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Introduction to Part @

- In Part O we recall the basic background in category theory which
may be required in later portions of this book. The reader who is familiar
.with category theory shouid certainly skip Part 0, but even the reader who
is not is advised to consult it only in addition to standard texts.
Most of the material in Part 0is standard and may also be found in other
books. Therefore, on the whole we shall refrain from making historical
remarks. However, our exposition differs from treatments elsewhere in
several respects. s
~ Firstly, our exposition is slanted towards readers with some acquain-
tance with logic. Quite early we introduce the notion of a ‘deductive system”,
For us, this is just a category without the usual equations between arrows.
In particular, we do not insist that a deductive system is freely generated
from certain axioms, as'is customary in logic. In fact, we really believe that
logicians should turn attention to categories, which are deductive systems
with suitable equations between proofs.
Secondly, we have summarized some of the main thrusts of category
theory in the form of succinct slogans, Most of these are due to Bill Lawvere
" {whose influence on the development of category theory is difficult to
overestimate), even if we do not use his exact words. Slogan V represents the
.- point of view of a series of papers by one of the authors in collaboration with
o Basil Rattray. .

~ . Thirdly, we have emphasized the algebraic or equational nature of many
.- of the systems studied in category theory. Just as groups or rings are

- algebraic over sets, it has been known for a long time that categories with

- finite products are equational over graphs, More recently, Albert Burroni
. made the surprising discovery that categories with equalizers are also
" algebraic over graphs. We have included this result, without going into his
" more technical concept of ‘graphical algebra’. .
1In Part 0, as in the rest of this book, we have been rather cavalier about
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most mathematicians, but occasionally we refer to universes in the sense of
Grothendieck. The reason for our lack of enthusiasm in presenting the
foundations properly is our belief that mathematics should be based on a
version of type theory, a variant of which adequate for arithmetic and
analysis is developed in PartII. For a detailed discussion of these
foundational questions see Hatcher (1982, Chapter 8))

1 Categories and functors

In this section we present what our reader is expected to know
about category theory, We. begin with a rather informal definition.

bm.man:aa 1.1. A concrete category is a collection of two kinds of entities,
called o.&m&w and morphisms. The former ar¢ sets which are endowed with
some kind of ms.ﬁoEH and the latter are mappings, that is, mcsgoam from
one oEmQ to mnoEQ. in man sense preserving that structure. Among the
morphisms, there s m:mor& to each object A the identity mapping 1
A— A4 such that 1 4(@)=a for all as A. Moreover, morphisms f: A— B and
g: mlvﬁ Smu\ be composed to produce a morphism gf: 4 - C such that
(g e g(f(a)) moq all aeA. (See also Exercise 2 below.)

Examples of concrete categories abound in mathematics; here are just three:

m\«aih& Cl. The owﬂmmoa of sets. Its objects are arbitrary sets and its
BoHE:mBm are mu_u:HmQ Bmﬁvﬁmm We call HEm category ‘Sets’.

Example C2. The category of monoids. Its objects are monoids, that is,
semigroups with unity element, and its morphisms are homomorphisms,
that is, mappings which preserve multiplication (the semigroup operation)
and the unity element.

mgnﬁim C3. The category of preordered sets. Its oEoon are preordered
sets, that is, sets with a transitive and reflexive relation on them, and its
morphisms are monotone Emﬁﬁsmm that is, mappings s_r_or preserve this
relation.

The reader will be able to think of many other examples: the categories of
rings, topological spaces and Banach algebras, to name just a few. In fact,
one is tempted to make a generalization, which may be summed up as
follows, provided we understand ‘object’ to mean ‘structured set’.

Slogan I. Many objects of Eﬁﬂdmﬁ in mathematics congregate in concrete
nmamodam
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“We shall now progress from concrete categories to abstract ones, in three

easy stages.

Definition 1.2. A graph (usually called a directed graph) consists of two
classes: the class of arrows (or oriented edges) and the class of objects (usually
called nodes or vertices) and two mappings from the class of arrows to the
class of objects, called source and target (often also domain and codomain).

source
rr———

Arrows Objects
target

‘One writes f: A — B’ for ‘source f = A and target f=PB. A graph is said to

be small if the classes of objects and arrows are sets.

Example C4. The category of small graphs is another concrete category. Its

- objects are small graphs and its morphisms are functions F which send
-arrows to arrows and vertices to vertices so that, whenever f: 4 — B, then
- F(f): F(A)— F(B).

A deductive systemis a graph in which to each object 4 there is associated an

-arrow 1 : 4 — A, the identity arrow, and to each pair of arrows f: 4 » Band
-g: B— Cthere is associated an arrow gf: A — C, the composition of f with g.

A logician may think of the objects as formulas and of the arrows as

. deductions or proofs, hence of

fiA~B gB-C
gftA—-C

as a rule of inference. (Deductive systems will be discussed further in Part L)
A category is a deductive system in which the following equations hold,
forall f1A—B, g:B—»Cand h:C—D:

fla=f=1gf, (hg)f=Hhgf).

Of course, all concrete categories are categories. A category is said to be

" small if the classes of arrows and objects are sets. While the concrete
- categories described in examples 1 to 4 are not small, a somewhat surprising
. observation is summarized as follows:

Slogan II. Many objects of interest to mathematicians are themselves
small categories.

m‘«%\@ CI. Any set can be viewed as a category: a small discrete
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category. The objects are its elements and there are no arrows except the
obligatory identity arrows.

Example C2. Any monoid can be viewed as a category. There is only one
object, which may remain nameless, and the arrows of the monoid are its
elements. In particular, the identity arrow is the unity element. Compo-
sition is the binary operation of the monoid.

Example C3'. Any preordered set can be viewed as a category. The objects
are its elements and, for any pair of objects (g, b), there is at most one arrow
a— b, exactly one when a < b,

It follows from slogans I and 11 that small categories themselves should be
the objects of a category worthy of study.

Example C5. The category Cat has as objects small categories and as
morphisms functors, which we shall now define.

Definition 1.3. A functor F:.of — 8 is first of all a morphism of graphs (see
Example C4), that is, it sends objects of o to objects of & and arrows of .«
to arrows of # such that, if f: 4 — A', then F(f): F(A)— F (4. Moreover, a
functor preserves identities and composition; thus

F(ly)=1pp Flof)=F(@F(f).

In particular, the identity functor 1 _: ./ — ./ leaves objects and arrows
unchanged and the composition of functors F: o — % and G: & — % is given
by

(GF)(4)=G(F(4)), (GF)f)=G(F(f)),
for all objects 4 of o and all arrows f:4— A’ in <.

The reader will now easily check the H,o:oiam assertion.

Proposition 1.4. When sets, monoids and preordered sets are regarded as
small categories, the morphisms between them are the same as the functors
between them.

The above definition of a functor F: o/ — & applies equally well when </
and # are not necessarily small, provided we allow mappings between
classes. Of special interest is the situation whep % = Sets and =7 is small.

Slogan I1I. Many objects of interest to mathematicians may be viewed as
functors from small categories to Sets.

Example F1. A set may be viewed as a functor from a discrete one-object
category to Sets.

=

R
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Example F2. A small graph may be 59{@& as a ?bﬁoﬁ from the small
category -3+ (with identity arrows not shown) to Sets.

Example F3. Y .# = (M, 1,-)is a monoid viewed as a one- -object category,
an .#-set may be regarded as a functor from .# to Sets. (An .#-set is a set A
together with a mapping M x 4 — A, usually denoted by (m, a} — ma, such
that la=a and (m*m')a = m(m'a) for all ac A, m and m ‘eM.)

. Once we admit that functors & — & are interesting objects to study, we
- _shouid see in them the objects of yet another category. We shall study such
- functor categories in the next section. For the present, let us mention two
o oEQ. smwm ow forming new nmﬂomodom from old.

: m..«e.a.ia C6. From any category (or graph) o one forms a new category
, ..?om@noné@ graph). o/°? with the same objects but with arrows reversed,
that is, with the two mappings ‘source’ and ‘target’ interchanged. &/°F is
-called the opposite or dual of o/. A functor from «#°° to % is often called a
” " _contravariant functor from < to %, but we shall avoid this terminology
* . except for occasional emphasis,

~Example C7. Given two categories «7 and &, one forms a new category
- x & whose objects are pairs (4,B), 4 in o7 and B in 8, and whose
.arrows are pairs (f, g):(A, B)— (A", B'), where f:4— A’ in « and g:B-»

...w in #. Composition of arrows is defined componentwise,

- Definition 1.5. An arrow f:A—Bina category is called an isomorphism if
~there is an arrow g: B— A such that gf = 1 , and fy = 1p. One writes A > B
~to mean that such an isomorphism exists and says Emﬁ A is isomorphic
“with B.

~In particular, a ?523 F:.o — 28 between two categories is an isomorph-
“ism if there is a functor G: & — .« such that GF =1, and FG = 1,. We also
remark that a group is a one-object omﬁomoa\ in which all arrows are
-isomorphisms.

“To end this section, we shall record three basic _moBoﬁuEmSm Here H is the
category with one object and one arrow.

36.@%&8; 1.6. For any categories &/, & mua €,

AN, (AXB)XC2AXBxE), 2 xB2Bx oA

"Exercises

1. Prove Propositions 1.4 and 1.6.

2. Show that for any-concrete category 7 there'is a functor U: o —Sets |
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which ‘forgets’ the structure, often called the forgetfid functor. Clearly U is

Jaithful in the sense that, for all f,g: A3 B, if U(f)=1Ulg) then
S=g. (A more formal version of Definition 1.1 describes a concrete
category as a pair (&, U), where o is a category and U: .o/ — Sets is
a faithful functor.)

3. Show ﬁrmﬁ. for any category «f there are functors Ao - x o
and O of »1 given on objects 4 of & by A(A)=(4,4) and
O A A4) = the object of 1.

2 Natural transformations
In this section we shall investigate morphisms between functors.

Definition 2.1. Given functors F, G. o/ 3%, a natural transformation
t:F—G is a family of arrows #4): E&lmﬁ\: in &, one arrow for each
ov._ooﬁ A of o, such that the following square commutes for all arrows
fiA-Bin o:

HA)
F(A) G(A4)
FH| - elf)
F(B) B G(B)

that is to say, such that
G(N(A) = t(B)F(f).

It is this concept about which it has been said that it necessitated the

invention of category theory. We shall give examples of natural transform- )

ations later. For the moment, we are interested in another example Q. a
category.

Example C8. Given categories of and &, the functor category % has as
objects functors F:.of/ > # and as arrows natural transformations. The
" identity natural transformation 1,:F — F is of course given by stipulating
that 1z(A4) = 1, for each object 4 of &#.Ift: F— G and : G- H are natural
_transformations, their composition uct is given by stipulating that
(uet)(A) = u(A)t(A) for each object A of .

To appreciate the usefulness of natural transformations, the reader should
prove for himself the following, which supports Slogan IIL

Proposition 2.2. When objects such as sets, small graphs and .#-sets are

$i
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viewed as functors into Sets (see Examples F1 to F3 in Section 1), the
morphisms between two objects are precisely the natural transformations.

. Thus, the categories of sets, small mamﬁ:m and .#-sets may be Ems:moa with

the H.EESH, omﬁnmonom Sets!, Sets™ " and Sets*respectively.

Of course, BoGEmBm between sets are mappings, morphisms between

graphs were described in Definition 1.3 and morphisms between .#-sets are

- -homomorphisms. (An .#-homomorphism f: A— B between .# -sets is a
-mapping such that f(ma) = mf(a) for all meM and acA)

We record three more basic isomorphisms in En m?_.: oﬁ.

.. Proposition 1.6,
: 3.%3:8: m 3. For any categories 7, & and %,

A o, € (G, (o x B = A% x BE.

E ﬁa shall leave the lengthy Eoom of this to the reader. We only mention here

the functor € *? — (¥%)¥, which will be used later. We describe its action

- ~on objects by stipulating that it assigns to a functor F:./ x 8 —¢ the

functor F*:.of -» %% which is defined as follows: .
"For any object A of s, the functor F¥A: &% is given by

: H *(A)(B) = F(A, B) and F*(A)(g) = F(1 4, g). for any object B of # and any
v-arrow g: B— B in 4. .

For any arrow f: 4 —+ A', F¥( w,v&u *(A)— F*(A") is the natural transform-

”...mﬁoa given by F¥(/)(B) = F(f, 1;), for all objects B of 4.

