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HERBEAND'S THEOREM FOR CALCULI OF ‘SEQUENTS LK AND LJ
Gianiuigi Bellin ‘

University of Stockholm

Introduction., We give a simple proof of Herbrand's
Theorem for Gentzen®s Calculi of Sequents in the gensral
tase, without restriction to sequents containing only prenex
formulas: this proof helds, with little modifications, both
for the classical calculus LK and the intuitionistic caloue
lus ILJ. Since we deal with the general case, we must use
different technigues from Gentzen's verschérfter Hauptsatz;
we follow instead Herbrand's original proof more clésely.

Herbrand's Theorem is o fundamental topic in Predicate
Calculus, closely connected with severdl other basic results,
for instance Cut-Elimination Theorem, Completeness Theorem,
Hilbert's definition of quantification in terms of his
€-gymbol and, finally, the proéf procedures used in the
Automatic Theorem Provzng. Because of these connéctions, too
many results mre called Herbrand*s Theorem today; first we
give an informal account, with the attempt to make clear the
connections and the d;fferences between Herbrand's and
Gentzen's results.
1. Given a formula A of Predicate Cealeulus,Herbrand construcis
the sequence of domains D1,D2,D3,... whose union is called
Herbrand Universe or lexicon (relatively to A} and then the
expansion ZP(A) of A over the domain Dp. There are two equi-
valent definitions of expansion; following the most famous
one, EP(A) is a disjunction of quantifier free Fformulas A,
Az,...,Ak whose variables are elements of DP or terms built up

.With the elements of Dp.
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Then Herbrand proves for classical logic in a Hilbert-
type systems

{a} If ~A, then for gome p EP(A) iz a tautology;

{v) If for some p, E,P{A) ig a tautology, then there is a

proof of A from EP(A) in which ne use iz made of Modusg

Ponens,

Gentzen's verschiirfter Hauptsatz gives, for classical
sequents 5 containing only prenex formulas:

If +~5 then there is a cut-free proof of 5 of the shape
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where 8' is a sequent containing no. quantifiers and where

all propositional inferences are ahbove S' and all quanti-
ficational inferences are below 3'.
The proof shows that it is always poséible to permute
the inferences of a cut-free proof of § in order to get a
proof with this property.

"Now we generalize the notion of expansion from for%;las B

to sequents; {(by a suitable renomination of the variables in
the proof and) by adding, if necessary, some suitable quanti=-
fier free formilas to 5' by Thinning, we obtain %p(s) as
midgequent; the new formulas disappear by Contraction after
the quantification of their variables, It is not fussiness o
note that, since the expansion EP(S) is gensrated mechani-
cally, it contains many formmlas thait are unnecessary in order
to get a proof of 8, while from Gentzen's Theorem we get more
informations in order to single out the simplest midsequent
5%; indeed Gentzen's Hauptsatz contains an analysis of the
propositional inferences that lacks in Herbrand's Theorem..
Herbrand's Theorem helds for any formula A of the Predi-
cate Calculus, Gentzen's verschirfter Haupisatz for sequents
5 containing prenex formulas only; morecover Herbrand's expahy

gion always separates the propositional and the quantificatio-
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nal parts of a proof, but this last properiy depends on a

particularity of Herbrand‘ts system. In fact Herbrand assumes
among the primitive rules the so-called Rules of Passage,
allowing to move quantifiers inside and ouiside a formula;
hence proofs in his system have the canonicel form:

E_(a)

L At o

Qy¥qeeaQ X, E,p(A)

A

where Tirst, we quantify universally or existentially the
varisbles of &p(A) and second, we cbtain A by applying the
Fules of Passage and then by eliminating redundant disjuncts
inside a formla (Generslized Bule of Simplification),

However the use of the Bules of Passage has a very high
price: firetly, a lot of complications arise in the proof of
the theorem because of these rules {as Dreben and Denton
experimented when they emended an error of Herbrand LDREBEN
and DENTCN 1966])} seconaly, we cannot accept these rules if
we want to prove the theorem for the intuitioniétic casé.
Therefore we give up the Rules of Passage and consequently

the property of the midsequent in the general case.

