implies M E Ala].

2.2.1 Substitution

Let r, t be terms. We write t[z/r] for the result of substituting the term r
for all occurrences of x in . More precisely, we have

1. z[z/r] =1

2. ylz/r] =y, ify # x;

3. c[z/r] = ¢, if ¢ is a constant;

4. f(t1,. .. to)|x/r] = ftaz/r], ... tulz/7]).
It is possible to prove the following

Lemma 0. Let r and t be terms, let v; be a variable, let 0 = (M, «) and
o' = (M,al”). Then
(rlvi/t])” =717

In words, the value under o of the term obtained by substituting ¢ for v; in
r is the same as the value of under (M,) of r, where o is the assignment
which agrees with o on all variables v; # v; but that assigns t° to v;.

If r is a term and A is a formula, we define A[z/r|, the result of substituting
the term 7 for all free occurrences of z in A as follows:

1. P"(t1,... ty)]x/r] = P"(t1]z/r], ..., tulz/7]);
2. (mA)[z/r] = -Alz/r],

3. (Ao N Ay)[x/r] = Aglz/r] A Ay[z/r], and similarly for disjunctions and
implications;

4. (Vz.A)[x/r] = V. A
5. (Vy.A)[z/r] = Vy.(A[z/r]) if y # x and y does not occur in 7;

6. (Vy.A)[z/r] = Vz.(Aly/z|[z/r]) if y # = occurs in r and z is the first
variable in the infinite list Var such that z does not occur in A or in 7.

It is possible to prove the following facts:

Lemma 01. For all 0 = (M,), if z does not occur in A then
(Vz.A)? = (Vz.Alz/2])°.

Theorem 0: For all formulas A, variables v;, terms t and valuations
o= (M,a), o = (M,al") we have

Alvi /17 = A7

2.3 “Semantic Tableaux” for first order logic

We extend our “semantic tableauzr” procedure from propositional to first
order predicate logic. This procedure, given a formula A in £, accepts A if
= A but may not terminate if =5, A. However, in this case from the infinite
tree we may extract a model M and an assignment « such that = ~Ala].

Exercise: Show that
E-dJz.A=Ve~A and Ve A=3dz.-A

Combining this fact with Exercise 2 in section 1.1, we see that, as in the
propositional calculus, there exists a procedure to transform a formulas B
in an equivalent one A in negation normal form, i.e., a formula generated
according to the grammar

A = Pn(tl, atn) ‘ —|Pn(t1,___ atn) | |A0/\A1 |AOVA1 |V$A | Jx. A

such that for every interpretation M of £ and every assignment «, we have
M E Bla] if and only if M = Ala].

10

We shall work with an infinite sequence of parameters ag, aq, ... which
are to be interpreted in a universe U as the other variables but which cannot
occur as bound variables. Thus we will suppose that parameters a; are our
ufficial variables vy; and the usual variables x, which can be bound, are the
variables v9;,1. An expression a : U is a declaration of the parameter a; we

write @ : U as abbreviation for a; : U, ..., a, : U.
Let I' =4, ..., C), be a finite set of formulas in negation normal form. A
sequent, for first order logic is a formal expression of the form aq : U, ... ,a; :

U = T; the intended interpretation of = I' is
IZ VCL(). .. Vaz(\/ CJ)
7j=1

Definition. (valid, falsifiable sequent) Let S be the sequent ag : U, ... ,q; :
U= Cy,...,C,. We say that S is valid (in symbols, = S) if for every
interpretation M and any assignment o

o M }: Vao .. 'Vai'(\/;'lzl CJ) [a]

A sequent which is not valid is falsifiable, i.e., there exists an interpretation
M and an assignment « such that

e M E —Cj[a] for all i < n.

Completeness Theorem. The following “semantic tableauz” procedure for
first order predicate logic given a formula A of L in negation normal form

o returns a tree of sequents T with ag : U = A at its root such that every
sequent in T is valid, if = A;

e otherwise, if = A either the procedure terminates with some open
branch or it does not terminate.

e Given a possibly infinite open branch in 7 it is possible to build a term-
model M such that the universe of M consists of terms built up from
the parameters {ay, a1, ..., a;, ...} using also the constants and func-
tion symbols of L.

For simplicity we shall consider only the case when the language does not
contain constant or function symbols and the formula A does not contain
free variables.

Procedure: Construct a tree of sequents 7 with the root at the bottom as
follows.