- Finally, to any natural transformation . F — G between functors F, G:

ix BIEwe assign the natural transformation £* F* = G* which is given
by t¥(4A}B) = (4, B) for all objects A of o/ and B of &,

This may be as good a place as any to mention that natural transform-

. -ations may also be composed with functors.

" Definition 2.4. In the situation

oLt afae
G

. .: t: F — G is a natural transformation, one oE.mEm natural transformations
‘Kt KF—>KG between functors from o to ¥ and tL: FL— GL ‘cmﬁémmu
_?sﬁcam from:@ to & defined as follows:

(K1)(4) = K(z(A)), - (tL)(D) = t(I{D)),

.”won..m: objects 4 of .« and D of 2.

If H: n& — % is another functor and u: G — H another E;E.m_ ﬁmbmmonu-

-




ation, then the reader will easily check the following ‘distributive laws”:
K(ueot)=(Ku)o(Kt), (uot)L=(uL)e(tL).
If we compare Slogans I and ITI, we are led to ask: which categories may

be viewed as categories of functors into Sets? In preparation for an answer
to that question we need another definition.

Definition 2.5. If A and B are objects of a category ¢, we denote by
Hom_(4, B) the class of arrows 4 ~» B. (Later, the subscript .« will often be
omitted.) If it so happens that Hom (4, B) is a set for all objects A and B, o
is said to be locally small.

One purpose of this definition is to describe the following functor.

Example F4. If o7 is a locally small category, then there is a functor

Hom : o/°® x of — Sets. For an object (4, B) of 2#°® x 57, the value of this

functor is Hom (A, B), as suggested by the notation. For an arrow
(9, 1):(4,B)— (A", B) of o/°? x of, where g:4'~A4 and BB in o
Hom (g, h) sends feHom, (4, B) to hfgeHom (4’, B).

Applying the isomorphism Sets”” * — (Sets¥)}*” of Proposition 2.3, we
obtain a functor HomX: o/ ~»Sets” and, dually, a functor Hom¥.op:
o ~»Set*”. We shall see that the latter functor aliows us to assert that
o is isomorphic to a ‘full’ subcategory of Sets”.

H

Definition 2.6. A subcategory € of a category 4 is any category whose class
of objects and arrows is contained in the class of objects and arrows of ¥
respectively and which is closed under the ‘operations’ source, target,

identity and composition. By saying that a subcategory ¥ of Z is full we
mean that, for any objects C,C’ of ¢, Hom,(C, ") == Hom{C, C.

For example, a proper subgroup of a group is a subcategory which is not

full, but the category of Abelian groups is a full subcategory of the category |

of all groups.

The arrows F — G in Sets”” are natural transformations. We therefore
write Nat(F, G) in place of Hom(F, G) in Sets®". .

Objects of the latter category are sometimes called ‘contravariant
functors from < to Sets. Among them is the functor h 4= Hom_(-, 4}
which sends the object A" of &/ onto the set Hom A A) and the arrow
f:A"> A" onto the mapping Hom (f, 1,,): Hom AA", A)—~Hom (A', 4).

The following is known as Yoneda’s Lemma.

Proposition 2.7. If = is locally small and F: P — Sets, then Zﬁ@ . F)is
in one-to-one correspondence with F(A).

Proof. 1f ac F(A4), we obtain a natural transformation g: h ,~ F by stipulat-

2 nESH Qaﬁ\oﬂﬁa:czm ~ 1 H

f\ﬁ, el

. ing' ‘that a(B):Hom (B, A~ EQ mﬁam gB~A
(Note that F is contravariant, so F(g): F(4)— F(B).)

- Conversely, if t: h , ~ F is a natural transformation, we obtain the element
~HA)(1 )€ F(A). It is a routine exercise to check that the mappings a +4 and

t—1{A){1,) are inverse to one another.

Definition 2.8. A functor H: o/ —» @ is said to be faithful if the induced
- mappings Hom (4, 4') - Hom,(H(A4), H(A")} sending f: A — A’ onto H(f):
" H(A)— H(4’) for all 4', Acof are injective and full if they are surjective. A
 full embedding is a full and faithful functor which is also injective on objects,
that is, for which H(A4) = H(4') implies 4 = A",

onto - F(g)(a).

. .ﬁ.&éﬂﬁ% 2.9, If & is locally small, the Yoneda functor Hom?*p: of —
- Sets”"" is a full embedding.

wwo&w Writing H=Hom%.,, we see that the induced mapping
“Hom(A, A"}~ Nat(H(4), H(4)) sends f: A— A’ onto the natural transfor-
mation H(f): H(A)— H(A’} which, for all objects B of .7, gives rise to the
mapping  H(f)}B)=Hom(la, f): Hom(B, A)—Hom(B,A). Now
feH(AYA), hence f: H(A)— H(A"), as defined in the proof of Proposition
©2.7, is given by

f(B)g) = HA)g)(/) = Hom,,(g,1..)(f)
= fg = Hom, (15, f)g) = H(f)(B)(g),

_pnnnn f = H(¥). Thus the mapping f ~H(f u 1s a bijection and so H is full
and faithful.

mEmEr 8 show that H is injective on ogoﬂm assume H(A) = H(A'), then
: EoE?_ \: EoEQ_ A, s0 A’ must be the target of the identity arrow 1,
: Ezm A=

Exercises

1. Prove propositions 2.2 and 2.3.

2. 1f 2 is the category - — - {with identity arrows not shown), show that the
objects of &/ are essentially the arrows of o and that ‘source’ and ‘target’
may be viewed as fanctors 6, & /% 2 o,

3. If F,Grof =3 & are given functors, show that a natural transformation
t: F G is essentially the same as a functor £ of — 272 such that 6t = F
and §'t=G.

4. Show that the isomorphism in Yoneda’s Lemma (Proposition 2.7) is
natural in both 4 and F, that is, if f: B~ 4 and : F - G then the relevant
-diagrains commute.
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3 Adjeint functors

Perhaps the most important concept which category theory has
helped to formulate is that of adjoint functors. Aspects of this idea were
known even before the advent of category theory and we shall begin by
looking at one such.

We recall from Proposition 1.4 that a functor & — % between two pre-
ordered sets &/ = (A4, <)and & = (B, <) regarded as categories is an order
preserving mapping F: A — B, that is, such that, for all elements a,a’ of A4, if
a < a' then F(a) < F(a'). A functor G: & — & in the opposite direction is said
to be right adjoint to F provided, for all ac4 and beB,

Fla)<b G(b).
Classically, a pair of order preserving mappings (F, G) is called a covariant
Galois correspondence if it satisfies this condition.

Once we have such a Galois correspondence, we see immediately that
GF:.of — .o/ 1s a closure operation, that is, for all g, a’'e A,

if and onlyif a<

a<GF@,
GFGF(a)< GF(a),
ifag<a then GF(a)< GF(a).

Similatly, FG:# — # may be called an interior operation: it satisfies the
conditions dual to the above.
i In a preordered set an-isomorphism a = & just means that a < o' and
@' < a. (In a poset, or partially ordered set, one has the antisymmetry law: if
ax=a" then a=4a.) We note that it follows from the above that
GFGF(a) = GF(a) and, dually, FGFG(b) = FG(b), for all acA and heB.
The most interesting consequence of a Galois correspondence is this: the
functors F and G set up a one-to-one correspondence between isomorphism
classes of ‘closed’ elements a of A such that GF(4) = a and isomorphism
classes of ‘open’ elements b of B such that FG(b) = b. We also say that F and
G determine an equivalence between the preordered set o7, of closed
elements of &/ and the preordered set #, of open elements of #. The
following picture illustrates this principle of ‘unity of opposites’, which will
be generalized later in this section.

F
G

> B

inclusion inclusion

.b\.... .& 0 S

P D -
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" Before carrying out the promised generalization, let uslook at a couple of
- ‘examples of Galois correspondence; others will be found in the exercises.

*Example G1. Take both = and 2 to be (N,
- with the usual ordering, and let

<}, the set of natural numbers

F(0) =0, F(a) = p, = the ath prime number when a > Q,
G{b) =

Then F and G form a pair of adjoint functors and the ‘unity of opposites’
describes the biunique correspondence between positive integers and prime

n(b} = the number of primes < b.

: ...?H.wa examples arise from a binary relation R © X x Y between two sets X
-and Y. Take o =(2(X), ), the set of subsets of X ordered by inclusion,
~and & = (#(Y), 2), ordered by inverse inclusion, and put

.mum\_.v = mu\m N._.qkmh@n“ u\um.mNHT
Qmmv = \“Hunmm.umq;\%mbﬁuhu .ﬁvmxr

forall A& X and B < Y. This situation is called a polarity; it gives rise to an

‘isomorphism between the lattice o o of “closed’ subsets of X and the lattice

%, of ‘closed’ subsets of Y. (Note that the open elements of # are closed
“subsets of Y))

‘Example G2. Take X to be the set of points of a plane, Y the set of half-
‘planes, and write (x, eR for xey. Then, for any set A of points, GF(A)is the
ntersection of all halfplanes containing A, in other words, the convex hull of
i {. The ‘unity of opposites’ here asserts that there are two equivalent ways of
describing a convex set: by the points on it or by the halfplanes containing it.

We shall now generalize the notion of adjoint functor from preordered sets
10 arbitrary categories. In so doing, we shall bow to a notdtional prejudice
of many categorists and replace the letter ‘G* by the letter “U”. (‘U” is for

%,

‘underlying’, ‘F’ for ‘free’)

.mea.mea 3.1. An adjointness between categories o and & is given by a
‘quadruple (F,U,n,¢), where F:of - % and U: % — o/ are functors and
#:1,~UF and & FU -» 14 are natural transformations such that

Ue)olqU) =1y, (eF)o(Fy)=1p.

.Osn says that U'is right adjoint to F or that F is E@ a&&ﬁ to U and one
calls # and ¢ the two m&zmnzoa

.wo».oan moﬁm into axmaw_om let us give mmo&ﬂ moHEEmnos of what will
turn out to ,Uo an mnarﬁ:aE concept (in Proposition 3.3 below).
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Definition 3.2. A solution to the universal mapping problem for m Frﬁoa
U: 98 — «f is given by the following data: for each object 4 of «/ an object
F(A) of # and an arrow n(A). A — UF(A) such that, for.each object B of #

in % mcow that U{(f*m(A)=/.

.O c,bnﬁm«

L mans_im Ul. Let & be the category of monoids, </ the nmﬂamoQ of sets,
U B - the forgetful (= underlying) functor, F(A) the free monoid
: generated by the set 4 and 5(4) the obvious mapping of 4 into the
underlying set of the monoid F(4).

Definition 3.2'. Of special interest is the case of Definition 3.2 in which % is
" a full subcategory of .o and U: _&. — .« is the inclusion. Then #(A): 4 — F(4)
ymay be called the best ngwoﬁﬁnnﬁcz of A by an object of 2 in the sense that,
i “for each arrow f:A— B with B in 4, there is a unique arrow f* F(4)— B
w. such that f*n(A4) = f. One then says that # is a full reflective subcategory of
~= 3, of with reflector F and reflection n.

L.m.aaaﬁmm U2, Let o be the category of Abelian groups, # the full
subcategory of torsion free Abelian groups and F(4) = A/T(A), where T(4)
is the torsion subgroup of A. .

7

Proposition 3.3. Given two categories . and &, there is a one-to-one
correspondence between adjointnesses (F, U,#, &) and solutions (F,#, *) of
the universal mapping problem for U: % — .

Proof. If(F,U,n,¢)is given, put f* = %.SE ). Conversely, if U and (F,», *)
are given, foreach f: 4 — A’, put F(f} = (5(A") f)* and check that this makes
F afunctor and # a natural transformation; moreover define £(B) = (1 vy

It follows from mw.EEoHQ considerations that an adjointness is also
mn_c?m_ma 8 a oo-cE<2.mm,_ mapping EOEQE oEmEaa 3 Qcm:ﬁnm

i
C ﬁ)ﬁﬁ_ /“

"

and each arrow f: A — U(B) in &, there exists a unique arrow f*: F(4) >B

__,..Ummbﬁom w 2. (A left adjoint to %I!& isa nmwﬂ &o:ﬂ. 8 .&éigouv
- In view of Proposition 3.3, Examples Ut and U2 are examples of adjoint
-functors. We shall give other examples later.

~ There is yet another way of looking at m&osﬁ functors, at least when =
and @ are locally small,

T«%@m..:.aa 3.4. Anadjointness (F, U, #, ¢} between locally small categories
o . and # gives rise to and is determined by a natural isomorphism
Homg(F(-),—) = Hom (-, U(-)) between functors «7°F x & =3 Sets.