2, In the classical case, from Herbrand's Theorem we ge% a
proof procedure for the Predicate Calculus; this procedure
is complete in the sense that either {1} there exists a p
such that EP{A) is a tautology, or (ii) for all p, there
is an assignment of truth-values to the atomic formulas of
gp(A) such that E,p(A) is false, It is well lmown VAN
HEIJENOORT 1967] that from Herbrand’s Theorem we get Comple-
teness Theorem just by showing that in the .case (ii) it
holds that {i1ii) A is falsifiable in a denumerable model
(i.e.‘the get ézk Dp genersted by A, with a suitable inter.
pretation of the predicate letters, constants and functions
of A)e

The proofs of Completeness Theorem in Gentzen's type
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calculi {(see for instance [KLEENE 1967]) are very elegant

and straightforward; if we consider the proof procedure
sketched there, however, we have to generate mechanically
the subformulas of a guantified formia, as in Herbrand.

The computer scientists have tackled the problem of a
practical use of these procedures by giving several *search
strategies?s the aim is plainly %o avoid to test all the
expansion a {A) for each p and to consider only the part

of it thail 1s really relevant for its wvalidity [NILSSON 1971}

3. It is clear that from Completeness Theorem,formilated in
the Calculug of Sequents, we get the Cui=-Elimination Theorem
as a ocorollary. Besides we could try to derive the Hauptsatsz
directly from Herbrand’s Theorem: by the parts {a) and (b)
together, if A is provable with Modus Ponens, then A is pro-
vable without Modus Ponens from a tautology 8 {4) for some p.
However no treatment is given in Herbrand's werk of the Cut-
Elimination for propositional logic. Obviously what we obtain
in this way is only a reduction of the Cui«Elimination to the
Bropositional Galculus,

On the contrary, our proof of Herbrand's Théorem is
highly siiglified having assumed the Cut-Elimination Theorem

for predicate logic also.

4, Gentzen's verschirfter Hauptsatz does not hold for Ld:

as the counterexample A{a)vA(b)-»3IxA(x) shows, this depends
on the non permutability of the inferences Jiright/v:left
[xrEENE 1952].

Of course the theorem holds for sequents whose antecedent
is empty; moreover as the succedent of an intuitionistic
sequent consists of at most one formula, we know immediately
that Jxa(x) has one only ancestor A(t).

It is evident that (as pointed out by EQOWEN 1976]) since
Herbrand's Theorem holds intuitionistically for a sequent —» A
with A prenex, the theoren fails in general because of the

intuitionistiec inwvalidity of the Rules of Passage., But if A is

L 289
prenex, a very special property of intuitionistic logic is

involved, i.e., A is decidable, and we do not suppose we shall .
prove so mch when we try to prove Herbrand's Theorem for

intuitionistic logic.
5. In order to do this, we use the alternative notion of
expansion, defined by induction on the construction of the
formulas. Then our method is the following: given a proof {ol)
in LK (LJ) of S we comstruct, by induction on the lenght of
(), a proof (@) of Ep(s) for some p in the propesitional
part of IK (LJ), and viceversa,
© ® v

/ m \i,’ jmidan \\“:f/

6,(8) &,(3)

However, we cammot pass from any propositional proof (Y)
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of Eb(s) to a proof of i in IX {LJ); in order to construct
such a proof of 5 we need to make the induction on a suitable
proof () where the inferences are in & certain order, so that
the applications of Y: right and 3: left can be carried out
accordingly with the restrictions on the eigenvariables. By
the Permutebility Theorem [KLEENE 1952], in the classical case
from sny proof {y) we can get a suitable proof (3); in the
intuitionistic case, only from proofs that satisfy a certain
condition and that we call adequate. It is easy to see that a
propositional proof that is constructed by our method from &
qpuantificational proof in LJ is always adequate.

' It would be very interesting %o express the peculiarity
of the intuitioniatic case by a condition on the expansions
themselves instead of & condition on their proofs, i.e. to
establish which kind of expansions do not have an adequate

preoof, We wers unable to do this.