11

Stage (0): let 19 be (ag : U) = A, the root of the tree;

Stage (n+1): for each sequent S which occurs at one of the leaves of
Tn, if S has the form of a sequent-axiom, then the procedure terminates
on that branch;

otherwise S has the form of a sequent-conclusion of one of the rules in
Table 2; then write the appropriate sequent-premise(s) above it.

Let 7,41 be the tree obtained in this way; if 7,1 = 7, then let 7 = 7, and
the procedure terminates. It is clear that Proposition 1 no longer holds in

axiom
a:U=T,P"(t1,... ,tn), L', = P (t1,... ,tp)

structural rule
exchange:
:U =T, p* where p* = p or —p.
a:U=pt T
logical rules

IS]

)

A rule: V rule:
a:U=>T,A a:U=1I,B a:U=>T1,A,B
a:U= AANB,T a:U=AvVvB,T
V rule:
ap:U,...,a;:U,a;41 : U =T, Alaj1/z]

ag:U,...,a; : U= Vz.A,T
3 rule:
ap:U,... ,0; : U =T, Alao/z],...,Ala;/z],3z.A

ap:U,...,0;: U= 3. AT

Table 2: Propositional rules

the predicate calculus: because of the F-rule it is quite possible that the
refutation tree 7 is infinite. Nevertheless, Proposition 2 remains true:

Proposition 2. For each application of a logical rule, the sequent-conclusion

of each rule is falsifiable if and only if at least one of the sequent premise is
falsifiable.

Proof. (3-rule): If the sequent-conclusion is falsified by a valuation o =
(M,), then for every element d € M the assignment of yields M i ['[ad],

12

i.e., it is impossible to satisfy A in M. Hence it is also impossible to satisfy
any Ala;/x] in M. The converse is obvious.

(V-rule): Let v; be the variable x possibly occurring in A; by Lemma 01 in
section 2.2.1 we may assume that v; dos not occur in I'.
If the sequent-conclusion is falsified by a valuation ¢ = (M,), then for

some element d € M the valuation o’ = (M, af) falsifies = ', A. Since a;41

: . dd
(= vaiy2) does not occur in the sequent-conclusion, 0" = (M, a3%;,,]) also

falsifies = ', A. But A°" = A[_i 4 1/z] (i.e., the valuation ¢” gives the same
truth value to A and to Afa;;1/z]) hence the sequent-premise = I', A[a;;1/2]
is also falsified by o”.

Conversely, if " = (M, o, ,) falsifies = T', A[a;11/x] where a;41 (i.e., voit2)
does not occur in T', then also o’ = (M, o) falsifies = I', A (where z = v;)
(see Theorem 0 in section 2.2.1), hence also 0 = (M, «) falsifies = I', V. A.
The proof is finished.

Since for all 0 = (M,), P"(t1,... ,t,)° # (= P™(t1,...,t,))7, we still
have

Proposition 3. A sequent of the form Aziom is not falsifiable.
O

A branch of the refutation tree 7 is closed if and only if its leaf is a sequent
of the form Axziom.

Let 3 be a possibly infinite open branch of the refutation tree 7 and let ¢
= ag, 1, ..., 4y ... be the (possibly infinite) list of all parameters occurring
in 8. From the form of the 3-rule the following Lemma is clear:

Lemma 1. If B is an open branch in 7 and 3x.A occurs in some sequent of
B, then for all a € ¢ also Ala/x] also occurs in some sequent of .

We also need the following principle from set-theory, in the case of binary
branching trees.

Konig’s Lemma: FEvery finitely branching infinite tree contains an infinite
path.

Proof. Suppose we have a path § from the root to a node v such that the
subtree 7 with root in v is infinite and let vy, ..., v, be the nodes related
to v by an edge (the “children” of v). Then at least one of v; must be
the root of an infinite subtree 7;; indeed otherwise 7 itself would have finite
depth max;<,(depth(r;) + 1), a contradiction. Therefore the path 5 can be
extended to v;.

O

Proof of the Theorem. Either the procedure terminates with all branches

13

in 7 closed, or it does not.

e If all branches of 7 are closed, then by induction on the depth of 7,
using propositions 2 and 3, we show that no sequent in 7 is falsifiable,
hence the root = A is not falsifiable, i.e., = A.

e Otherwise, either the tree is finite and contains an open branch 3, or
it is infinite, and then by Konig’s Lemma it contain an infinite open
branch.

e Thus let 5 be a possibly infinite open branch. Define an interpretation
(term model) M of A as follows.