~'We leaveé the proof of this to the reader. .
““Even if o is not locally small, there is a natural bijection between arrows
FA-B in # and arrows A— UB in . Logicians may think of such a
bijection as comprising two rules of inference; and this point of view has
been quite influential in the development of categorical logic. An analogous
§ituation in the propositional calculus would be the bijection between
proofs of the entailments C A A B and A+ C= B (see Exercise 4 below).
Inasmuch as implication is a more sophisticated notion than conjunction,
the adjointness here explains the emergence of one concept from another.
This point of view, due to Lawvere, may be summarized by yet another
; mmo.mms illustrations of which will be found throughout this book (see, for
Em"muom Exercise 6 below).

..msu.waa Iv. ZE& important oouoou_”m in mathematics arise as adjoints,
right or left, to previously known functors.

‘We summarize two important properties of adjoint functors, which will be
useful later. -

 Proposition 3.5. (i) Adjoint functors determine each other uniquely up to
-natural isomorphisms.
(i) If (U, F) and (U", F'} are pairs of adjoint functors, as in the diagram

U U
¢ @ o,

F CF

ﬂrmb (UU,F'F) is also an adjoint pair.

Exercise

1. If(F, G) is a Galois correspondence between posets o and 4, show that F
preserves supremums and G preserves infimums. If o7 has and F preserves
Lt wlf-mcmeBcSm show that its right adjoint G: & — 47 can be calculated by the
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formula
G(by= sup {acof [F(a) < b).

2. In Example Gl, show that the two sets {F(a)+ ajaeN} and
{G(b) + b+ 1]beN} are complementary sets.

3. Givenacommutative ring C, take X to be the set of elements of C, Ytheset
of prime ideals of C and define R < X x ¥ by writing (x, veRforxey. IfF
and G are defined as for any polarity, show that, for any subset 4 of X,

-GF(A) = {xe X |3, \x"c A}, the so-called radical of A. Also show that the
closure operation FG on the set of subsets of ¥ makes ¥ into a compact
topological space called the spectrum of C. The ‘unity of opposites’ here
describes 2 one-to-one correspondence between closed subspaces of the
spectrum and ideals which are equal to their radical.

4. Take o and & to be the preordered sets of formulas of the propositional
ﬂmEE:mv the order being entailment. For a fixed formula C, show that
Fof - % and G: & — of defined by F(4)=C A Aand G(B)=C=Barca
pair of adjoint functors. What is the ‘unity of opposites’ in this case?

3. Prove propositions 3.4 and 3.5.

6. H.of = B = Sets, Ca given set, let F(4) = C x Aand U(B) = B¢ forany sets
Aand B. Extend U and F to functors and show that U is right adjoint to F.

7. Show that the forgetful functor from Cat to Sets which sends every small
category onto its set of objects has both a left and a right adjoint.

bt

Show that the forgetful functor from Cat to the category of graphs has a
left adjoint, which assigns to each graph the category ‘generated by it’,

4 Equivalence of categories .
We shall extend the ‘unity of opposites’ to general categories, but
first we need to extend the notion of ‘equivalence’.

Definition 4.1. An adjointness (F, U, 5, &) is an adjoint equivalence if y and £
are natural HmoBo%Emb More generally, an equivalence between
categories o/ and 4 is given by a pair of functors F: «f — & and U: B — of
such that UF =1, and FU 1,

The extra generality is an illusion: given that #:1,— UF and ¢ FU - 1 4 are
isomorphisms, one obtains an adjoint equivalence by putting

&(B) = e(B)F(Ue (BlqU(B)) .

Proposition 4.2. An adjointness (F, U, 7, ¢) between categories o and B

induces an adjoint equivalence between full subcategories o/, of o and &,

$1
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of %, where

ol o =Fizxn = {Aeof|n(A) is an isomorphism},
B, =Fix e = {Be#|e(B) is an isomorphism}.
‘Morcover, #U is an isomorphism if and only if eF is.

The significance of the last statement is this: if U is an isomorphism, By
‘becomes a reflective subcategory of 4; if eF is an isomorphism ¢, becomes
“a‘coreflective subcategory of . (See Definition 3.2/, ‘coreflective’ being the
ual of ‘reflective’))

3.8\ Only the last statement requires proof. It is a consequence of the
”mo__oﬁwm |
Lemma 4.3. Given an adjointness (F, U, 4, £} between categories .o and &,
he following statements are equivalent:
(1) nUF=UFn,
(2) " xU is an isomorphism,
- (3) eFU=FUs,
- (4) &F is an isomorphism.
Proof. We show that (I)=>(2) =(3)= (@) =(1). |
S =>(2). Suppose for the moment that n{4) has a left inverse g, we claim
wmﬁ in the presence of (1), g is also a right inverse. For
i\om = UF(ginUF(A) by naturality of »
= UF(g)UFn(A) by (1)

: =UF(gn(A))= UF(1 9= lypgy--
Now, by Definition 3.1, #U(B) has a left inverse Us(B), hence nU(B) is
somorphism, which proves (2).
- (2)=>(3). Assume that nU(B) is an isomorphism, then its inverse is Us(B),
3 Definition 3.1. Hence
~ eFU(B)=eFU(B)F(1y,)

= eFU(BF(nU(B)U«(B))

=eFU(BYFnU(B)FU¢s(B)

e Hmﬁﬁmvm‘qpmﬁmv Nvuw Uﬂmﬂmﬁmoa W.H

= FUg(B).

(3)={4). This is proved exactly like (1)=>(2). In fact, we may quote
{1)==(2), since there is an adjointness between #°° and ./°®,
EUS This is Eoﬁa like (2)=-(3) or by duality quoting (2)=-(3).
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Examples of Proposition 4.2 abound in mathematics. The main problem
is usually the identification of =, and %,. The following examples require
some knowledge of mathematics that has not been developed in this book.
(The same will be true for exercises 2 and 3 below.)

Example AI. Let of be the category of Abelian groups and # the opposite
of the category of topological Abelian groups. Let K be the compact
group of the reals modulo the integers: K = R/Z. For any abstract Abelian
group A, define F(4) as the group of all homomorphisms of 4 into K,
with the topology induced by K. For any topological Abelian group B,
define U(B) as the group of all continuous homomorphisms of B into K.
Then U and F are easily seen to be the object parts of a pair of adjoint
functors. Here o/, is &/, while 4, is the opposite of the category of
compact Abelian groups. The ‘unity of opposites’ asserts the well-known
Pontrjagin duality between abstract and compact Abelian groups. The
last statement of Proposition 4.2 tells us that the compact Abelian groups
form a reflective subcategory of the category of all topological Abelian
groups.

Example A2. Let & be the category of rings and & the opposite of the

category of topological spaces. For any ring 4, F(4) is the topological
space of homomorphisms of 4 into Z/(2), the ring of integers modulo 2,
the topology being induced by the discrete topology of Z/(2). For any
topological space B, U(B) is the ring of continuous functions of B into
Z/(2) (with the discrete topology), with the ring structure inherited by that
of Z/(2). Here o/, is the category of Boolean rings and 4%, is the opposite
of the category of zero-dimensional compact Hausdorff spaces. The “unity
of opposites’ asserts the well-known Stone duality. Both o7, and &% are full
reflective subcategories.

We summarize the ‘unity of opposites’ principle in another slogan. (The
reader will have noticed that a duality between categories .« and. & is
nothing but an equivalence between & and )

Slogan V. Many equivalence and duality theorems in mathematics arise .

mmm:oniaﬁmgoo%mx@awcgﬂnmoamm5&:8@gm vm:oﬁm&.ommﬁ
functors. o :

Exercises

L. Prove the statement following Definition 4.1 that every equivalence gives
- rise to an adjoint equivalence. (Hint: first show that qUF = UFy.)
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2." Givea presentation of the well-known Gelfand duality between commuta-
.~ tive C*-algebras and compact Hausdorff spaces in a manner similar to
Example A2. (Let & be the category of commutative Banach algebras.)

-3 If of is the category of presheaves on a topological space X and & is the

- category of spaces over X, show that there is a pair of adjoint functors

.. between o/ and # which induces an equivalence between sheaves and
local homeomorphisms. (See also Part II, Theorem 10.3.)

. ...a. Prove that U: # — & is (half of) an equivalence if and only if it is full and
", . faithful and every object of & is isomorphic to one of the form U(B), for
_.some object B to 4.

Limits in categories

‘In this section we shall study limits in categories. They contain as
munnmm_ cases many important constructions, for example products,
@.mmzmma and pullbacks, as well as their duals. Moreover, they serve as an
llustration of Slogan IV. We begin with the following special case.

Um&a.s.z.a: 5.1. An object T of a category . is said to be a zterminal object
if for each object 4 of .« there is a unique arrow Q A4 — T. (Later, we
shall usually write 1 for T.)

- We note that the uniqueness of O, may be expressed equationally by
saying that, for all arrows h: A - T,h= O ,. :

It is easily seen that T is unique up to isomorphism: if T’ is another
terminal object, then T’ T. Hence, one often speaks of the terminal
. o”_w..._.aoﬁ. For exarnple, in the category of sets, any one element set TW is
. rminal and, in the category of groups, any one element group is terminal.
terminal object in &#°P is also called an initial object in <. In Sets, the
on._w initial object is the empty set &, while, in the category of groups,
any terminal object is also initial.

As ‘an illustration of Slogan IV, we note that to say that ¢ has a
erminal (respectively initial) object is the same as saying that the functor _
O o —1 has a right (respectively left) adjoint.

b.«%&&% 5.2. Given a set I and a family {4;}iel} of objects in a category
o their product is given by an object P and a family of projections
AP P— A,liel} with the following universal property: given any object Q
-and any family of arrows {g;: Q0 — A;|iel}, there is a unique arrow f:Q - P

such that p,f= g, for all iel.
We may also say that the family {p;: P — 4;|ieI} is a terminal object in the
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category of all families {g;:Q — A;|icl } (with appropriate arrows).

It is easily seen that the object P is unique up to isomorphism. Hence,
one speaks of the product. It is often denoted by [];.;4;. In the category
of sets, products are ‘cartesian’ products. In many concrete categories,
products are constructed on the underlying sets with an obvious induced
structure. This is true for the categories of monoids, groups, rings etc., in
fact all ‘algebraic’ categories (that is, varieties of universal algebras), as
‘well as for the categories of posets and topological spaces.

A product in «/°® is also called a coproduct in . There is no one
preferred name for coproducts in the literature; in Sets, coproducts are
disjoint unions, while, in the category of groups,.they are free products.

What if I is the empty set? Then the universal property asserts that,
for each object 0, there is a unique arrow @ — P, in other words, that P
is a terminal object.

Again we have an illustration of Slogan IV: to say that all I-indexed
families in o/ have products (respectively coproducts) is the same as saying
that the functor o/ — .»¢ which sends an object A of & onto the constant
family {A|icl} has a right (respectively left) adjoint.

It may be worth looking at the product of two objects A and B of of
in some detail. It is given by an object A x B with projections = 15 AxB
— A and 7y p:4 x B-» B such that, for all arrows f:C-» 4 and g:C— B,
there is a unique arrow { f,g>:C— 4 x B satisfying the equations:

ny5fig> =1, Ty, mA‘ﬁmv =4g.

Note that the uniqueness of  f, g > may also be expressed by an Bsmcou .

namely:
{m 4 gh, Ty gh)=h,
forall :C- A4 x B.
Evidently, the defining property of A x m establishes a _ucnoﬁou between
pairs of arrows (C— A4, C— B) and arrows C— 4 x B. To say that all such
products exist is the same as saying that the diagonal functor A: . —

o x o has a right adjoint. Dually, all binary coproducts exist if and only
if A has a left adjoint.