6. A proof of Herbrand's Theorem for intuitionistic logic
in a mamiscript of Beth {1956) is mentioned by [?REESEL 1955&.
We were not able to find this proof.

In the literature Herbrand's Theoren is considered a



& classical result that does not hold for intuitionistic
logic. The whole idea of Herbrand's expangion is considered
a finitistic version of model-theoretic concepts so that
Herbrand®’s Theorem seems to be senseless without the claggi-
cal notion of thruth (see for instance the edition of [HER-
BRAND 1971] by Golafarb),
On the contrary our proof shows that any reference to

the classical notion of truth is unnecessary for Herbrand's

Theorem,

Definitions. Negation is defined (=4 is Aol). We
denote always a sequent by A, where, for the intuitiow
nistic case, A must contain at most one formile. We disregard
the structural rules Contraction and Exchange, but it is
intended that we are aiways able te find the ancestors and
the deseendants of a formula in a proof (as it is requirea
Tor the proof of the FPermutability Theorem)_,. Therefore our
oniy structural rule is Thinning (left and '-right), We nssume
that all the top sequents contain atomic formulas only.

TLet us consider only sequents which coniain no variable
occurring both free and bound, and which contain no two
occurrenc;; of quantifiers with the same variable.

We define in a standard way the positive [negative]
occurrences of a subformula in a sequent F‘-—)A « If A belongs
to A then A is positive; if B belongs to [ then B is hega~
tive., If C&D or CvD or ¥xC(x) or 3x¢{x) are positive [negative]
then € and D or C(%) are positive |negative] . If CID is
positive [negative] then D is positive [negative] and C is
negative [positive_'['.

Following Herbrand, we call s bound varigble x and its
quantifier Qx restricted if Qx is existential [universal] and
its scope QxC(x) is positive [negative] ; a variable y and
its quantifier Qy {(if any) are general either if y is free.
or if Qy is universal existenttial] and its scope QyD{y) is
positive Lnegative:[. '
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Por any distinct gemeral variable ¥s in & we define

the index function of ¥ in 3 thusi
a} if y.is free then the index function of ¥y is ¥y
i

b) if y. is bound and lies in the scope of the n (n> Q)
3
regstricted quantifiers Qx1.Qx2,... ,an, then the index
function of.yi is yi[x1x2... n]'
The functional form ¥ (4) of a formula 4 in a sequent

3 is defined to be the expression obtained

a) by deleting all general quantifiers, and then

b) by replacing each general variable by ite index function
al each of its remaining occurrences,

The functional form';: {3) of = sequent 5 is the sequent
obtained by replacing esch formula of § by its functional
form {in 3),

Let g?(s) be the finite set of all the index functions
that occur in the functional form 47" {3) of a sequent 5, We

5,p% by the following inductioni

define the finite sets D,], PR

1) o7 ={1} _
=0’ ' ] [ Jbel 3 1o
2) Dyy = DpU{yi[ti,?"'ti,n PR e Ry POLONE
5
% (8) ena by qreersty p Delong to Dp} .

e call the elements of the domains Di funetional terms;

?

however a functional term must be congidered as a variable,
and it cannot be broken into its components.
A functional term that occurs in the domain DE but not

in the previous ones will be called of order p.

Now we define the p—th expansion &.P(S) of a sequent §
over DS as follows:
0) Chanece S into"F (S) (remember that only restricted quanti-
fiers occur in ’F(-S)). Then by induction on the subformulas
of each '?-'(A) in ?(S):
1) if © is atomic, then take E,P(c) - % (o)
2) & (o)= & 016 Go) Bows Eoiwh (o);

& (eom)= G e)D & (s

3) &p(gx{)(x))-—nt\ex{i Ep(c(t)); &P(VXC(X))’-‘"Q(Sg &p(o(t))_
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Here t\i(]/)g @p{c(t)) L/EXJ}: @p(c(t))il is the finite
disjunction Lconjunc‘tion] of #l1 the formulas that result
irom gp(C(x)) by replacing a t&Di for x.

