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0. Plan of the talk.

1. Bi-intuitionistic logic revisited: mathe-

matical collapse of its topological and cat-
egorical models and philosophical implausi-

bility of its modal-tense interpretations.

2. No categorical model of co-intuitionism

in Set: translation of co-IL into linear logic
and categorical model of linear co-IL in monoidal
left-closed categories with extra structure.

3. Bi-intuitionistic logic and the logic for
pragmatics: an intended model for ‘polar-

ized’ bi-intuitionism. A game-like seman-
tics of justifications for co-IL and intuition-
istic acceptability of ‘polarized’ bi-IL.

4. No collapse of topological and categorical
models of ‘polarized’ bi-IL. Bi-Intuitionistic
modalities as intuitionistically acceptable polarity-
cahnging modalities. A logic of expectations
as a pragmatic interpretation of the double
negation rule.



1.1. A “rich” proof-theory.

• For Intuitionistic Logic IL we have the

Extended Curry-Howard correspondence:

• Natural Deduction NJ (+ sequent calculus LJ)

- extended to higher order logic;

• Simply Typed λ-calculus

- extended to Dependent Types and system F;

• Cartesian Closed Categories CCCs

- subsuming Heyting algebras, topological models etc.

A “rich” proof-theory for bi-Intuitionism?



1.2. Co- and Bi-Heyting algebras

• A Heyting algebra is a (distributive) lattice with an

operation →, the right adjoint to the meet ∧;

• A co-Heyting algebra is a lattice with an operation -

(subtraction) which is the left adjoint to the join ∨.

Thus we have

in HA
c ∧ a ≤ b
c ≤ a→ b

in co-HA
b ≤ a ∨ c
b− a ≤ c

• A bi-Heyting algebra is a lattice

C = (C,∧,∨,→,−,⊥,>)

with both Heyting and co-Heyting structures.

Strong ¬ and weak ∼ negations:

• ¬a = a→ ⊥ (the largest c such that c ∧ a = ⊥);

• ∼ a = >− a (the smallest c such that c ∨ a = >).



1.3. Negations and modalities.

Immediate properties of negations:

• a ≤ ¬¬a ∼∼ a ≤ a;

• ¬a ≤ ∼ a. Proof: > ≤ a∨ ∼ a
¬a ≤ ¬a ∧ (a∨ ∼ a) = ⊥ ∨ (¬a∧ ∼ a).

Hence
¬ ∼ a ≤ ∼∼ a ≤ a ≤ ¬¬a ≤ ∼ ¬a

Define

20a = a 30a = a;
2n+1a = ¬ ∼ 2na 3n+1a = ∼ ¬3na
�a =

∧
n2na 3· a =

∨
n3na.

Proposition.

�a is the largest complemented x such that x ≤ a
3· a is the smallest complemented x such that a ≤ x.

Proof. Indeed �a ≤ ¬ ∼ �a implies �a ∧ ∼ �a ≤ 0

hence ∼ �a = ¬ � a. Proceed dually for 3· a.

Thus ¬¬ � a = �a and 3· a =∼∼3· a.

• Reyes and Zolfaghari, Bi-Heyting algebras,
toposes and modalities, J.Phil.Log 25, 1996:
- “a new approach to the modal operators of
necessity and possibility”.
• Are � and 3· intuitionistic modalities?



1.4. Co-Heyting Boundaries.

Lawvere 1991 advocates co-Heyting algebras
for representing the notion of a boundary.
Let S be the set of all subgraphs of a graph G = (V,E).

For Y, Z ∈ S define

• Y ∧ Z = the intersection of Y, Z;

• X ∨ Y = the union of X,Y ;

• ¬X = the largest subgraph Z such that X ∧ Z = ∅;
• ∼ X = the smallest subgraph Z s.t. X ∨ Z = G.

X∧ ∼ X is the boundary of X.

In the following graph G let Y = {x, f}, Z = {x, g}:

f
CC
x

��
��
g

ZZ

• Subgraphs of G: {G, Y, Z, {x}, ∅}; ∼ Y = Z, ∼ Z =

Y .

• Y ∧Z = {x}, the boundary of Y and of Z.

• Dual De Morgan law:
∼ (Y ∨ Z) = ∅ 6= {x} =∼ Y ∧ ∼ Z
∼ (Y ∧ Z) =∼ {x} = G =∼ Y ∨ ∼ Z.



Bibliographic note: F. W. Lawvere, Intrinsic co-

Heyting boundaries and the Leibniz rule in certain

toposes. In Category Theory (Como 1990), Springer

L.N.Math 1488, 1991, pp. 279-297.

P. Pagliani. Intrinsic co-Heyting boundaries and in-

formation incompleteness in Rough Set Analysis. In:

RSCTC 1998. Springer L.N.C.S., 1424, 2009 pp.

123-130.

No advances on this topic in this paper.



1.5. Bi-Intuitionism and co-Intuitionism.

• Bi-Intuitionistic Logic (bi-IL) (also Heyting-

Brouwer) is the logic on the following language

• Atoms p0, p1, . . .

A,B := p | > | ⊥ | A∧B | A∨B | A→ B | A−B
with bi-Heyting algebras as algebraic models.

• Co-Intuitionistic Logic (co-IL), (aka dual in-

tuitionistic), the fragment of bi-IL on the lan-
guage

A,B := p | > | ⊥ | A ∧B | A ∨B | A−B
with co-Heyting algebras as algebraic models.

• C. Rauszer. Semi-Boolean algebras and their appli-

cations to intuitionistic logic with dual operations, in

Fundamenta Mathematicae, 83, 1974, pp. 219-249.

• C. Rauszer. Applications of Kripke Models to Heyting-

Brouwer Logic, in Studia Logica 36, 1977, pp. 61-71.