Definition 5.3. A pair of arrows f,g:4 = B is said to have an equalizer
e:C— A provided fe = ge and, for all h: D — A4 such that fh = gh, there is
a unique arrow k: D — C satisfying ek = h. Another way of expressing this
is to say that e: C— A is terminal in the nm_”nmo@ of ail arrows h: D A
such that fh=gh,

It is easily seen that the equalizing object C is unique up to isomorphism.
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. ____?_:*_____;'h':

n ﬁwn omﬁamod\ on. sets or groups, one may take C={aec4|f(a) = g(a)}
s& e:C— A as the inclusion. As is the case for products, equalizersin
nany concrete categories are formed on the underlying sets. An equalizer
5...,.&\% is also called a coequalizer in s7. In Sets, the coequalizer of two
mappings f,g: B3 A is given by e: A - C, where C is obtained from 4 by
dentifying all elements f(b) and g(b) with be B, and where e is the obvious
utjection, (More precisely, C = Af=, where = is the smallest equivalence
elation on 4 such that f(b) = g(b) for all beB.) In the category of groups,
he coequalizer of two homomorphisms f,g: B=3 A i§ obtained similarly
from a suitable congruence relation on A (or normal subgroup of A).
While it was evident how finite products could be presented equationally,
-is by no means obvious how this can be done for equalizers. The
] lowing discussion is our version of Burroni’s pioneering ideas.

.ﬁmﬂr any diagram A %
( 1. S /.9 A which is to serve as its equalizer. Clearly, we must stipulate
the ‘equation

Bl)y fulf.9)=ga(f.g).

ext, let us consider the universal property of a(f,g). Given an arrow
blm such that fh=gh, we mmaw a unique arrow Blf,g.h:D—>E(f,q)

B we associate another diagram

Y gk =h T D=

While (*) is an equation, it depends on the condition fh = gh, which we
ould like to get 1id of. We shall consider two special cases of f(f,g, )
| which the condition fh=gh is automatically satisfied.

m_uﬂ special case: consider any arrow h:D — A, Eob surely

- fho fh,ghy= gho(fh, gh). -
ence we stipulate an arrow y(f,g,h) (= E \ g, ha(fh, gi)): E(f h, gh)—
( % g) satisfying as a special case of (¥*):

B)  olf,g(f,gh)=ha(fhgh). 5/
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C

Hence we stipulate an arrow () (= (1, f.1,)): A— E(f, f) satisfying as
a special case of (*):

(B3)  alf, Ne(f)=1,.

From the two special cases we can define 8(f,g,h) in generak
Assuming fh = gh, put

**}y  Blf.a.h =1, 9. h)3(fh).
Then

(i P————B

oc&wu,ﬁom and, for any ozu,ma commutative square as mwoﬁy there is a

o f, DB(F. g, b} = a f, g[S, 9. WS ) = hee .Ns.:“ QE%.“ h), E@..ﬁm arrow D — P such that the two triangles

by (B2). As it so happens that fh = gh, this becomes equal to
\Q.,_..U =

by (B3), and so we recapture (*).

It remains to express the uniqueness of 8(f, g, k) equationally. So suppose
that a(f, g)k = h, we want this to imply that k = g(#, g, h). This i is wSQnEG
done by

(B4)  B(f.g.alf. gk)=k.

Here f# can be eliminated in favour of y and & using (**).- .
We summarize the preceding discussion of equalizers as follows.

\/

It is easily seen that P is unique up to isomorphism. A pullback in..o/°"
is called a pushout in o#. In a category with a terminal object T, binary
Hoasoa are special cases of pullbacks, namely when C = T. Instead of
n_mmon?um pulibacks in other special categories, we shall show how, in
n mH Baw may be constructed from anzoﬂm and equalizers.

Ooaﬁuﬁﬂo

Proposition 5.4.(Burroni). Equalizers for all pairs of arrows f,g: A 3 B are
given by the following data: an arrow off,g) E(f,g)— A for each such
pair, a family of arrows v(f, g, h): E(fh, gh) — E(f,g) one for each h: D — A,
and an arrow o(fx.A-E(f, ) mmnmambm (B1) to (B4) (with § eliminated
from (B4} by (**)).

Proposition 5.6. If a category has binary products and o@:m:mﬁ.m
&Emn_a may be constructed as follows:

Definition 5.5. A pullbackofa &memE /,n. is given by a diagram mA B

which is terminal in the category of all &mmHmBm b/m such that

|

commutes. In other words,

A

D

.ua k:D—B are such that fh=gk. Then there is a unique arrow
h, »v blh x B mznv Emﬁ al{hky=hand x A_w k>= w rouon a unique
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arrow s:D— P such that ma(fm, fﬁwn =h and #alfr, Qw&m =Fk, that is,
o fr, gm)s =h k).

Definition 5.7. Let there be given a category . (the index category) and
a functor I''f > of (called an S-diagram). A limit of T is given by a
terminal object in the category of all pairs (4, £} with 4 an object of =
and t: K(4) —I' a natural transformation, where K(A): .# - & is the functor
with constant value 4. In other words, (Ao, ty: K{(dy)—>T) is a limit of I"
if for all (4,t: K(4)—T) there is unique f:4— 4, msnw that £,(I}f=t{I)
for all objects I of .#.

It is easily seen that A, is unique up to isomorphism. Special cases of
limits are products (£ discrete), equalizers (£ is -=3-) and pullbacks (&
is " 3). Limits may be constructed from products and equalizers as are
pullbacks (Proposition 5.6). Limits in «#°° are also called colimits in .
If .# is a directed poset, limits are usually called inverse or projective limits,
while colimits are called direct or inductive limits. The limit of I" (or rather
the object A,) is sometimes denoted by lim T and the colimit by lim T

The following connection between _E.Em and adjoint functors Ezmﬁmﬁm
Slogan IV,

Proposition 5.8. To say for given categories .# and .o/ that every .#-diagram
I': # — of has a limit {respectively colimit) is equivalent to saying that the
constancy functor K: o/ — «#*, which associates to every object A of o7 the
functor K(A): # — o7 with constant value 4, has a right adjoint (respectively
left adjoint). .

Proof. One way of asserting that K has a right adjoint L.e#* — & is by the _

solution to the universal mapping problem (dualize Definition 3.2): for each
object " of & there is an object I(T) and a natural transformation
&' KL{I') > T such that, for every natural transformation # K(4)—T
there is a unique natural transformation t*:4— L) satisfying
e(I)K(t*) =t. But this says precisely that (L(I"), &I)) is a limit of I" (see

Definition 4.7).

Many functors occurring in nature preserve limits (up to isomorphism).
We shall mention two examples.

Proposition 5.9. If A is an object of the locally small category <, then
Hom (A4,-): o —Sets preserves limits: if I'"F—of has limit Ay then
Hom (A4, T(-)): .# — Sets has limit Hom (4, A,).

- Proof. Write h*=Hom(4,-) and assume that (Ao, ty: K(4o)—>T) is

terminal in the category of all pairs (A4, K(A)-T). We assert that

(h*(Ag), Aty i K(Ay)— hT) is terminal in the category_of all pairs
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Xz K(X)—hiT), X being a set. (Note that xhﬁiovlhﬂr;&o:v In

ther words, we claim that there is a unique mapping : X — h4{4,) such
.:um: (h*t5)oK(y) = 7. To see what this last equation means, apply it to
ogmoﬂ I of .#, then it asserts

Hom (1, to(D)W = =(1).

.>mmE applying this equation to any xeX, we oEmE
D) =D

fit :WQ:ILJ is defined by t.{I) = t(I)(x), we see that this means
oo KW(x) = £,

e existence of a unique W(x): 4, — A dﬁmu this property is assured by the
.wm t-that (4, t,) was terminal.

3.&_85@: 5.10. I F: of — % is left adjoint to U: & — o7, then U ?.omﬂémw
_Eﬁm and F preserves colimits.

3& ' I{ o/ and 4 are locally small, this is an easy corollary of Proposition
;- However, one may just as well prove the result directly, sﬁroi
mmmauaum local smallness, and we shall do so for U.

While it is easy to give a precise argument as in the proof of Humovoason
the reader may find the following sketch more intuitive.

Let. % (respectively ) be the fuil subcategory of =7 (respectively #-)
consisting of those .#-diagrams which have limits. Evidently, ¢ contains all
onstant #-diagrams K _(A), with 4 in o7, such that K _{A)(I) = A for all I
ﬁs\. Hence we may factor the constancy functor K o —.o/* through
;o = €. As in Proposition 5.8, we may regard lim, as right adjoint
K.,. Now F*-of” —B* (respectively U”: #” — o#*} factors through
Fi€—9 Q@mwmomé_w U9 —%) and U’ is right adjoint to F’. Then,
_oE.HF FK,=K,F.

F

 ——

inclusion
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Taking right adjoints, we obtain, in view of Proposition 3.5,
lim, U’ Ulim,. Applying both sides to any diagram A.# -» 7 and noting
that U'(A) = UA, we finally obtain Im(UA) = U(lim (A)).

Definition 5.11. A category s/ is said to be complete (cocomplete) if it has

all limits {colimits) of diagrams I':.# — o/, .# being small. This means that
products (coproducts) and equalizers (coequalizers) exist.

Assuming completeness of & or % one can prove a kind of converse of
Proposition 5.9 and of 5.10. For example, if U:#— .o preserves limits
and .o is complete, one can construct a left adjoint F:./ — &, as in
Exercise ! of Section 3, provided a certain ‘solution set condition’ holds;
this is the content of Freyd's Adjoint Functor Theorem. These converse
results will be brought out in the exercises; they depend on the following
lemma, the proof of which is a bit tricky.

Lemma 5.12. If o is complete, then o/ has an initial object if and only
if it has a small pre-initial full subcategory %, that is to say, for any object
A of o there is an object C of € and an arrow f:C—> A in o.

Proof. The necessity of the condition is obvious. To prove its sufficiency,
let (A, u: K{4,)—>T) be the limit of the inclusion functor '€ - 7. In

particular, for each object C of € there is an arrow u(C): A,— C. Take

any object 4 of &, then, by assumption, we can find C in ¥ and an arrow
f:C— A, hence an arrow fu(C): A, — A. It remains to show that there is
only one arrow A, — A.

Suppose we have two arrows g, A,2 A mnn let :K— A, be their
equalizer. It will follow that g = h if we can show that k'has a right inverse.
By assumption, there exists C'in % and an arrow f: C' — K. It will suffice to
show that kf'u(C') = 1,.

Now, for any object C of €,

WO u(C) = u(C), .
by naturality of u and because (C)k f*: €' - C is an arrow in the full sub-

category €. Since (4,, u) is the limit of the inclusion % -» o7, there exists a
unique arrow e: A, — A, such that i@m = u(C). Hence

kfulC)=e=1,,

and our argument is complete.

Exercises

1. Prove that limits can be constructed from products and equalizers,
generalizing the proof of Proposition 5.6.

L
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s Déduce from Proposition 5.10 that, in the propositional - calculus
- Tegarded as a preordered set (see Exercise 4 of Section 3), the distributive
law holds: pAa(avb)sm(pAaa)vipaAb)

3. Given two functors F, G: o/ 3 4, let (F; G) be the category whose objects

., are me.m {4, b: F(A)— G(A4)), A any object of o, and whose arrows

(A, b)~(A’,b) are arrows a:A->A' in o, such that G(a)b=bFla).

.>mm=EEm that o is complete and that G preserves limits, show that (F; G)

" has an initial object ifand only ifit has a small pre-initial full subcategory.
.- (Hint: Use Proposition 5.12.)

4. If o is locally small, a functor U: s/ —Sets is said to be representable if

o U=Hom(A4,~) for some objects A of &#. Show that U is representable if

-and only if the category (K({=});U) has a small pre-initial full sub-
category. (Hint: Use Exercise 3 with £ = Sets.)

: m Let o be a complete category. Show that a functor U: &/ — % has a left
-~ adjoint if and only if U preserves limits and, for each object B of 4, the
© category (K(B); U) has a small pre-initial full sub-category.

6. Hﬂ & be a complete category. Show that a functor I': # — o has a colimit
‘ifand only if the category (K(I'); K} has a small pre-initial full subcategory.
 (Here the first K denotes the constancy functor o2 —(o#”)*, while the
second K denotes the constancy functor o — 27

- Given a small category .« and any functor F: of°F — Sets, show that Fisa

colimit of representable functors as follows. Let .# r be the category whose

. objects are pairs (4,1), 4 an object of o7 and : Hom _(—, 4)— F a natural

transformation, and whose arrows (4, t) — (4', t}are arrows a; 4 > A’ in &

“ such that ¢<Hom {~,4)=t. Then F is the colimit of the functor I'y:

S p—Sets”™ obtained by composing the Yoneda embedding .27 — Sets**®

. with the obvious forgetful functor #,— o/, (The associated natural

" transformation to: T'p— K(F) is defined by t4(4,8) =t.)

“Triples

© We recall that a closure operation on:a preordered set of =
<)} is a mapping T: || — |+ | with the following properties:

A<B
- T(A)< T(B)’
‘all elements 4,B of |<|.