Let y be a generz]l variable and let QyD(y) ©be its scope
in 8, Note that in &p(s) geversl subformulas &p(Qy(D(y}))
can correspond to QyD{y), each of them having a different
functional term in the place of y. WNe shall call these

functional terms the functional terms of y.

Any sequence 81”"'Sk of consecutive sequents in a
branch of the proof-tree will be called a fragment {of the
proof-tree).

Tet S be any sequent containing a subformula QyD(y),
with y general; let 8P{S) be the p-th expansion of S and
let é,(D(t )) be an expansion of QyD(y) in . _(s).

Now let us consider any cut-free proof (Y} of 8 (s).

A fragment 5 ,.0.,5, of {Y) is crucisl for (the quantzflca—
tion of the variable) ti if EP(D(ti)) occurs just once in

each sequent 3 ,...,Skof the fragment, but only in S1' as

the principal ;'oxmula of a rule application and only in 5,
as the side formila of a rule application Cn.*. Call (R.}&
crucial rule application for tiu

The end of this definition is c¢lear: when we pass from
a proof (o) of S to & preof of its expansion 8 (8), no

inference corresponds in the new proof to any V right or '

Jileft application in (o). Conversely, when we pass from
a proof (y) of 8 (3) to a preof of 3 we do not find any
instruction in (\() for the Vs sripght and 3 :left applications,
but we know that such an inference with QyD(y) as principal
formila can occur only in the part of the new proof correspon-
ding to the crucial fragment for the variable ti.

It can happen that there are several crucial fragments
for ti but only because of a branching in the proof. Note
that if different occurrences of the same formula Ep(ﬂ(ti))
are coucracted, then the sequent S1 of the crucial fragment.

for ti ig the sequent that contains just one occurrence of
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g (D(t }) as principal formula of the Contractlon.

If in a proof (f) of 5 {3) some g (c{+)) or
XN [
e @p{c(t)) comes From 8‘]3 C{'Isl)) by repeated viright or
&ileft applications then a critical fragment for ti is
defined to be the fragment of (r) containing all the

ancestors of (‘;p{o{ti)) in which tioccurs.

Preliminaries. This is the basic condition for the
"if" part of the theorem, both in the classic and intuitio-
nistic casess W
(%) A crucial fragment for the quantification of t, is

not included in a eritical fragment for ti.

Tt is easy to see that if the condition (3 holds for
any ti then there is always in the fragmen$t of the new proof
corresponding to the crucial fragment for ti a sequent where
ti occurs just once; at this point we can mske the required
Viright or Jileft application accordingly with the
restrictions on the eigenwariable,

By the Permufability Theorem, in the classical cage we
can always permute two propositional inferences: so from any
proof (y) of gp(s) we can obtain a proof () having the
property (%) for 211 the crucial fragments, just by shifting
the crucial inference for any ti below all critieal £ragments
for ’Gi.

But we have to show that there is a consistent precedure
for making these permutations, i.e. a procedure that does neot
contain contradictory instructions.

In the classical case it can happen that a crucial
fragment for %, must be included in a critical fragient for tj
only when thesa conditions occur: ti is a functional term of
the variable y, tj takes the place of the varisble x and in 3
the scope of the quantifier Qy is ineciuded in the scope of the
guantifier Qx.

By adapting an idea of Herbrand, we make this link expli-

cit as follows.
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Any array of functional terms preceded by a signe + or =

and, possibly, connected with braces, will be called a schema,
#e construct the schema of a proof (y) of 5${S) accor—
ding to the following instructions:
i)  if there is in (y) a crucial fragment for t,, write
+ ti in the schemas
ii) if there is in (y} a critical fragment for tj’ write
- tj in the schems;
i131) if the scope of the quantifier Qz, = corresponding to
+ ti,lies in the scope of the guantifier Qw, w correspon-
ding to iutj’ then write + ti on the right of # tf
iv} if two functional terms correspond to two disjoint
guantifiers, then one term is below the other,
A brace can be introduced in order to meke clear the
gependence of several terms on one term,

For instance _ )