Also: Goré 2000, Crolard 2001, 2004, Shramko 2005,

Wansing 2008, Pagliani 2009, Pinto and Uustalu 2010,

Tranchini 2012.



1.6. Kripke Models for bi-IL

• M = (W,≤,V) where
- (W,≤) a preordered frame
- V : Atoms→ ℘(W ) monotone.
Monotonicity: if w ≤ w′ and w ∈ V(p) then w′ ∈ V(p)

• Forcing conditions: (Rauszer 1977)

- w 
 p iff w ∈ V(p);
- w 
 A→ B iff ∀w′ ≥ x if w′ 
 A then w′ 
 B;
- w 
 B −A iff ∃w′ ≤ x w′ 
 B and w′ 6
 A;
- w 
 A ∧B iff w 
 A and w 
 B etc.

To show that in ¬∼ A � A � ∼¬A the order may

be strict, consider the infinite Kripke model:

p
w1

p
w3

p
w2i−1

p
w2i+1

w0
6p

AA

w2
p

]] AA

. . . w2i
p

cc ==

. . .

wm 
 ¬ ∼ p iff ∀v ≥ wm.∀u ≤ v.u 
 p iff m > 2
wm 
 ¬ ∼ 2np iff iff m > 2n + 2

Similarly

wm 
 3n ∼ p iff ∃v ≤ wm.∃u ≥ v.u 
∼ p iff m ≤ 2n + 1.



1.7. Topological Models of bi-IL.

• A bi-topological space (X,O) is given by

A set X and a collection O ⊆ ℘(X)
- O contains X, ∅ and
- is closed under arbitrary unions
- and arbitrary intersections.

A bi-topological space is a Boolean algebra if all S ∈
O are clopen. There exist bi-topological spaces that
aren’t Boolean algebras.

Models of bi-IL in bi-topological (X,O):

Let [[pi]] ∈ O, [[>]] = X, [[⊥]] = ∅;
[[A ∧B]] = [[A]] ∩ [[B]], [[A ∨B]] = [[A]] ∪ [[B]].
[[A→ B]] = int([[A]]C ∪ [[B]]), ([[A−B]] = ext([[A]] ∩ [[B]]C)

Lemma. A topological space (X,O) is bi-topological

iff O is the set of all final (initial) sections of some

preorder.

Thus non-trivial topological models of bi-IL

exist but “collapse to preorders”.



1.8. Extending Gödel, McKinsey and Tarski

S4 interpretation.

Pinto and Uustalu 2010:
“It is also a basic observation that the Gödel trans-
lation of IL into the modal logic S4 extends to a
translation of bi-IL into the future-past tense logic
KtT4. As the semantics of KtT4 does not enforce
monotonicity of interpretations, atoms must be trans-
lated as future necessities or past possibilities (these
are always monotone)”:

pM = 2p or pM = �p

Also we have ( )M : bi-IL→ KtT4

(A→ B)M = 2(AM → BM) (B −A)M = �(BM ∧ ¬A)
(A ∧B)M = AM ∧BM (A ∨B)M = AM ∨BM

• But how can atoms have an ambiguous

epistemic interpretation between necessarily

in the future and possibly in the past?

Problem 1: Linguistic ambiguity of KtT4

modal interpretations.



Bibliographical Note:

L. Pinto and T. Uustalu. Relating sequent calculi

for Bi-intuitionistic Propositional Logic, van Bakel,

Berardi and Berger eds. Proceedings Third Interna-

tional Workshop on Classical Logic and Computation.

EPTCS 47, 2010. pp.57-72.



1.9. Collapse of bi-IL models.

Proposition (Gabbay 1972) First order bi-IL is

the logic of constant domains (an intermediate

logic between intuitionistic and classical).

Theorem (Crolard 2001) Every categorical model

of bi-IL is isomorphic to a partial order.

Proof: Joyal’s argument showing that bi-cartesian

closed categories are degenerate applies here.

Problem 2: No ‘rich proof theory’ for bi-IL!

T. Crolard. Subtractive logic, in Theoretical Com-

puter Science 254,1-2, 2001, pp. 151-185.



2.1. (Philosophical) Comments to 1.

• Problem 1 is conceptually ‘fatal’ for the KtT4 inter-

pretation: it is untenable, because of the ambiguous

translation of atomic formulas.

• Philosophically, we need an intended interpretation

of bi-intuitionistic logic. What determines the mean-

ing of an atomic formula in bi-IL? Is the meaning

of atomic formulas the same in intuitionistic and co-

intuitionistic logic?

Proposed solution to 1: (i) Separate
• classical logic as logic of proposition and
truth from

• bi-intuitionism as logic of judgements
and their justifications,
Dalla Pozza and Garola 1995, Bellin and Dalla Pozza

2002, following Dummett.

(ii) Disambiguate the interpretation of bi-IL:
• intuitionism as logic of assertions.

• co-intuitionism as logic of hypotheses
Bellin 2004, 2012, 2013, B.et al 2012a, 2012b, 2013.



2.2. (Mathematical) Comments to 2.

• Problem 2 is mathematical: there must be more

structure in bi-intuitionistic logic for it to have a rich

proof theory.

What additional structure? This depends on the de-

sired applications.

However the ‘linguistic disambiguation’ of bi-intuitionism

(problem 1) motivates the following solution.

Proposed solution to 2: ‘Polarize’ bi-IL.

Keep the dual Heyting and co-Heyting struc-

ture separate, related by negations implement-

ing the duality

( )⊥ : IL −→ co-IL ( )⊥co-IL −→ IL

Bellin 2004, 2012, 2013?, B.et al 2012a?, 2012b,

2013?.