A< T(A), TT(4)< T(4),

The first of these says, of course,




H&aﬁﬁ% TI. Let there be given a monoid .4 =(M,1,-). For each set A
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tural transformations. Moreover, one obtains a triple (T, 1, 1) on Sets, the
ity laws and associative law here following from the equations

Definition 6.1. A triple (T,n, 1) on a category &/ consists of a functor T
« — of and natural transformations #: 1 ; » T'and u: T? — T satisfying the
equations

peTn=1p=peqT, pouT=p-Tu
These equations are sometimes called the unity laws and associative law
respectively and are illustrated by the following commutative diagrams:

oml=m=1m, (mm)m’=m(n-m)
or m: 3,5 and m"eM, which will explain their names.

.m.«asﬁﬁm T2. Let T=P be the covariant power set functor Sets— Sets,
:mﬂ is, for any set 4,

. PUA)={X|X s 4)

T . ; . pT \ ,
T =T T r t any mapping f: A — B, and any subset X < A,
_ P(f)(X) = {f(x)] xeX]}. |
n? r H : Tu H ﬁrn::oﬂm let the natural :mammogm:omm n and ¢ be given _uw the
Bm@?umm n(A): A — P(A) and p(A}): P(P(4))— P(A) defined by
T2 : T T? T nANa) = {a}, wWANZ) = Cn&.\ = C A,
i : . . H Xed

0 a set A, any element ac 4 and any set om subsets of A. The reader is
Eﬁma to show that (T, n, s a _ﬁu_o by verifying the unity and associative
ms,m in this case,

The reader will recall how natural transformations are composed (see
Example Omv for example, the mmwoﬂmﬁzo _mé asserts that, for every object
A of o/,

HAT(AY) = p(A)T((A)).
Proposition 6.2. (Huber). If F:o/ > @& is left adjoint to the functor
U: # — o with adjunctionsn: 1, —» UF and &: FU — 1, then (UF, 5, UsF)is
a triple on <.

We: ”nos, return to the question: does every triple on & arise from a

i L F U . o
air - of adjoint functors & —%-—/ as in Proposition 6.2? The

..muwiﬂ. is ‘yes’, but the category % is not unique. In fact, we shall present two
xs.aEnm for the construction of 4.

%Enaa 6.3. Given a triple (T,#, ) on a category ., the Eilenberg—
oore category /7 of the triple is defined as follows. Its objects, called
Emgm are pairs (4, @), where e T(A)— A is an arrow of o satisfying the

Proof. For example, let us prove one of the unity laws:
po Ty = UeFoUFn = U(eFsFr)=Uly = lyp,
by Definition 3.1, and since
(Ulg)(4)= QQE&L = _EEL: = 1yp(A)-

_ oA =14 QuA)=T(p)
We leave the proofs of the other two laws to the reader. ' . -

m= objects 4 of o Its arrows, called w_czﬁciogr«.&&, (A, @)= (4", ¢")are

We shall see that the converse of this proposition is also true; but first we
shall ook at a number of examples of triples, which, on the face of it, do not
seem to arise from a pair of adjoint functors.

(A A T
A T(A) ﬁiviam,mivlv T(4) :&If@l.v T(4")

define the set T(A)= M x A and the mappings

mAxA—>Mx A, pArMx(MxA-MxA

a(l,a) (m. (', a)) — (m-nt, a). » g © @ o’

One ommmw makes T into a functor Sets — Sets m.E.H checks that and jrare 4 ) A A A

@ o
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Example T1 (continued). -An element of T(A)=M x Aisa pair (m, a) with
meM and aeA. One usually writes ma = @(m,a). The equations of an
algebra then read

la=a, (m'm)a=mim'a),

for all ac4,m and m’eM. In other words, an algebra is an \\N set (see
Example F3 in Section 1). The equation satisfied by a homomorphism reads

o(ma) = S&&

for all ae4, so we recapture the usual roEoEoﬁuEmb of . -sets (see
Proposition 2.2).

Example T2 (continued). The algebras of the power set triple on Sets are
sup-complete (hence inf-complete) lattices and the homomorphisms are
sup-preserving (hence also order preserving) mappings.

In view of these examples and many others like them, we enunciate our final
slogan.

Slogan VI, Many categories of interest are the Eilenberg-Moore
categories of triples on familiar categories.

In both examples above, the familiar category is Sets, but in Exercise 2
below it is Ab, the category of abelian groups. Categories, on the other
hand, may be viewed as algebras over Grph, the category of graphs.

Definition 6.4, Given a triple (T,n, 1) on a category .+, by a resolution
(8, U, F,¢) of this triple we mean a category # and a pair of adjoint functors

of h% :WW“R such that UF =T with adjunctions » (as given) and ¢

‘such that UeF = u (as in Proposition 6.2). The resolutions of the given
triple form a category whose arrows @:(#,U, F,e)—(#,U,F,&) are
functors @: # — #' such that ®F = F', U'd = U and &¢ = £@. In particular,
the following two triangles commute:

2

Triples : 31

“Proposition 6.5. The Eilenberg-Moore category o7 of the triple (T, 7, 1)

on o/ gives rise to a resolution (&7, UT, FT,¢7), which s a terminal object in
the category of all resolutions. Thus, given any resolution (#,U,F,¢), there
m.m..m unique functor K™: # — .o/ 7, called the comparison functor, maov that
K'F = FT,UTK"= U.and K"z = ¢"K". Moreover, U7 is faithful.

”.w__d&w (1) We define UT: T of by

q,.f_ oy= A, .qH@ =gy,

: ﬁoH m.uw algebra (4, ) and any homomeorphism «. Evidently, U7 is faithful.

@ We define F7: o - o#7 by
- FHA)=(T(A), 1(4), F'(f)=T(f), w1

o H.ow any object 4 and any arrow f of 7. It is easily checked that (T(4), E\S

is an algebra, that T(f) is a homomorphism and that UTFT=T7. U
{3) We define the natural transformation &7 from FTUT to the identity
functor on &7 by its action on the algebra (4,¢) as follows: the
woBch%_ﬁmB ¢’(A, @) = . Indeed, the square

T}

T 4) - T(A) -
E\:‘ : ﬂn

T(A) A

commutes by Definition 6.3. To see that UTe"FT =y, one calculates
(UTeTFT)A) = (UTeNT(4), i A)) = UT(u(4)) = p(A).

ém let the reader check that

(EFTFTn)(A)= A, (UTe"onUT)(4, ) =(4, @),

or ‘any object A of & and any algebra (4, ¢), whence it follows that
/T, UT, F", &%) is a resolution of the given triple.

(4) Let (#,U, F,s) be another resolution of the same triple, we shall
istruct the comparison functor K7: % — T and show that it is the
que functor with the desired properties. For any object B and any.arrow
of 2, we put

- K'B=(UB),UsB), Kg)=Uly)

Then surely UTKT = U; in fact, this result forces the definitions of K T(g)and
of 30 first ooamowmﬁ of K¥(B). Moreover, e? K*(B) = Ug(B), and this forces
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the definition of the second component of K(B). It remains to check that
KTF =FT, Indeed, for any object 4 of <,

KTF(A) = (UF(A), UsF(4)) = (T(A), y(4)) = FT(A).
This completes the proof. .

We remark that, in view of Slogan VI, it is of interest to know when the
comparison functor is an equivalence of categories. Conditions for this to
be the case were found by Beck. Without going into these conditions here,
let us only mention that a functor U: & -» o is called tripleable or monadic if
it has a left adjoint and if the o,_oaﬁmnmoz functor K7 is an equivalence.
Examples of tripleable concrete categories U: % — Sets are all algebraic
categories, that is, varieties of universal algebras, and the category of
compact Hausdorff spaces. )

The category of resolutjons of a triple also has an initial object.

Definition 6.6. The Kleisli category < ; of a triple (T;#, 1) on a category &
is defined as follows. Its objects are the same as those of &/; however, arrows
A+ A" in o/ 1 are not the same as they would be in «, instead they are
arrows A —T(A4') in .«/. How do we compose arrows f: A — T(4’) and
g: A" T(A")? Denoting their composition in &1 by g*f: 4 — HT_J in o7
we define

g f = uA")T(g)f.
In particular,

S n(d) = W AVT(Sm(A) = AT f = 1{A) f = f

b

and

- HA)xf= :i )T(d)f = :.E =1
hence i\: A — T(A) serves as the identity arrow A — A in o 7. We leave it
to the reader to check the associativity of composition in +# T

Example T2 (continued). What is the Klieisli category of the power set
triple on Sets? An arrow A— P(B) in Sets may be regarded as a multi-
valued function from 4 to Bor, equivalently, as a relation between A and B.
More precisely, let f: A — P(B) correspond to R, < 4 x B, where (g, b)eR ¢
means bef(a). What about the composition of f with g:B- P(C)?
According to Definition 6.6,

{g*/)(a)= U C)(P(g)(f (@)
= {g®)ibefla)},

B
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‘hence
(@,c)eR, ;+ce(g=f)a)

= dep(be f(a) A ceglb))

=ep((a,b)eR, A (b,c)eR,)

<(a, &mxnxk:
m._.ooon&um to one way of defining the ‘relative product’. Zoaoéa the
identity arrow 1, in the Kleisli category is represented by the mapping
n(AxA—P(4) in Sets, which sends asd onto {a}=A. Hence
[ @)eRy y=a'e{al, so R, is the identity relation on A. We conclude
Hat the Kleisli category of the power set triple on Sets is (isomorphic to) the
..omamoQ whose objects are sets and whose arrows are WENQ relations.

..m...@.&a_g 6.7. The Kleisli category « 1 of the Ev_n T,n, E on f gives
Tise' to a resolution (&fy, U, Fr,er), which is an initial object in the
.nmnmmoQ of all resolutions. Thus, given any resolution (&, U, F,¢), there
18°a unique functor K;: s/ — @ such that K Fp=F, UK;=U, and
rér = K. Moreover, Fy is bijective on objects.

. .m.w__..o&_,. (1) We define U o/ — of by

UdA)y=T(4), Udf)=uBT(f),

forany object A4 of ¢ 7 that is of o7, and for any arrow f:A— Bin 1, that
s, f: A~ T(B) in . It is easily verified that Uy is a functor.

{2) We define F;: o/ — o/ 7 by .

. FdA)=4, Fff)=nB)f,

or any object 4 and any arrow f: 4 -» B in «. Evidently, F is bijective on
objects and it is easily checked that U F; = T and that F, is_a functor.
3} We define the natural transformation &, from F U to the identity

unctor on & r by putting &,(A) = 14, in . To see that quiq = one
.ommoz_mﬁom

 (UrerF)(A) = (Usep)(4) =
¢ 'let the reader check that
{erFre Fpn)(A) = A, mcﬂmwoaﬁiﬁ,&

EQ object 4 of o, hence of o 1, whence it mo:oam that (o, Ug, F, 1)
$'a resolution of the given triple.

“(4) Let (®, U, F,¢) be another resolution of the same triple. We shall
onstruct a functor K;: o/ — & and show that is the unique functor with
the desired: properties.

.Quéﬁéu = pA).
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For any object 4 of &/, and any arrow gA—A"in o, that is, g:
A—T(A') in &/, we put
Kild)=F(4), Ki{g)=cF(A)F(g).

Then surely K ;F{4) = K (4) = F(A), and this forces the definition of Ky
on objects. Moreover, for any f:A—B in «, KErF{f)=EK(#B)f)=
eF(B)Fn(B)F(f}= F(f). Thus K, F,=F.

Conversely, K Fy = F implies that K(#(B)f) = F(f); in particular, it

implies for g: 4 — T(A") in o that K ,{n T(A')g) = F(g). We shall see later that

this forces the definition of K on arrows, once we know what it does to the
arrow lp 4.
We calculate
Kreg(A} = Killy ) = eF(A) = eK {4')
as required, and this forces the definition of K r{lrn). Nowifg: 4 — T{4)in
& is any arrow A— A’ in o 1, _
g=puAMT(A)g = u(A oudqi&: T(A)g = :?5 =nT(A)g,
where = denotes composition in ., hence
Klg) = Kp(l14)K(nT(A)g)
= eF(A)F(g),
which finally establishes the uniqueness of K;.
It remains to check that
UK(4) = UF(A) = T(4) = U(4),
UK (g) = UsF(A)UF(g) = oA Tlg) = Ulg),
and this completes the proof,

Corollary 6.8. Let Ly: s/~ o#7 be the special case of the comparison
functor K¥ when 8 = o (or of K when # = o/7), then we have functors

T
o Er, g Lo, UL,

with FT = LF left adjoint to U and U, = ULy right adjoint to Fj.
Moreover, Fis bijective on objects, U7 is faithful and Lrisfull and faithful.
Proof. Inview of Propositions 6.5 and 6.7,it only remains to show that Ly

is full and faithful. This follows from the following calculation: for any
g:A~>T{A") in o,

L(g) = K™(g) = Usg) = u(4)T(g),
hence

g=wAMT(ANg = WA T(gn(A) = L{gn(A).
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- Corollary 6.9. The Kleisli category of a triple is equivalent to the full
~subcategory of the Eilenberg-Moore category consisting of all free
algebras.