=¥ [1] +y2[y2[1]] =1
is the achema of the following proof of 82(8) with
5: Vy, 3%, ¥y, 3%, [P(x1 »¥ 402 P{yzgxz)]

+y1

= P(1!y1)3P(y2 [1] ’y?)l P(y2 [1] 1y1)jP(y2[y2 [1]] ’1)
= 21,5280, [ v, W, Ly 02 2, v, [0 )]

— (1,5 D20y, [y }?e%i %ﬂ?(t,yp: P(z,[+]) ]

“’“”hgg [P( 1,5 ) DBy, [1],11)_] ' X(D/i 1}2_(53 [P(t,y1)DP(y2 [£] ,u)]

-};_.\2% }J")éj/)g (tsy1)jP(y2[t]:u)]rt\é)/2 L%[P{t’y‘})gy(yz[t] |u}]

i 1}3% L}gz[ﬂt.m)j 19(3;2 [t],u)]

Now let us consider the order (see above) of the functio-
ngl terms that oceur in the schema of a proof: it is clear

that if a negative term is of order p then all the positive

terms lying on its right havg%srder higher than p.

' #e can easily establish a linear order between the
functional terms of the array by cordering the lines of the
schema as followss let t?""’tk and t;,...,tﬂ be =11 the

negative terms of two lines L1 and L_ and let Dygesesll

2 k
and Loyees By be the numbers of order of these negative
termg, Then I.1 precedes L2 if

i) either max (n,,..n )<umax (m,evom, )

ii)or, if max (n1...nk) = max (m1...mh?, then (n1.,.nk)

precedes (m,...m ) in the lexicographical order,

In our example, as D, = {1}, D, =D, y1,y2[1]}, the
linear order of the terms of the schema is given by the se-
quencet

sy =1, 1] vy, L1l *yz[yz (1], -

How it is clear that we can permute the fragments in
such a way that s fragment connected with the terms + is
above all the fragment commected with the terms on the left
of . )

Horeover it ia clear that tle proof obtained by these
permutations necessarily satisfies the condition (%): indeed
if in the sequence there are two occurrences of the same
term with different signes, then the rightmost occurrence

has the signe - .

In the intuitioniatic case there are the following
exceptions to the permutability of propositional inferences:
we cannot shift the following upper inferences 0iqbelow the
lower one Qs

Qo D left R, D:left or viright

Ry Diright Ry vileft

In this case we camnot obtain from any proof {\() a
proof (ﬁ) satiefying the condition (¥). Let us suppose that
in an intuitionistic proof (r) a crucial fragment for the

quahtification of ti is included in a critical fragment for ti,
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Then we can shift the crucial 1nference(R below the criti-

cgl fragment only if it is not the case that

1) Ry is Dileft and any application of Dirisht or of
vsleft occurs in the critical fragment below Gi¥

ii) O{*jﬁ viright and any application of vileft occurs in

the critical fragment below Oﬁ*.

Let us say that an intuitionistic proof (ﬁ) of Eﬁ(s)
is adeguate if (ﬁ) satisfies the condition (%).

Then our procedure for the "if" part of the theorem in
the intuitionistic case is the following. Given a sequent 3
and its p-th expansion E@(S)' for any p, first, by Gentzen's
decision procedure for the propesitional part of LJ, search
for a proof of fb (8). If for some p there is any proof (y)
of & {5}, then consider if (Y) is adequate, or if from {Yy)
an adequate proof (p) can be obfained by suitzble permutations.
For an instructive example, consider the following-classi
cally but not intuitionistically provable - sequent
St ¥x(4(x)vB)->VYya(y)vB, where, for the sake of simplicity,

A(x) and B are atomic, Look at the following proof (Y} of E;(S):

A{y)—=>aly) B—B
viright rm————— [ —
Aly)—»A(y)vB B=ra{y)vB
vileft
Aly)vB=——2A(y)vE
&:left

(a(1)vB)&{Al{y)vB)—>A(y)vB

Here the crucial fragment for y {i.e. just the highermost
gequent of the left branch) is included in a critical fragment
for y. In the classical case we can shift the crucial inference
viright at the bottom of the proof, but in the infuitionistic
case we cannot shift this inference below vileft. Therefore

the above proof is intuitionistic, but not adequate.