For the domain M of the interpretaton we take precisely the list £.
() For the interpretation of the predicate letter P" we set

(@iyy...,q;,) € Py if and only if =P™(a;,,...,a;,) occurs in some
sequent of f.

Lemma 2. Giwen a sequent S without free variables, let M be the “term
model” built from an open branch of the tree T for S and let « be the assign-
ment « : a; — a; for all parameters a;. Then for all formulas B occurring in
some sequent of B, the valuation o = (M,) falsifies B.

Proof. By induction on the logical complexity of a formula B.

If B is atomic or the negation of an atom, the result holds by ().

If B= B; A By [or B; V By, then a subformula B; [both subformulas B;
and By occur in a sequent of 3, and the results follows by the inductive
hypothesis by the same argument as in the propositional case.

If B =Vz.C, then C|z/a] also occurs in 3 for some parameter a € £ = M,
hence C[z/a]” = F by the inductive hypothesis, and so Vz.C? = F.

If B = dx.C' occurs in 3, then for all parameters a € £ = M the formula
C[z/a] also occurs in 8 by Lemma 1, hence C[z/a]” = F by the inductive
hypothesis, and so dz.C? = F.

The proof of Lemma 2 is finished, hence also the proof of the Theorem.

2.4 Other formal systems for predicate logic

There are several equivalent aziomatic systems, i.e., systems of axioms and
rules of inference, for first order predicate logic; let us write I' = A if A is
derivable from a set of assumptions I' in any such axiomatic system.

Let ' - A where ' = C4,...,C — n is a finite set of formmulas. Let A’
be the formula in negation normal form equivalent to A and —I" the set of

14

formulas D; in negation normal form such that D; = —C; for i # n. It is
possible to show that I' = A if and only if ag : U = —I", A" has a closed
refutation tree 7. In other words, closed refutation trees may be regarded
as proof-systems: indeed they are a variant of Gentzen’s sequent calculi for
classical logic.

A key remark about axiomatic systems is the following: since in any
derivation of A from I' only a finite number of assumptions is used, I' - A
implies I'y = A for some finite subset I'y = C4,...,C, of I'. An important
corollary of this remark is the following principle.

A possibly infinite set I' of formulas is inconsistent if I' = A A = A; it is
consistent otherwise.

Compactness Principle: A set I' of formulas is consistent if and only if
every finite subset I'y of I is consistent.

It is possible to extend our procedure to infinitely long sequents ['. Let us
consider an application of the compactness principle in this context. Let [' a
possibly infinite sequence of formulas, let I';, be initial segment C}, ..., C,
of I' and let —I',, be the sequence D1, ..., D, of formulas in negation normal
form such that D; = —C;. We apply the procedure of the completeness
theorem successively to the sequences —I';, —I's, ..., =I';. If ' is consistent,
then no one of the sequents ag : U = —I'; has a closed refutation tree;
otherwise, we would have I'; H A A —A and hence ' F AA —A, ie., " would
be inconsistent. Therefore there is a valuation o; = (M;, ;) which falsifies
—I';, i.e., which satisfies I';. Moreover, a valuation ¢; which satisfies I'; also
satisfies I'; with j < ¢. It follows that there is a valuation o = (M, «) which
satisfies I as a whole; i.e., the compactness principle can be stated as follows:

Compactness Principle: A set I' of formulas is satisfiable if and only if
every finite subset Iy of I is satisfiable.

3 Equality

It is possible to extend any axiomatic system for the predicate calculus to an
axiom system for the logic of equality, by adding all axioms of the form

Ft=t Alz/t]ti =t; - Alz/t)]

for all t, ti, tj and A.

It is possible to extend the above semantic procedure to the logic of
equality. We shall not do this in detail, but let us consider what it is involved

15

in this extension. First, we can introduce axioms and rules of the form

= aziom : = rule:

T U=t=t U= AR/ 2] Altj/a], T, = = t))
a:U= _|(ti = tj),F,A[ti/.’E],FI

We run our procedure with these additional rules. If we obtain an open
branch 3, we must construct a countermodel M; the main difference is that
now the objects of M shall be equivalence classes of parameters in £, ra-
then than parameters themselves: we let a; ~ a; and put a; and a; in the
same equivalence class if and only if —a; = a; ever occurs in a sequent of
B; we extend the definition of the equivalence classes to terms by letting
f(t1, -y tn) ~ f™(u1, ... ,uy) if and only if ¢ ~ uq, ..., t, ~ up,.

Notice that as a consequence, it may be possible to obtain a finite coun-
termodel out of an infinite branch with infinitely many distinct parameters.

16