" Proof. The full and faithful functor L, establishes an equivalence between
o7 and a full subcategory of «#7. Since, for any object A of <7 T

_ Ly(A) = KT(4) = (U(A), Urer(A)) = (T(A), u(4)) = FT(4), .

- itfollows that the objects of this subcategory are precisely the ‘free’ algebras
~of the triple.

....m.haih__.@ T1 (continned). The Kieisli category of the triple associated with
- amonoid .# is equivalent to the category of all free .4 -sets regarded as a full
~ subcategory of the category of all .4-séts.

Exercises.

.H. Complete the proofs of Propositions 6.2 and 6.4 and the proofs in
~~ “Examples T1 and T2.

2. Given a ring R (associative with unity element), construct a triple (T, 1, )
. on the category Ab of abelian groups with T(A4) = R ® 4 for any abelian
group A. What is the Eilenberg—Moore category of this triple?

3." Prove the associativity of composition in the Kleisli category of a triple.

”. 4. (Linton). Show that the Eilenberg—Moore category may be constructed
~ from the Kleisli category as a pillback: .

AP

AT > Sets

e : Ly
T mm»m%

op

,R . . — Sets
Yoneda

Examples of cartesian closed categories

- . In Part I we shall talk at length about ‘cartesian closed categories’,
hich will be defined equationally. In preparation, it may be useful to
give a less formal definition and to present some examples.

.- A cartesian closed category is a category ¥ with finite products (hence
having a terminal object} such that, for each object B of &, the functor
=) x B:¥ =% has aright adjoint, denoted by (—)®: % — €. This means that,
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for all objects 4, B and C of &, there is an isomorphism
(*) Hom (A x B,C) Hom (4, CE)
and, moreover, that this isomorphism is natural in A, B and C.

Example 7.1. The category Sets is cartesian closed. Here 4 x B is the usual
cartesian product of sets and C? is the set of all functions B—C. The
bijection (+) sends the function f: A x B— C onto the function fY2A-C5
where f*(a)(h) = f(a,b) for all acA and beB, (See Section 3, Exercise 6,)

Example 7.2. More generally, for any small category ¥, the functor
category Sets” is cartesian closed. Also cartesian closed is the category of
sheaves on a topological space and, in fact, every so-called topos (see Part
I1, Sections 9 and 10, even without natural numbers object).

Example 7.3, We recall from Section 1 that a poset (P, <) (that is,
preordered set satisfying the antisymmetry law) may be regarded as a
category. As such, it has finite products if and only if it has a largest element
1 and a binary operation A such thatc <a A bifand onlyifcgaande b
for all &g_nua a,band ¢ of P. In fact, (P, 1, A }is then a monoid satisfying
the commutative and idempotent laws:

anb=baag anra=a

Such a monoid is usually called a semilattice, and one Smw recapture the
partial order by defining a < b to mean @ A b=a. For (P,1, A) to be
cartesian closed there must be another binary operation <= such that
aAb<gcifandonlyifa c<=bforallelements g, band c of P. P 1, A, <=)is
then called a Heyting semilattice.

Example 74. A Heyting algebra (P, 0,1, A, v, <=) also has a smallest
element 0 and a binary operation v such thatav b <cifand onlyifasge
and b < ¢ for all elements a, b and ¢ of P (hence (P, A, V) is a lagtice),
it being assumed that (P, 1, A, <) is a Heyting semilattice. When the
underlying poset (P, <) is viewed as a category, V becomes a coproduct

and the category is called bicartesian closed. Hboawﬂm_? the distributive

law

anbvel=(anbyvianc

then follows from general categorical uﬁuﬁﬁ_mm (see Section m Exercise 2),
" A typical example of a Heyting algebra is the lattice of owou mz,cmng ofa
topological space X, with the following structure; .

I1=X.0=Z,UAV=UnV,UvV=UuUV,
Ve=U=int((X — U)u V),
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.moH all open subsets U and V of X, where ‘int’ denotes the interior operation.
-Another example of a Heyting algebra wil be the lattice of subobjects of
an objectin a topos (see Part II, Section 5, Exercise 3). Many other examples
”m.a@ found in the literature (see the books by Balbes and Dwinger and by

Example 7.5, Cat, the category of small categories, is cartesian closed, For
any small categories .« and B, o x B is their product and #“ is the
category of all functors &/ — 4. (See: Section 1, Example C7; Section 2,
‘Example C8; Proposition 2.3.)

xample 7.6. Although the category top of topological spaces and con-
tinuous mappings is not itself cartesian closed, various fuil subcategories of
top are. For example, the category of Kelley spaces (that is, compactly
generated Hausdorff spaces) is cartesian closed if products are defined in the
usual way and Y is the set of all continuous functions X — ¥ with the
ompact—open topology. (See the book by MacLane for more details.)

Example 7.7. The category of w-posets is cartesian closed. An w-poset is a
poset in which every countable ascending chain a,<a; <a,<...of
¢lements has a supremum. Morphisms of w-posets are mappings which
_ﬁwmmmﬁm supremums of countable ascending chains (such mappings
necessarily preserve order), The product structure is inherited from Sets and
Blis Hom(4, B) with order and supremum being defined componentwise.
(For details see Part I, Proposition 18.1. For related cartesian closed
tategories see the book by Gierz et al)

Example 7.8. The category of Kuratowski limit spaces is cartesian closed.
A limit space is a set X with a partial w-ary operation (that is,.an operation
defined on a subset of X™, the set of all countable sequences of ¢lements of
X) satisfying the following conditions:

- (i) the constant sequence (x, x,...) has limit x;
“{ii) if a sequence has limit x, then so does every subsequence;
(it}  if every subsequence of a sequence has a subsequence with limit x,

then the sequence itself has limit x.

morphism f:X —Y between limit spaces is a function such that,
whenever {x,/neN} is a sequence of elements of X with limit x, then
ﬁ % {(x)|neN} has limit f(x). The product is defined as for sets, with limits
given componentwise, and Y is the set of all morphisms X — Y, where the
limit of { b?mzw is mma to be f provided the limit of { f,(x,)|neN} is f(x)
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whenever the limit of {x,|neN} is x. (For details see the book by
Kuratowski, Chapter 2.) A

Exercises .
1. Carry out the detailed proof in any of the above examples.

2. Show that Heyting semilattices may be defined equationaily.

Cartesian closed categories
and A-calculus
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. . Introduction te Part I
A-calculus or combinatory _cmuo 1s a topic that logicians rm:a
studied since 1924. Cartesian closed categories are more recent in origin,
‘having beeninvented by Lawvere (1964, see also Eilenberg and Kelly, 1966).
Both are attempts to describe axiomatically the process of substitution, so it
$ not surprising to find that these two subjects are essentially the same.
More precisely, there is an equivalence of categories between the category
H, cartesian closed categories and the category of typed A-calculi with
Eunn_“:ﬁ pairing. This remains true if cartesian closed categories are
provided with a weak natural numbers object and if typed Ji-calculi are
‘assumed to have a natural numbers type with iterator,
“This result depends crucially on the functional completeness of cartesian
losed categories, which goes back to the functional completeness of
ombinatory logic due to Schénfinkel and Curry. It asserts, in particular,
wmﬁ every arrow ¢(x). 1 - B expressible as a polynomial in an indetermi-
ate arrow x: 1 » A over a cartesian closed category o (with given objects

mﬂa B) is uniquely of the form 1 =>4 wau where f is an arrowin o
ot depending on x.

ﬁ:zoaomm_ ooBﬁ_oﬂgmmm is closely related to the deduction theorem for
om::a intuitionistic propositional calculi presented as deductive systems.
n.our version, it associates with each proof of THB on the assumption
A a proof of A-B without assumptions. However, functional com-
lcteness goes Gowona this; it asserts that the proof of THB on the
. Eww:o& THA is, in some sense, gméahman to the proof by tran-

ivity:

THEA ARB
T+B
.w.m:omé systems are also used to comstruct free cartesian closed

ategories generated by graphs, whose arrows A-—B are equivalence
asses of proofs.
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We present a decision procedure for equality of arrows in the free
cartesian closed category (with weak natural numbers object) generated by
the empty graph; equivalently, for convertibility of expressions in the pure
typed A-calculus under consideration. This is the coherence problem for
cartesian closed categories, the solution of which goes back to early work in
the A-calculus.

Finally, we study C-monoids, essentially monoids which may be viewed
as one-object cartesian closed categories without terminal object. The
category of C-monoids is shown to be equivalent (even isomorphic) to the
category of untyped A-calculi with surjective pairing. Again, this tesult
depends on functional completeness of C-monoids. .

It is shown that every C-monoid may be regarded as the monoid of
endomorphisms of an object U in a cartesian closed category such that
U x U= U=UY Anexample of such a category with U not isomorphic to
1, due to Dana Scott, is presented.

The reader who wishes to see these results in their Ewﬁcdnmw perspective is
advised to look at the following comments.

Historical perspective on Part I

For the ‘purpose of this discussion, it will suffice to define a °

cartesian closed category as a catégory with an object 1 and operations
(=) x (=) and (-) on objects satisfying conditions which assure that
() Hom(4,1)={*},
(i) Hom(C, A x B)= Hom(C, A) x Hom(C, B),
(iii) Hom(A4, C% = Hom(4 x B, C).

Here {#} is supposed a typical one-element set, chosen once and for all.

It will be instructive to reverse the historical process and see how
combinatory fogic could have been discovered by rigorous application of _

Occam’s razor.

Condition (i) says that, for each object A4, there is only one arrow 4 — 1,
hence we might as well forget about the object 1 and the arrow leading
toit. However, the arrows H — A must be m:.omm?oa let us call them entities
of type A.

Condition (ji) says that the arrows C— A4 x B are in one-to-one corres-
pondence with pairs of arrows C— 4 and C— B, hence we might as well
forget about the arrows going into 4 x B.

Condition (iii) says that the arrows A x B— € are in one-to-one corres-
pondence with the arrows 4 -»C?, hence we might as well forget about
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E@.mﬁoﬁm noBEm out of A x B too. Oowmmmcwa&: we might as well
forget about A x B altogether. :

*‘We end up with a category with a binary operation ‘exponentiation’
on objects. Of course, this will have to satisfy some conditions, but these
may be a little difficult to state. It is interesting to note that Eilenberg
ind Kelly went on a similar tour de force and ended up with a category
with exponentiation in which some monstrous &mmw.m:um had to commute.
‘We may go a little further and forget about the category structure as
well, since arrows A B are in one-to-one correspondence with entities
of type B4, which we shall write B <= A for typographical reasons. Composi-
ion of arrows is then represented by a single entity of type (C=A)<=
C<=B))«=(B<A). However, we do need a binary operation on entities
called ‘application™. given entities f of type B* and a of type A4, there is
an-entity f'a (read ¥ of ) of type B.

- We have now arrived at typed combinatory logic. But even this came
ather late in the thinking of logicians, although type theory had already
been introduced by Russell and Whitehead. Let us continue on our journey
backwards in time and apply Occam’s razor still further.

Anarrow A—Bina category has a source 4 and a target B. But what
there is only one object? Such a category is called a monoid and, indeed,
he' original presentation of combinatory logic by Curry does describe a
onoid with additional structure. (The binary operation of muitiplication
s defined in terms of the primitive operation of application.) Underlying
n@vma combinatory logic there is a tacit ontological assumption, namely
at all entities are functions and that each function can be applied to
any entity. -

To present the work of Schénfinkel and Curry in the modern Hmbm:mmn of
universal algebra, one should think of an algebra 4 =(|A|, !, I, K, S), where
Alis a set, / is a binary operation and I, K and § are elements of |A| or
::mQ operations. According to Schonfinkel, these had to satisfy the
o:.cs_wm identities:

Va=aq,
(K'ayb=a,
AT Y @ e= (D)5, . .
all elements a, b, ¢, f and g of | 4]. (Actually, he defined I in terms of
and§, but this is beside the point here.) The reader may think of I as
identity function and of K as the function which assigns to every entity

he function with constant value a. It is a bit more difficult to Hu:ﬁ 5
nto words and we shall H&EE from doing so.
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Hboaon”m:wu several early texts on propositional logic used only
.._EE_omnos and negation as primitive connectives, having eliminated con-
junction and other connectives by suitable definitions, again inspired by
-Occam’s razor. The observation that it is more natural to retain conjunc-
‘tion and other connectives as primitive is probably due to Gentzen and
~was made again by Lawvere in a categorical context.