Bibliographical Note:

- C. Dalla Pozza and C. Garola 1995. A pragmatic in-

terpretation of intuitionistic propositional logic, Erken-

ntnis 43. 1995, pp.81-109.

- B. and C. Dalla Pozza 2002. A pragmatic interpreta-

tion of substructural logics. In S. Feferman Festschrift,

ASL LN in Logic, 15, 2002, pp. 139-163.

- B. and C. Biasi 2004. Towards a logic for pragmat-

ics. Assertions and conjectures. In: Journal of Logic

and Computation, 14, 4, 2004, pp. 473-506.

- B. 2013. Assertions, hypotheses, conjectures: Rough-

sets semantics and proof-theory,Advances in Natural

Deduction, 2013.

- B., M. Carrara and D. Chiffi 2012a?. A pragmatic

framework for intuitionistic modalities: Classical Logic

and Lax logic, subm. JLC, 2012.

- B. and A. Menti 2012b. On the π-calculus and co-

intuitionistic logic. Notes on logic for concurrency and

λP systems, accepted Fundam. Informaticae

- B. 2012? Categorical Proof Theory of Co-Intuitionistic

Linear Logic, LOMECS, 2012.

- B., M. Carrara and D. Chiffi 2013?. A pragmatic

logic of hypotheses, Logic and Logical Philosophy.



2.3. Categorical models of co-IL.

• Disjunction is modelled by co-products and subtrac-

tion by co-exponents. In Set co-products are disjoint

unions, but in Set nontrivial co-exponents don’t exist!

Proposition. (Crolard 2001) The co-exponent BA

of two sets A and B is defined iff A = ∅ or B = ∅.
Proof: The co-exponent of A and B is an object BA

together with an arrow 3A,B: B → BA ⊕ A such that

for any arrow f : B → C ⊕ B there exists a unique

f∗ : BA → C making the following diagram commute:

B
f
//

3A,B %%

C ⊕A

BA ⊕A
f∗⊕idA
OO

If A 6= ∅ 6= B then the functions f and 3A,B for every

b ∈ B must choose a side, left or right, of the coprod-

uct in their target and moreover f? t 1A leaves the

side unchanged. Hence, if we take a nonempty set C

and f with the property that for some b different sides

are chosen by f and 3A,B, then the diagram does not

commute.

Problem 3. No model of co-IL in Set.



2.4. A solution to Problem 3.

• Problem 3 shows that co-intuitionistic disjunction

(g) cannot be the exact dual of intuitionistic (∪):

Γ ` Ai ∪i I
Γ ` A0 ∪A1
i = 0,1

E `∆, C0, C1 g IE `∆, C0 g C1

• Intuitionistic Linear Logic ILL can be mod-
elled by monoidal categories!
BBHdP 1993: P.N.Benton, G.M.Bierman, J.M.E.Hyland

and V.C.V.dePaiva. A term calculus for Intuitionistic

Linear Logic. In: Typed Lambda Calculi and Applica-

tions, L.N.C.S., 664, 1993, pp.75-90.

• Intuitionistic logic IL is translated into ILL
(Girard 1986)

Proposed way out: (i) Define co-Intuitionistic
Linear Logic co-ILL;

(ii) represent co-IL into co-ILL by the dual
of Girard’s translation.

(iii) Define categorical models of co-ILL, by
dualizing the construction in BBHdP 1993.



2.5. Translation co-IL → linear co-IL.

We sketch the solution in Bellin 2012? with no detail.

Main logical features are:

• Both co-IL and co-ILL have a consequence relation

with single assumption and (a list of) conclusions

E ` C1, . . . , Cn

co-IL has unrestricted weakening and contraction right;

co-ILL does not.

• In the categorical construction we assign lists of

terms in context thus:

x : E . t1 : C1, . . . , tn : Cn.

• The fragment of co-IL on the language with (⊥,g,r)
is mapped to the fragment of co-ILL with (⊥, ℘,r, ?)
where ‘?’ is Girard’s exponential whynot?:

(p)◦ = p
(⊥)◦ = ⊥

(C gD)◦ = ?(C◦ ⊕D◦)
= ?(C◦)℘?(D◦)

(C rD)◦ = C◦ r (?D◦)
(E ` C1, . . . , Cn)◦ = ?(E◦) `?(C◦1), . . . , ?(C◦n))



2.6. A sequent calculus for co-IL.

Identity:

axiom
A⇒ A

H ⇒ Γ, C C ⇒∆
cutH ⇒ Γ,∆

Structural rules:

H ⇒ Γ, C,D,∆
exchH ⇒ Γ, D,C,∆

H ⇒ Γ weakH ⇒ Γ, C
H ⇒ Γ, C, C,

contrH ⇒ Γ, C

Logical rules:

unjustifiability:
⊥ ⇒∆

H ⇒ Γ, C D ⇒∆ r R
H ⇒ Γ, C rD,∆

C ⇒ D,∆ r L
C rD ⇒∆

H ⇒ Γ, C0, C1 g RH ⇒ C0 g C1

C0 ⇒ Γ C1 ⇒∆
g LC0 g C1 ⇒ Γ,∆



2.6.1. A sequent calculus for linear co-IL.

Identity:

axiom
A⇒ A

H ⇒ Γ, C C ⇒∆
cutH ⇒ Γ,∆

Structural: Exchange and Exponential rules:

C ⇒ ?Γ ? L?C ⇒ ?Γ
H ⇒ Γ, C

derH ⇒ Γ, ?C

H ⇒ Γ weakH ⇒ Γ, ?C
H ⇒ Γ, ?C,?C,

contrH ⇒ Γ, ?C

Logical rules:

unjustifiability:
⊥ ⇒∆

H ⇒ Γ, C D ⇒∆ r R
H ⇒ Γ, C rD,∆

C ⇒ D,∆ r L
C rD ⇒∆

H ⇒ Γ, C0, C1 ℘ R
H ⇒ C0℘C1

C0 ⇒ Γ C1 ⇒∆
℘ L

C0 ℘ C1 ⇒ Γ,∆

In a sequent-style natural deduction system in place
of left rules we have elimination rules of the form

H ⇒ Γ, C rD C ⇒ D,∆ r E
H ⇒ Γ,∆

E ⇒ Γ, ?C C ⇒?∆
? EE ⇒ Γ, ?∆



2.7. Natural deduction (sequent-style).

Read E ` C1, . . . , Cn as

- for all i ≤ n, Ci is compatible with E,

- witness a “thread of evidence” E 7→ Ci.