Curry and Feys also realized that the proof of Schénfinkel’s version of
functional completeness was really the same as the proof of the usual
deduction theorem: if one can prove B on the assumption A then one can
prove B<= A without any assumption. In fact, it asserts that the proof of
B :on the assumption A is 0@54&03“ 8 the ?.ooﬁ, by modus ponens:

B<=A >

Schonfinkel (1924) discovered a remarkable result, usually called
‘functional completeness’. In modern terms this may be expressed as
follows: every polynomial ¢(x) in an indeterminate x over a Schonfinkel
algebra 4 can be written in the form f‘x, where fe|A4].

From now on in our exposition, the arrow of time will point in its
customary direction.

Curry (1930) rediscovered Schénfinkel’s results, but went further in his
thinking. He discovered that a finite set of additional identities would
assure that the element f representing the polynomial ¢(x) was uniquely
determined. We shall not reproduce these identities here, but reserve the
name ‘Curry algebra’ for a Schénfinkel algebra which satisfies them.

- Using the terminology of Church (1941), one writes f as A,@(x), which
must then satisfy two equations:

# (A:0(x)) a = pl(a),

() A f x)=1. o o _ _ .

(Many mathematicians write x ~ @{x) in place of 1 ¢{x).) A i-calculus is a
formal language built up from variables x, y, z,. . . by means of term forming
operations. (—)’(—) and A.(-), the latter being assumed to bind all free

occurrences of the variable x occurring in (=), such that the two given
identities hold. The basic entities I, K and S may then be defined formally by

I'=ix,
K =A%,
S=24422) (v’ z)).

325:% Church would have called such a language a- \.Zm-o&oz_zm and
Curry might have called it a A8x-calculus, but never mind.)

Both Curry and Church realized the importance of introducing types
into combinatory logic or A-calculus. To do this one just has to observe ;
that, if f has type B<=A and « has type 4, then f/a has type B, as already .
pointed out. In particular, the basic entities I, K and S, suitably equipped
with subscripts, should have prescribed types. Thus I, K, 5 and S, 5
have types A<=A, (A<=B)<=4 and :hﬁ@ﬂ@ﬂﬁ: ({(A<=B)<=C):
respectively. _

As pointed out in the book by Curry and Feys, these three types are
precisely the axioms of intuitionistic implicational logic. Moreover, the
rule which computes the type of f‘a from those of f and a corresponds-
to modus ponens: from B <= A4 and 4 one may infer B. In fact, Schénfinkel’
definition of I in terms of K and § is exactly the same as the known proof |
that A<=A4 may be derived from the other two axioms.

From our viewpoint, Curry’s version of functional completeness, which
insists on the uniqueness of f such that o(x) equals fx, then presupposes
that entities are not proofs but equivalence classes of proofs.

‘In connection with cartesian closed categories, the analogy with
Hovcm_noum; logic requires that 1, 4 x Band B*be writtenas T, A A Band
<= A respectively. (For other structured categories, the senior author had
.voEﬁna out and exploited a similar analogy with certain deductive systems,
eginning with the so-called ‘syntactic calculus’ (see Lambek 1961b,
ppendix II), which traces the idea back to %_E work with George D.
‘Findlay in 1956.) The relation between ».om”_na: with product types and
cartesian closed categories then suggests the observation: types = formulas,
terms = proofs, or rather equivalence classes of proofs. Independently, W
Howard in 1969 privately circulated an influential manuscript on Eo
equivalence of typed A-terms (there called ‘constructions’) and derivations
n'various calculi, which finally appeared in the 1980 Curry Festschrift (see
so Stenlund 1972).

Gv to this point we have avoided discussing bmﬂcﬂmm numbers. In an
untyped A-calculus natural numbers are easily defined (Church 1941).
Writing

feg=2(f (g’ %)),

one. H.nmmam 2 as the process which assigns to every ?uo:oH_ [itsiterate f .x
$0° N‘ f=fef. Formally, one defines

0=l 1=lx= m 2= »uxoxv

The successor function and the usual ovnwmmoum on natural numbers are

Ty,
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defined by
STn= 2 (ye(n'y)),
mtn= &QEHEOQHSVU
_mn=men,
m'=n'm.

Unfortunately, there are difficulties with this as soon as one introduces
types. For, if @ has type A, then f and ¢ in (feg)’a both have types A*=B
say. Forn/ f to make sense, n will have to be of type B%, and for n/mto make
sense, m will have to be of type B. If m and nare to have the same type, we are
thus led to requite that B® = B, which is certainly not true in general,
although Dana Scott (1972) showed that one may have Bz B,

- One way to get around this difficulty is to postulate a type N of natural
numbers, a term 0 of type N and term forming operations S(-) Amnooowmoa
and ~A| -~} (iterator) such that S(r) has type n and I{a, h, n}has type A for
all nof type N, a of type A msa h of type A“. These must satisfy suitable
mmcmmoa_m to assure that I(a, h, ) means h*fa.

~ The analogous concept for cartesian closed categories is a weak natural
numbers object: an object N with arrows 0:1-» N and §: N — N and a process
which assigns to all arrows @: 14 and ;4> A an arrow g: N - 4 such
that mﬁ following a_mmﬂwa commutes:

A N S - N

g

=

| i 4
A

Lawvere had defined a (strong) natural numbers object to wn.wco: that the
arrow g: N —» A with the above property is unique.
- For us, a typed A-calculus contains by definition the structure given by N,
0, § and I. In stating Theorem 11.3 on the equivalence between typed A-
calculi and cartesian closed categories, we stipulate that the latter be
equipped with a weak natural numbers object. Such categories were first
studied formally by Marie-France Thibauit (1977, 1982), who called them
‘prerecursive categories’, although they are implicit in the work of logicians,
e.g. in G3del’s functionals of finite type (1958).

We would have preferred to state Theorem 11.3 for strong natural
numbers objects in Lawvere’s sense. Unfortunately, we do not yet know
how to handle the corresponding notion in typed A-calculus equationally.

£
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>m far as we can see, the iterators appearing in the literature (e.g. Troelstra
1973) mostly correspond to weak natural numbers cEQO See however
Sanchis (1967).

For further historical comments the reader is referred to the end of Part I

Propositional calculus as a deductive system

We recall (Part 0; Definition 1.2) that, for om”nmonmm a graph
nonm_m_”m of two classes and two mappings between them:

source
————eeeeee

Obiects

Arrows

target

In graph theory the arrows are usually called ‘oriented edges’ and the
objects ‘nodes’ or “vertices’, but in various branches of mathematics other
words may be used. Instead of writing

source(f) =4, target(f)= B,

one often writes f:A-Bor 4 nM.!w. We shail look at graphs with addi-
10nal structure which are of interest in logic.
A deductive system is a graph with a specified arfow

omHo_mum will think of the objects of a deductive system as formulas, of the
ows as proofs (or deductions) and Om an operation on arrows as a rule of
z.wmwm:nm

Logicians should note that a deductive system is concerned not just with
nlabelled entailments or sequents A— B (as in Gentzen’s proof theory),
Ut with deductions or proofs of such entailments. In writing f: 4> B we
hink of f as the ‘reason’ why 4 entails B.

A conjunction calculus is a deductive system dealing with truth and
onjunction. Thus we assume that there is given a formula T (= true) and a
inary operation A (=and) for forming the conjunction A A B of two
given mop,EEmm.k and B. Zommoe_on we specify the following additional
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arrows and rules of inference: -soare T, A A Band A < B.(Yes, most people write B= A instead.) We also

R2. A Ou T .mﬁme@ the following new arrow and rule of inference.
Raa’ (A<B)aB—AE.. 4
caBba

r*
Gl..vh.ﬁm

R3a. AAB T4z, A, |
R3b. 4B 4B, B, Réb.
ctia c45

R3c. .
cXL92, 408

"Voam:w we should have written &* = AG z(k), but the subscripts are usuaily
‘understood from the context.

‘. We note that from R4b, with the help of R4a, one may derive
Here is a sample proof of the so-called commutative law for conjunction: :
4p. CHGE.(C A B)<=B,

AnBTaB, B AnBTAZ, 4 :

g
: p-44
Ridc, -

l>wAﬁPmuﬁ}mvm>l pog] .
. (D<=B) L8, (4<=B)
The presentation of this proof in tree-form, while instructive, is superfluous.
It suffices to denote it by {7y 5, 74 5 oreven by =, # > when the subscripts
are understood.
Another example is the proof of the associative law aypei(An E AnC
= A A(BAC) Itis given by

.Ho agﬁw these, we put
Rep= wn?wm g=1p=1(gép,p)*.
Ooaﬁ.ma? one may derive R4b from R'4b and R’4c by @Eﬁbm

’ b —
%, 0= Ta, 8y np,0 A BT a B TannC) ) (1.1) h* = (h<=1pMc 5-

or just by a = {an, {(z'n, 7' ) ). ,
If we compose operations on proofs, we obtain ‘derived’: rules of
inference. For example, consider the derived rule:

For future reference, we also note En following two derived rules of
nference:

AncFac, g 4al.g ancPac,c cLp
AAC—B AAC—-D

h>OEm>b

It asserts that from proofs f and g one can construct the proof
fa g= A9 c)-
Thus we may write simply

_l.wﬁl_ = A-ﬂ.ﬂm,hv*u ml\ = mw.hAQOh_ Hhv
‘An intuitionistic (propositional) calculus is more than a positive one; it

4 g, B cZ.p . L ‘ | . m&..ovonmmow v (= or) on formulas, together with the following additional

AnC———" fre BAaD

A positive intuitionistic propositional calculus is a conjunction calculus o .
with an additional binary operation <= ( = if). Thus, if 4 and B are formulas, Réa. A—2E5A4VvB,
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The deduction theorem , 51

This result is here incorporated into R4, with the deduction symbol -
replaced by actual arrows in the appropriate deductive system .%:
o h:AAB—C

h*A—-C<B

However, at a higher level, the horizontal bar functions as a deduction
symbol, and we obtain a new form of the deduction theorem. It deals with
proofs from an assumption x: T> A. In other words, we form a new
deductive system #(x) by adjoining a new arrow x: T-» 4 and talk about
- proofs ¢(x): B—>C in this new system. More precisely, .#(x) has the same
ormulas (= objects) as % and its proofs (=arrows) ¢(x) are frecly
generated from those of % and the new arrow x by the appropriate rules of
iiference ( = operations). Clearly, if # is a conjunction calculus (positive
calculus, intuitionistic calculus, classical calcuius), so is the new deductive
system . #(x).

R6b. B-L4Z, 4. p

Reéc. Aﬁﬂ\_v>ﬁﬁﬂmv1ﬁm.ﬁvﬁﬁﬁm v B).

The last mentioned arrow gives rise to and may be derived from the rule

f g
R'é6e. A=-C B-Zs(C -

avplhd, o

Indeed, we may put
Lf,91 =5 s<"f g D). )
If we want classical propositional logic, we must also require
R7. Le=(Lle=Ad)— A,

Exercises ?@83.@1 2.1. (Deduction theorem). In a conjunction, positive, intuitios-

stic or classical calculus, with every proof ¢(x): B— C from the assumption
x: T-> A there is associated a proof f: 4 A B— Cin % not depending on x.

1. For the appropriate deductive systems, obtain proofs of the following and

their converses:

“Tar - -
ARTo A4, A=To4,T=A=T,

(A A B)=Cs(A=C) A (B=C),

A<=(BAC)=(4Ad=C)«=5;

AAial A=l T, Av L-4;
(AANC)V(BAC)>(Av B AC.

ﬁn write f=x,_,0(x), where the subscript ‘xeA’ indicates that x is of
ype A.

Proof. We shall give the proof for a positive calculus. The same proof is
alid for a conjunction calculus, if * is ignored. The proof goes through for

_an-intuitionistic or classical calculus, as the additional structure is

presented in the form of arrows rather than rules of inference.