“Thread of evidence”: informal notion, related to DR-

graphs in a proof net, Sam Buss’ logical flow graph,

with adjustments for weakening.

Rules for subtraction:

H ` Γ, C D ` Θr-intro H ` Γ, C rD,Θ
“connect threads”

“set aside ” H `∆, C rD C ` D,Υr-elim H ` N,∆,Υ

“Set aside”: evidence threads C 7→ D are incompat-

ible with threads H 7→ C rD. Store all of them away

(in some location N)!



2.7.1. Inversion principle for subtraction.

In a derivation of the form

H ` Γ,C D ` Θr-intro
H ` Γ,Θ,C rD C ` D,Υr-elim H ` Γ,Θ,N,Υ

The formula C rD is maximal (a cut).

Can remove the pair intro/elim:

H ` Γ,C C ` D,Υ
subst. H ` Γ, D,Υ D ` Θ

subst. H ` Γ,Θ,Υ
.

Here we use the “stored away threads C 7→ D.

Substitution also “connects threads”.



2.8. Term assignment to subtraction.

• a set {x1, . . . , xi . . .} of free variables, exactly one for
each sequent;
• a set {x1, . . . , xi . . .} of unary functions; - x(M) means
“variable x is bound, depending on M”;
• mkc(M, y): “from M make a coroutine starting with
y (y becomes bound, rewritten y(M) everywhere);
- (threads reaching M are extended to threads from
y);
- the term postp(y 7→ N,M) stores the threads y 7→ N
and is set aside in an untyped location (and y becomes
bound, rewritten as y(M) everywhere).
• κ, ζ are sequences of terms.

subtraction introduction

x : D . κ : Γ,M : A y : B . ζ : ∆ r I
x : D . κ : Γ, ζ[y := y(M)] : ∆, mkc(M, y) : A rB

subtraction elimination

x : D .M : Γ,M : A rB y : A . N : ∆, N : B r E
x : D .M : Γ, N [y := Y (M)], postp(y 7→ N,M)

• There are β and η equations formalizing the

normalization procedure.

• A dual calculus to the λ-calculus.



2.9. A categorical model of linear co-IL.

Definition. A left-closed symmetric monoidal cate-

gory (SMC) (C, •,1, α, λ, ρ, γ), is a category C equipped

with

- a bifunctor • : C× C→ C with a neutral element 1,

- natural isomorphisms α, λ, ρ and γ (satisfying the

usual diagrams for associativity, left and right identity

and commutativity)

- and where • has a left adjoint r ( subtraction).

Theorem 1. Left-closed symmetric monoidal
categories model multiplicative co-ILL.

To prove it, define typed terms in context of the form

x : E / κ : Γ, where κ is a list of terms, for the logical

rules and a suitable set A of equations in context for

them and showing A is satisfied in any model over C.

- Next define the syntactic category as the category

C which has the formulas of multiplicative co-ILL as

objects and typed terms as morphisms and set

x : E . κ : Γ = y : E . ζ : Γ iff κ = ζ[y := x] is

derivable from the equations in context A. It follows

Theorem 2 The syntactic category is a sym-
metric monoidal left-closed category.
The categorical completeness theorem follows.



2.9.1. Categorical model of co-ILL (cont.)

Dualize Benton, Bierman, Hyland and De Paiva 1993

to get the extra structure to model Girard’s whynot?.

Definition. A dual linear category C consists of

- A symmetric monoidal left-closed category with

- a symmetric co-monoidal monad (?, η, µ, n−,−, n⊥)

such that

(i) - each free ?-algebra (?A,µA) carries naturally the

structure of a commutative ℘-monoid;

(ii) - whenever f : (?A,µA)→ (?B,µB) is a morphism

of free algebras, then it is also a monoid morphism.

Note: The term assigned to the rules of storage lit-
erally ‘store’ the terms N in a separate area; terms for
dereliction and contraction build lists of terms.

v : E . κ : Γ,M : ?C x : C . Q | N : ?∆

v : E . κ : Γ, Q[x := x(M)], store(N, y, x,M) | y(x(M)) : ?∆

dereliction
x : E . κ : Γ,M : C
x : E . κ : Γ, [M ] :?C

weakening
x : E . κ : Γ

x : E . κ : Γ, connect to(R) :?C
where R ∈ κ.

contraction
x : E ` κ : Γ,M :?C,N :?C
x : E ` κ : Γ, [M,N ] :?C



3.1. Semantics + Pragmatics of p-bi-IL

Classically, propositions are true or false (Frege).

Claim: Intuitionistically, sentences are types

of illocutionary acts.

• Illocutionary acts are events that can be justified or

unjustified, i.e., have a justification value.

- Also in a given social context they are felicitous or

infelicitous and have perlocutionary effects (Austin).

Examples: making assertions, hypotheses, questions,

answers, commands, promises, etc.

• Illocutionary acts must have a propositional content.

But the propositional content of an assertion A does

not suffice to determine the meaning and the justifi-

cation value of A.

• Illocutionary acts can be impersonal, e.g., the state-

ment of a theorem can be seen as an impersonal asser-

tion, and a statute or law as an impersonal obligation.



3.2. Logic for pragmatics.

Formalizing types of illocutionary acts:

• Elementary assertions: `p
- Dalla Pozza and Garola 1995.

• Elementary hypotheses: Hp.

- Bellin 2004, 2012, 2013?, B.et al 2012a?, 2012b,

2013?.

- Here ‘`’, ‘H’ are signs of illocutionary force

- p is the propositional content.

Question: Under which conditions are such

acts intuitionistically meaningful?

Further ‘illocutionary act candidates”:

• Elementary conjecture: Cp
- i.e., the hypothesis that in some circumstances it

may be assertable that p.

• Elementary expectation: Ep
- i.e., the assertion that in all circumstances it may be

possible to make the hypothesis that p.

- Need to investigate these judgements and

their intuitionistic status.



3.3. ‘Polarized’ bi-intuitionism.

Language LAHEC of polarized bi-IL (pbi-IL):

(As) A,B := `p Ep > A ⊃ B A ∩B A ∪B ¬¬ X

(Hy) C,D := Hp Cp ⊥ C rD C gD C fD ∼∼ X

X := A C

with ¬¬ X =df X ⊃ ⊥: certainly not X

and ∼∼ X =df > rX: perhaps not X.

As = the type of assertive expressions.

• `p: it is assertable that p;

• Ep: it is to be expected that p.

Hy = the type of hypothetical expressions.

• Hp: the hypothesis that p can be made;

• Cp: the conjecture that p can be made.

Two negations (intuitionistic and co-intuitionistic):

¬¬: As→ As, ∼∼: Hy→ Hy.

Dualities:

¬¬: Hy→ As, ∼∼: As→ Hy,

with the axiom

(?) ¬¬∼∼ A ≡ A and ∼∼¬¬ C ≡ C.



Note. In Bellin 2004, 2012, 2013?, B.et al 2012a?,

2012b, 2013? we used

‘∼’ instead of ‘¬¬’ (strong negation) and

‘a’ instead of ‘∼∼’ (strong negation),

confusing notation in discussing bi-Heyting algebras.



3.4. Dummett’s justificationism.

Can the language LAHEC represent intuitionistic rea-

soning in an intuitionistic metatheory?

Dummett: Intuitionism is the logic of as-

sertions and of their justifications.

• Some assertions about the past, the future, Laplace’s

determinism, some applications of the classical con-

tinuum to physics, etc. are in principle unjustifiable.

- In this case Dummett holds that not only these as-

sertions are unjustified, but also their propositional

content ought to be regarded as meaningless.

• Dummett refuses to apply a correspondence theory

of truth to abstract mathematical constructions.

• He gives a different ontological status to objects of

perception and to thoughts (Thought and Reality).

- The justification of an empirical sentence relies on

interaction with nature.

- The justification of a mathematical statement de-

pends on a mental construction.

Claim: If p is intuitionistically meaningful, so
is `p.



Note: See e.g.,

- M. Dummett 1991 The Logical Basis of

Metaphysics Harward University Press, 1991.

- M.Dummett 2006 Thought and Reality Ox-

ford UP, 2006.



3.4.1. Prawitz: proofs and justifications.

(Digression from personal notes, CLMPS Nancy, 2011.)

The conceptual problem: how and why a proof suc-

ceeds in giving knowledge.

• A proof justifies the last assertion by giving conclu-

sive grounds for that assertion.

• Why an inference succeeds in justifying the conclu-

sion given the justification of the premisses?

- Inference acts operate on grounds for the premises.

• What constitutes a justification of an assertion?

- Direct, canonical means to justify an assertion

(e.g., by an introduction rule in Natural Deduction);

- Indirect, non-canonical means

(e.g., by an elimination rule in Natural Deduction);

- Indirect means must be reduced to canonical ones.

(principle of harmony between intro and elim rules).

• Prawitz: To know the meaning of a sentence A is

to know what forms a canonical ground for A has and

what conditions the parts of A satisfy.

Note. The grounds of composite sentences ultimately

depend on the grounds for elementary expressions,

which vary according to the illocutionary force

(elementary assertions versus elementary hypotheses).



3.5. Is co-IL strongly paraconsistent?

Add hypothetical conjunction f, with sequent rules

H ⇒∆, C0 H ⇒∆, C1 f RH ⇒ ∆, C0 f C1

Ci ⇒ Γ fi L
C0 f C1 ⇒ Γ

for i = 0 or 1

Question: (R. Ertola) Is co-IL strongly para-

consistent in the sense that there is a class of

formulas Γ such that from Cf ∼ C we cannot

derive some formulas in Γ?

Possible solution. Define co-Harrop formulas thus:

(Hy) C,D := Hp ⊥ C rD C gD ∼∼ C C fD
(Har) H,K := Hp ⊥ H rD H gK ∼∼ C

• Co-Harrop formulas have the conjunction property:

- if Γ ⊂ Har then H fK ` Γ implies H ` Γ or K ` Γ.

Proof: From the disjunction property for intuitionistic

Harrop formulas, by duality.

- Is co-IL with conjunction g strongly para-

consistent w.r.t. co-Harrop formulas?



3.6. What is co-IL about?

Shramko 2005: co-IL is about sentences that

have not yet been refuted.

It is the logic of scientific research according

to Popper’s refutationism.

Y. Shramko. Dual Intuitionistic Logic and a Variety of
Negations: The Logic of Scientific Research, Studia
Logica 80, 2005, pp. 347-367.

E ` C1, . . . Cn−1, Cn Cn `
cut E ` C1, . . . Cn−1 Cn−1 `

...
E ` C1

• Intuitionistic logic is expansive: the more you search,

the more theorems you find.