‘We note that every proof p(x): B— C from the assumption x: T— 4 must

ave one of the five forms:

(i) kB—C,aproofin &;

i) xT—A, withB=Tand C= 4; :

(@) (), x(x) >, where y(x): B—C', y(x): B~C", C=C' A C";

{iv)  x((x), where Y(x): B—»D, y(x;: D= C:

(V) Y(x)*, where y(x): B A CoC C=C"e(,

n all cases, W(x) and x(x) are ‘shorter’ proofs than fx), and we define
nductively: . .

2. For the appropriate deductive systems, deduce the following derived rules
of inference: -

als ctp 4Llp clp

A<pI=9p avedYs g, p

% 3. Show how (§ ; may be defined in terms of the rule R'6e.

4. Show that, in the presence of R1 to R, the classical axiom R7 may be

~ replaced by . )
ToAvi{l<=4d).

Keeak = kit g;

KygdX = M4 1,

KeaSP0), 1(%) ) = (oo (%), Ko af3) >

K_xmhmkﬁunvﬁ\rﬁk: = KHmkNA.HvA Ta,B Ham.hﬂ\oavm

xam%ﬁ“ﬁxvu.w = ?aﬁ&mﬁ&».mh.v* ;

Lo e

2 The deduction theorem
The usual deduction theorem asserts:
fAABFC then A-C<B.

T

b
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where o, pci(AABYAC' >4 A(BAC) is the proof of associativity
discussed in Section 1.

The above argument was by induction on the length of the proof ¢(x).
Formally, this may be defined as 0 in cases (i) and (i), as the sum of the
lengths of x(x) and y(x) plus 1 in cases (ili) and (iv) and as the length of /(x)
plus 1 in case {v).

Remark 2.1. Logicians don’t usually talk of an assumption x: T — 4 if there
is a known proof &:' T — A or another assumption y: T — 4; but from our
algebraic viewpoint, this does not matter. ,

The reader is warned that we do not distinguish notationally between
composition of proofs gf in & and in Z(x). In &, k.. .gf=gfn, 5 and
in Z(x) it is g 5 (Tap, [Ty 5)-

Exercise

Prove the following general form of the deduction theorem for the positive

intuitionistic propositionat calculus: with every proof @(x): B— € from

the assumption x: D — A there is associated a proof f:(d<D)A B—C.
Hint: writing " = p,o(x), put

AHV baw = wﬁ..hﬂ.c‘mw AEW _DH.K = mk:mu
(i1) o {W(x), x(x)> = {pafl(x), pox(x) 7,
(1v) pL(Wr(x)) = p () {704 g P(X) D,

(V) pLUX)") = (p.Ah(x)at o p 3 )*, Where Y(x): B A B"—C.

Cartesian closed categories equationally presented

A category is a deductive system in which the following mnsm.mopm.

hold between proofs:

EL flu=f, 1pf=f (hg)f=hgf)
forall 1458, ¢B—>C, hC-D.

Thus, from any deductive system one may obtain a category by imposing

a suitable equivalence relation between proofs.
A cartesian category is both a category and a conjunction calculus
satisfying the additional equations:

B2 =0y forall fid-T;
E3a. a5 i9> =1,

E3b.  w5(fg)> =4,

E3c. . {(mygh.n,ghd>=h,

forall f:C—-A4, gC—B, hC—AAB.
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“E2 asserts T is a terminal object. One usually writes T = 1, and we shall
do so from now on. An equivalent formulation of E2 is

B2  1,=0,0pf=0, foral f:A—B.

. E3 asserts that A A B is a product of 4 and B with projections = 4. and
.5 We shall adopt the usual notation 4 A B= 4 x B.
" As a consequence of E3, let us record the distributive law:

{fig>h={fhgh)
forall f:C~A, gC-B,

(3.1)
hD—C.

m,.oew We show this as follows, omitting mzumnnﬁm

=T Lghy TEme
= frgnm@ Loy T EL amoc
= {fhghd. 7 mwéw

ﬁa shall also write

Ixg=fang={fric.amic) .
henever f: 4 — B and g: € — D, and note that x :.« x 2/ — .o/ is a functor
see Part 0, Definition 1.3). Indeed, we have

Lyx le=< im0 lemy c)
={ T Wac
={TaclixcTaclixe?
= ;xn

nd, omitting subscripts, by the distributive law,

(fxQUf xgy={frgn' >{f'mgn>
={fnl{f'mgndgn{fngn)>
={ff'n.gq'7">
= ff" % mq

ﬁo:t.m R4 satisfying the additional a@zm:ozm
: €4,5{h¥* M g, e 5> = h,

Caslhnesmesd)l =k
- foral kCAB—A and kC—A<B .
.cmv a cartesian closed category is a positive intuitionistic propositionat

ygwomﬁm an mvvﬂowﬂm.ﬁd@céﬂgom relation on proofs.




54 Cartesian closed categories and A-calculus Free cartesian closed categories generated by graphs . 55

Inasmuch as we have decided to write C A B= C x B, we shall also write

uﬁ.\n then calculate
A«e=B= A" The equations E4 assure that the mapping .

T =f, Fgii=g.

Hom(C x B, A) —*> Hom(C, A) Exercises

1. Show that in any cartesian category

is a one-to-one correspondence. In fact, one has the following universal :
Ax1=A, AxBx=BxAd (AxBxCx=A4x(BxC.

property of the arrow g, y A® x B— A:
2. Show that in any cartesian closed category
Alz A, 1731, (AxBFz=Ax B, AP Cx (A%

given any arrow i C x B— 4, there is a unique arrow h*: C — A®
such that

e4,8h* x 1g)=h.

The reader who recalls the notion of adjoint functor will recognize that
therefore Uy = (~)® is right adjoint to the functor Fp=(-)x B: o — of
with coadjunction gz: FgUp— 1, defined by zx{4) = ¢, . Thus, an equiva-
lent description of cartesian closed categories makes use of the adjunction
#5:1,,— UpFyin place of *, where #(C) = 5. z: C -+(C x B)®, and stipulates
equations expressing the functoriality of Uy and the naturality of &5 and 7,
-as well as the two adjunction equations. Here

Uf)=fP=f=lp= {(fea )™
for all f:A~+ A’ (For 5 see R'4b in Section 1.)

We shall state another useful equation, which may also be regarded as a
kind of distributive law.

h*k = (h{knp g,7p 5>)* . (3.2)
where hAxB—-Cand k:D— A.

. 3. Write down the equivalent definition of a cartesian closed category in
terms of U, Fp, 5y and g

4. Prove the last two equations of Section 3.

Free cartesian closed categories generated by graphs

Given a graph &, we may construct the positive intuitionistic
calculus (%) and the cartesian closed category F (%) freely generated
by &. _
- Informally speaking, 2(%) is the smallest positive intuitionistic calculus
hose formulas include the vertices of & and whose proofs include the
rrows of Z. (Logicians may think of the latter as ‘postulates’, although
here may be more than one way of postulating X — Y, as there may be more
than one arrow X — ¥ in #.) More precisely, the formulas and proofs of
() are defined inductively as follows: all vertices of # are formulas,
(=1) is a formula, if 4 and B are formulas so are 4 A B(= A x B) and
B<=A(= B*); thearrows of & and the arrows 1 ,, O, 7 4.p e pande, gare
proofs, for all formulas 4 and B, and proofs are closed under the rules of
nference-composition, {-,—> and (-)*.

- We construct #(¥) from 2(%) by imposing all equations between proofs
hich have to hold in any cartesian closed category. Another way of saying
s is that we pick the smallest equivalence relation between proofs
E@Em the appropriate substitution laws and respecting the equations of
artesian closed category. The equivalence classes of proofs are then the
rrows of F(%); but, as usual, we will not distinguish notationally between
roofs and their equivalence classes.

Let Grph be the category of graphs, whose objects are graphs and whose
orphisms F: & - ¥ are pairs of mappings F: Objects(Z) — Objects(%) and
Arrows(Z) — Arrows{®) such that f: X — X’ implies F(f): F(X)— F(X").
- Let Cart be the category of cartesian closed categories, whose objects are
artesian closed categories and whose arrows are functors F: & — & which

Proof. We show this as follows, omitting subscripts:
Wk =(e(h km, ' Y
=(e{h*m, ') (kn,n' > )*
= (h<hem, ) )*, |
Quite important is the followiag bijection, which holds in any cartesian
closed category.

Hom(4, B) = Hom(1, B4). A (3.3
Proof. As in Section 1, with any f: 4 — B we associate f™ 1> B4, called
the name of f by Lawvere, given by
EAETVE 0
and with EQ g:1- B4 we associate QH A iw read g of, m:_ms by
=254{90 4 ;v
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preserve the cartesian closed structure on the nose, that is,
F(1)=1, F(AxB)=F(A)x F(B), F(A® = F(A)F®:
F(O) = Orp F(nyp) = Tri rep €63
F({f,97)=C(F(f), F(g)) etc.

Let % be the obvious forgetfiul functor Cart — Grph. With any graph & we
associate a morphism of graphs H,: & — % F (%) as follows: H(X)y=X
and,if f: X — Yin Z, then Hqr(f) = f (the equivalence class of [ regarded as
a proof in Z(Z)). We then have the following universal property:

- Exercise
Show that the deductive system .2°(x) in Section 2 is 2(%,), where &, is

.. the graph obtained from % by adjoining a new edge x between the old
vertices T and A.

Polynomial categories

Given objects 4, and 4 of a (cartesian, cartesian closed) category
,&._ how does one adjoin an indeterminate arrow x: 4, —» 4 to s#? One
method is to adjoin an arrow x: A, — A4 to the underlying graph of & and
then to form the (cartesian, cartesian closed) category freely generated by
the new graph, as was done in Section 4 for cartesian closed categories.
Equivalently, one could first form the deductive system (conjunction
calculus, positive intuitionistic calculus .«/[x] based on the ‘assumption’ x,
‘as was done in Section 2 in the special case 4, = T. The formulas of &/[x]

Proposition 4.1. Given any cartesian closed category .« and any morphism
F. & - (sf) of graphs, there is a unique arrow F: #(%)— .« in Cart such
that #(F)H, = F.

WF(X) #(Z) . are the objects of & and the proofs of o[ x] are formed from the arrows of
b //m. ’ and the new arrow x: Ay — A by the appropriate rules of inference.

U(F’y = F’ // .Ho assure that «&/[x] becomes a category and that the inclusion of o

- 7 into =/Tx] becornes a functor, one then imposes the appropriate equations

H, U(t) between proofs. If equality of proofs is denoted by =, we may also regard

~"as the smallest equivalence relation = between proofs such that

” gf=hin of implies gf=h,

Y(x) = y'(x} and x(x) = y'(x) implies y(x}(x) =y (x}(x),

@(x)1p = p(x) = 1c0(x),

(W ()p(x) = 1) (W (x)ep(x)),

. 9. all p(x):B—->C, {x),¥'(x). C-D, x(x),y(x):D—E.

‘Note that, in view of the reflexive law, = and = extend equality in .
rrows in the category «/[x] are proofs on the assumption x modulo =,
they may be regarded as polynomials in x.

The same construction works for cartesian categories or cartesian closed
mﬂ.m.moaom only then = must be such that «/[x] becomes a cartesian or
cartesian closed category and that the functor & — .#/[x] preserves the
cartesian (closed) structure. That is, the equivalence relations = between
proofs considered above must also satisfy:

if {f,g>=hin o then {f,g> =h, etc;

if Y(x) = y'(x) and x(x) = x/(x) then {P(x), x(x)> = (F(x), x'(x)),
Tp,c WX, 2(x) ) = (x), etc,

for all yr{x), q\ﬁanblwm and y(x), ¥'(xpD—C.

Proof. Indeed, the construction of F' is forced upon us:
F(X)=F(X), F(T)=1, F(AA B)=F'(A) x F{(B), etc.;
F(fy=F(f) forall f:1 X7, F(O 4 = Opay ete;
F({f.9>)=<F'(f), F(g), etc.

We must check that F” is well defined, that i, for all f, g:A-Bin # GS ..

f =g implies F'(f)= F'(g). This easily follows because no equations hold
in () except those that have to hold.

The above universal property means that # is a functor Grph — Cart which
is left adjoint to % with adjunction H, ,:1d - ##.

The reader will have noticed that the objects of the category Grph and
Cart introduced here are classes. These may have to be regarded as sets in
an appropriate. universe.