• Co-Intuitionistic logic is recessive: the more you

search for refutations, the less laws you are left with.

[cfr. the classes Σ0
1 and Π0

1 (Girard The Blind Spot).]

• Is co-IL only a logic of refutations?

• Better: it a logic of what is compatible

with the sentences that have not yet been

refuted.

- We look for positive grounds for inferring unrefuted

statements.



3.7. Extending the BHK interpretation.

For assertive types follow the Brouwer-Heyting-
Kolmogorov-[Kreisel] interpretation:

• `p is justified by conclusive evidence that p is true;
• > is always justified and ⊥ is never justified;
• A ⊃ B is justified by a method transforming

a justification of A into a justification of B
• A ∩B is justified by evidence for A together with

evidence for B
• A ∪B is justified by evidence for A or by evidence for B.

Claim: If elementary formulas are intuitionis-

tically meaningful, so are all assertive types.

But how to extend the BHK interpretation to hypo-
thetical types?
From legal argomentation theory, borrow the notion
of scintilla of evidence [Gordon and Walton 2009].

• Hp is justified by a scintilla of evidence that p is true;
• C rD is justified by a scintilla of evidence that
there is a justification of C and no justification of D; etc.

NO: start with co-ILL where g is replaced

by par !



3.8. A game-like semantics for co-ILL.

Define simultaneously evidence pro and con.

elementary:
evidence pro Hp: a scintilla of evidence that p is true;

evidence con Hp: conclusive evidence that p is false;

subtraction:
evidence pro C rD: a scintilla of evidence that there is

evidence con C and evidence con D;

evidence con C rD: a method transforming
evidence pro C into evidence pro D and
evidence con D into evidence con C;

disjunction:
evidence pro C℘D: a method transforming

evidence con C into evidence pro D and
evidence con D into evidence pro C;

evidence con C℘D: evidence con C together with
evidence con D.

[From the game-semantics for linear logic and Nelson

1949.]

Claim: The game interpretation of co-ILL
is intuitionistically meaningful. Try to extend
this to p-bi-IL.



4.1. ‘Polarized’ bi-Heyting Algebras.

• A bi-Heyting algebra C = (C,∧,∨,→,−,>,⊥, )
is polarized if it has substructures A and H such that

• A is the sub-Heyting algebra of C generated by {a1, . . .};

• H is sub-co-Heyting algebra of C generated by {c1, . . .};

• there is a bijection p of generators ai 7→ ci with ai ≤ ci;

• the negations of C yield a duality, namely,

(1) ∼ (a ∧ b) =∼ a ∨ ∼ b, ¬(c ∨ d) = ¬c ∧ ¬d;

(2) ∼ (a ∨ b) =∼ a ∧ ∼ b, ¬(c ∧ d) = ¬c ∨ ¬d;

(3) ∼ (a→ b) =∼ b − ∼ a, ¬(c− d) = ¬d→ ¬c

for all a, b ∈ A and c, d ∈ H, and

(?) ¬ ∼ a = a and ∼ ¬c = c.

From (?) it follows that

¬ ∼ c = �c = ¬ ∼ �c and ∼ ¬a =3· a =∼ ¬ 3· a.



4.1.1. Polarized bi-Heyting algebra (cont.)

c

∼∼ c

dd

∼ ¬a =3· a

;;

¬ ∼ c = �c

dd

¬¬a

cc ::

a

p

::

::

• The sets Exp = {�ai, . . .} and Conj = {3· ci . . .} gen-

erate Boolean algebras, that aren’t sub-lattices of C
(Johnstone 1983, prop.1.13)

- Exp has joins �(A∨B) and Conj has meets 3· (C∧D).



4.2. Classical Logic, Intuitionistic Modal-

ities.

Claim 1: In polarized bi-IL � =df ¬¬∼∼ and

3· =df ∼∼¬¬ are intuitionistic acceptable polarity-

changing modalities.

Let LE be the language

Exp E,F := Ep | > | E ⊃ F | E ∩ F | E ∪ F | ¬¬ E
Hy-at := Hp | ∼∼ Hp with the axioms Ep ≡ � Hp.

Let us call the fragment of polarized bi-IL on the

language LE logic of expectations.

Claim 2: The logic of expectations is an in-

tuitionistically acceptable intermediate logic

where ¬¬¬¬ E ≡ E but the law of excluded

middle does not hold.

Fact: A Natural Deduction system for the

logic of expectations is a typing system for

Parigot’s λµ-calculus.



4.3. Translation in classical in S4.

Language L2 of classical S4.

A,B := p | > | ⊥ | A∧B | A∨B | A→ B | 2A
Define ¬A =df A→ ⊥ and 3A =df ¬2¬A.
From now on, ‘¬,∧,∨,→’ are reserved for
classical connectives.

(>)M =df > (⊥)M =df ⊥

( `p)M =df 2p ( Hp)M =df 3p

(A ⊃ B)M =df 2(AM → BM) (C rD)M =df 3(CM ∧ ¬DM)

(A1 ∩A2)M =df A
M
1 ∧AM2 (C1 g C2)M =df C

M
1 ∨ CM

2

(A1 ∪A2)M =df A
M
1 ∨AM2 (C1 f C2)M =df C

M
1 ∧ CM

2

(¬¬ A)M = 2¬AM (∼∼ C)M = 3¬CM

(¬¬ C)M = ¬CM (∼∼ A)M = ¬AM



Hp

∼∼∼∼Hp

ee

Cp

99

Ep

dd

¬¬¬¬ `p

ee ::

`p

p

77

99

The modalities of polarized bi-IL

3p

323p

ee

p

==

32p

99

23p

ee

232p

ee 99

2p

aa

99

The modalities of S4



4.4. Features of polarized bi-IL

• Polarized bi-IL has models in (ordinary)

topological spaces.

- Assertive formulas become open sets and

- hypothetical formulas closed sets.

• A sequent calculus for polarized bi-IL where

sequents are of the form

Θ ; ⇒ A ; Υ

Θ ; C ⇒ ; Υ

• Θ a sequence of assertive A1, . . . , Am;
• Υ a sequence of hypothetical C1, . . . , Cn.
(see rules in table below).

Theorem. The sequent calculus for p-bi-IL

is sound and complete for the Kripke seman-

tics induced by the modal translation.



identity rules
logical axiom:

Θ ; C ⇒ ; C,Υ
logical axiom:

A,Θ ; ⇒ A ; Υ
cutA:

Θ ; ⇒ A ; Υ A,Θ′ ; ε ⇒ ε′ ; Υ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ,Υ′

cutH:

Θ ; ε ⇒ ε′ ; Υ, C Θ′ ; C ⇒ ; Υ′

Θ,Θ′ ; ε ⇒ ε′ ; Υ,Υ′

logical rules for implication, subtraction

right ⊃:
Θ, A ; ⇒ B ; Υ

Θ ; ⇒ A ⊃ B ; Υ

left r:
Θ ; C ⇒ ; Υ, D

Θ ; C rD ⇒ ; Υ

left ⊃:
A ⊃ B,Θ ; ⇒ A ; Υ B,Θ ; ε ⇒ ε′ ; Υ

A ⊃ B, Θ ; ε ⇒ ε′ ; Υ

right r:
Θ ; ε ⇒ ε′ ; Υ, C Θ ; D ⇒ ; Υ, C rD

Θ ; ε ⇒ ε′ ; Υ, C rD

Rules for dualities:
right ∼∼:

A,Θ ; ε ⇒ ε′ ; Υ

Θ ; ε ⇒ ε′ ; Υ,∼∼ A

left ∼∼:
Θ ; ⇒ A ; Υ

Θ ; ∼∼ A ⇒ ; Υ

right ¬¬:
Θ ; C ⇒ ; Υ

Θ ; ⇒ ¬¬ C ; Υ

left ¬¬:
Θ ; ε ⇒ ε′ ; Υ, C

¬¬ C,Θ ; ε ⇒ ε′ ; Υ



5. Conclusions.

(1) We have reconsidered C. Rauszer’s bi-Heyting al-

gebras [1974], and G. Reyes and H.Zolfaghari’s treat-

ment of modalities [1996] in them.

(2) We have shown that the usual tense-epistemic

KtT4 of bi-IL is untenable because of an ambiguous

interpretation of atomic sentences.

(3) We have reviewed results by T. Crolard [2001]

showing that bi-IL has only degenerate topological

and categorical models.

(4) T. Crolard’s result that even co-IL does not have

a model in Set gave motivations for linearizing co-

IL. We provide a categorical model of linear co-IL

in monoidal left-closed categories with extra structure

by dualizing Benton, Bierman, dePaiva and Hyland’s

1993 model of ILL.

(5) A philosophical analysis of bi-intuitionistic logic as

a logic of assertions and hypotheses, extending Dalla

Pozza and Garola’s logic for pragmatics framework

[1995] motivates the introduction of ‘polarized’ bi-

IL, in which topological models are no longer degen-

erate and the modal translation is again in S4.



(6) A ‘rich’ proof-theory for polarized bi-IL is now

possible by combining the dual categorical models of

IL (cartesian closed categories) and the model of co-

ILL in monoidal categories.

Note. Another promising way to obtain categorical

models of polarized bi-IL is to modify the categor-

ical construction of mixed linear and non-linear logic

in [Benton 1995]. We have not done (6) here.

(7) We have extended the BHK interpretation of IL

to polarized bi-IL obtaining a “game-like semantics”

which we claim to be intuitionistically acceptable.

(8) We have shown that in the framework of polar-

ized bi-IL Reyes and Zolfaghari’s modalities become

intuitionistically acceptable polarity-changing modal-

ities and allow us to define a logic of expectations

satisfying the double negation rule, but not the law

of excluded middle.



APPENDIX. I.1.Crolard’s computational

bi-IL

Note. Crolard (2001, 2004) studies subtractive logic

as an extension of classical logic: rules for subtraction

are added to a Gentzen system for classical logic.

• He defines a calculus for constructive bi-IL by re-

stricting permissible logical dependencies in the clas-

sical proof-system.

• The analysis of dependencies is reminiscent of Hy-

land and De Paiva proof-system for FILL (intuition-

istic linear logic with par).

• Crolard’s approach is relevant to the analysis of the

call-by-name and call-by-value strategies of computa-

tion (Curien 2002).



A.I.2. Computational Interpretations.

The λµ-calculus.

variables: x0, x1, . . . names: α0, α1, . . .
terms: M,N := x | λx.M | MN | µα.Q
commands: Q := [α]M (α abstraction)

Substitutions:
ordinary: M [N/x] (capture avoiding);
renaming: Q[α/β];
structural: T [α⇐ L]: [α]N replaced by [α]NL in T .

Reductions:
(β) (λx.M)N  M [N/x];
(µ) (µβ.Q)N  µβ.Q[β ⇐ N ];
(ren) [α]µβ.Q  Q[α/β];
(µη) µα.[α]M  M .

Typed λµ-calculus and classical logic.

• Types: A,B := p | ⊥ | A ⊃ B
• Sequents: Γ ` t : A | ∆ where
Γ = x1 : C1, . . . , xm : Cm and ∆ = α1 : D1, . . . , αn : Dn.

To the Simply Typed λ-calculus add naming rules:

Γ ` t : A | α : A,∆

Γ ` [α]t : ⊥ | α : A,∆
[α]

Γ ` t : ⊥ | α : A,∆

Γ ` µα.t : A | ∆
µ

Type system: classical logic (of ⊃) (Parigot 1992).

Categorical models: control categories (Selinger 2001).



A.I.3. Crolard’s calculus of coroutines.

Γ ` t : A | ∆

Γ ` make-coroutine(t, β) : A rB | β : B,∆
r I

Γ ` t : A rB | ∆ Γ, x : A ` u : B | ∆

Γ ` resume t with x 7→ u : C | ∆
r E

A redex of the form

Γ ` t : A |∆
r-I

Γ ` mk-cor(t, β) : A rB | β : B,∆ Γ, x : A ` u : B | ∆
r-E

Γ ` resume (mk-cor(t, β)) withx 7→ u : C |β : B,∆

reduces to

Γ ` t : A | ∆ Γ, x : A ` u : B | ∆
substitution

Γ ` u[t/x] : B | ∆
[β]

Γ ` [β]u[t/x] : ⊥ | β : B, γ : C,∆′
µ

Γ ` µγ.[β]u[t/x] : C | β : B,∆′

[In the r-E there is an implicit weakening: the type

of resume could be ⊥.]

• Crolard defines a class of safe coroutines typable in

his system of constructive bi-IL.



APPENDIX 2. Bi-IL Rough-sets seman-

tics.

• Nelson 1949, Constructive falsity. To char-

acterize a logic constructively, need to char-

acterize not only provability but also refutabil-

ity.

- idea related to game semantics (see also

Bellin Chu’s construction. A proof-theoretic

apporach 2003).

- for bi-IL need interpretations where the

refutations of A do not coincide trivially with

proofs of A⊥.



A.II.1. Rough equivalence.

Definition. Indiscernibility space (U,E), U

finite set, E equivalence relation.

AS(U) = the atomic Boolean algebras having

the set of equivalence classes U/E as atoms

• (U,AS(U)) is a topological space (the Ap-

proximation Space of (U,E));

I, C : ℘(U)→ AS(U) the induced interior op-

erator and a closure operators.

X is roughly equal to Y iff I(X) = I(Y ) and

C(X) = C(Y ).

• Any subset G ⊆ U is a representative of

(I(G), C(G)).

• Use the disjoint representation

(I(G),−C(G))

using the complement of the closure of G.



A.II.2. Pagliani’s bi-IL semantics.

Pagliani 2009:

[1] 1 = (U, ∅), 0 = (∅, U);

[2] (X+, X−) ∧ (Y +, Y −) = (X+ ∩ Y +, X− ∪ Y −) (con-

junction);

[3] (X+, X−) ∨ (Y +, Y −) = (X+ ∪ Y +, X− ∩ Y −) (dis-

junction);

[4] (X+, X−)→ (Y +, Y −) = (−X+∪Y +, X+∩Y −) (Nel-

son’s implication)

[5] − (X+, X−) = (−X+, X+) (weak negation or sup-

plement);

[6] (X+, X−)⊥ = (X−, X+) (orthogonality);

[7] (X+, X−) ⇒ (Y +, Y −) = ((−X+ ∪ Y +) ∩ (−Y − ∪
X−),−X− ∩ Y −) (Heyting’s implication);

[8] − (X+, X−) = (X+, X−) ⇒ (∅, U) = (X−,−X−)

(intuitionistic negation);

[9] (X+, X−)r (Y +, Y −) = (X+ ∩−Y +, (−X+ ∪ Y +) ∩
(−Y − ∪X−) (co-intuitionistic subtraction).



A.II.3. Problem: completeness + polar-

ization.

Problem 1. Need to start with infinite sets

to obtain a complete semantics for intuition-

istic logic.

Problem 2. To represent polarized bi-IL

need to keep the representations of IL and

co-IL separate:

idea: represent assertive A as (A+
o , A

−
c ), A+

o

open, A−c closed and

hypothetical C as (C+
c , C

−
o ), C+

c closed, C−o
open.



A.II.4. Desiderata.

[1] gR = (U, ∅) and fM = (∅, U) (clopen, clopen);

[2] (A∩B)R = (A+
o , A

−
c )∧(B+

o , B
−
c ) = (A+

o ∩B+
o , A

−
c ∪B−c )

;

[3] (C gD)R = (C+
c , C

−
o )∨ (D+

c , D
−
O) = (C+

c ∪D+
c , C

−
o ∩

D−o );

[4] (A+
o , A

−
c )→ (B+

o , B
−
c ) = (I(−A+

o ∪B+
o ), C(A+

o ∩B−c ))

[5] (∼∼ C)R = −(C+
c , C

−
o ) = (C(−C+

c ), I(C+
c )) and

(∼∼ A)R = −(A+
o , A

−
c ) = (−A+

o , A
+
o );

[6] (A+
o , A

−
c )⊥ = (A−c , A

+
o ) and (C+

c , C
−
o )⊥ = (C−o , C

+
c )∗;

[7] (A ⊃ B)R = (A+
o , A

−
c )⇒ (B+

o , B
−
c ) =

= (I(−A+
o ∪B+

o ) ∩ I(−B−c ∪A−c ), C(−A−c ∩B−c ));

[8] (¬¬ A)R = −(A+
o , A

−
c ) = (I(A−c ), C(−A−c )) and

(¬¬ C)R = −(C+
c , C

−
o ) = (C−o ,−C−o );

[9] (C rD)R = (C+
c , C

−
o ) r (D+

c , D
−
c ) =

= (C(C+
c ∩ −D+

c ), I(−C+
c ∪D−c ) ∩ I(−D−o ∪ C−o )).

∗There is no specific connective for orthogonality in
LAH.
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