Herbrand's Theorem, For all clasaical sequents S
F‘ S if and only if there exigts a p sueh that Eﬁ(a) is
provable in the propositional part of LK.
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For all intuitionistic sequents 5

P" 5 if and only if there exists a p such that 6 (b) is

provable with an adeguate proof in the prop031t10nal part

of Ld.
PROCF, {(If). By the preliminary discussion we consider

both for the classical and the intuitionistic cases only
proofs () that satisfy the condition (3¥). The Proof is by
induction on the lenght of ({).

Clearly we have onity to take in account the inferences
of (P) in which a subformila of the shape EJ(QXC(X)) or
f; (gyD{y)) (with x restricted and y general) is firstly
1ntroduced as {a part of) the principal formzla, as in the
other cases nothing as to be changed.

Case T. If the expansion of a quantified formila is
(a. part of) a formila é (B) and

Eg (B) is the prlnclpal form:la of a Thinning, or
11) E’g (A)vfp (B) [@ (8)e & (B)] is the principsl formila
of a V'rlght [& 1ef§] whose side formula is é {4a),
then
1) introduce B by Thinning
ii)} intreduce AvVB [}&B] from A as side formule that is given

by induection hypothesis,

Case IT, @;(Qxc(x)) ig introduced from épC(t) by
repeated appllcatlons of viright [& 1ef§]
then introduce @xC(x) by just an application of H:right
[\f:left instead of these repeated propositional inferences.

Cage III. The principal formula is éa(QyDy), i. e,
E; D(t ), so that the crucizl fragment for t starts. Then
wa contlnue the construction accordingly w1th,the precedent
cases but we know that at a certain sequent S* of the new
proof corresponding to a sequent Sy of the cerucial fragment
we have to introduce QyD(y) from D(ti) as side formula.

We kmow that (ﬁ) satisfies the conditions (K. (4 criti-
cal fragment for ti could begin inside the crucial fragment,

because of an introduction of a formula containing ti by




Thinning, but this case is trgggted as the case I). So let Sy
be the first sequent of the crucial fragment such that all
critical fragments for ti and above it. We show that the
corresponding sequent S;;é satisfies the conditions on the
eigenvariable ti.

Note that we use in the new proof the same names for
the free variables as in {}3); but (@) is cut-free and because
of the Subformula Property the variables that occur in the
proof ocecur in ép(S) also,

Consider now any term tj occurring in 3%.

If in EP(S) t} iz the functional term of a general
variable y' different from y, then certaimly t.4 ©, .

If in &p(S) t,j takes the place of a restgict;d variz-
bie x of 3, then Sy belongs to a critiecal fragment for t_,
so that necessarily t'].;é ti" {Indeed, let 9xC(x) be the scope
of the restricted quantifier Qx; if & (D{t,)) is included
in &p(c{tj)) then t; is of the shaype i[tT,j.tnt ] if
&P(C(tj)) was included in &P(D(ti)), 4. would l'r]mve al ready
disappeared in the new proof; if &P(D(ti)) and & (0(t.))
are disjointjtj#bi is true by the condition (¥)). ? ?

(Only if). We need the following J.emma: _
LEMMA I, If ;-.gp(s), then l—é*(s), where ('3 (3) is the

—th . 3 <\ s
P expansion of 3 over DP, and &*{b} is an expansion

of 5 over a D, such that DSCD*
; P
The preoof is by induction on the cut=free proof (8) of
& ().
kY
The Theorem is proved by induction on the lenght of the
cut free proof () of S.For the induction step we define a
strong enalyzing function for a rule of inference (see [PREBEN
- : ’
DENTCN and AANDERAA 196_3]). The primitive recursive function X
is a gstrong analyzing function for the rule G?,if the following
condition is satisfied: if § comes from § [
: om 3
1e(R,,a.nd if 8(5) and (e_;(‘ . ! e Sz]by the e
ot 51 a b2) is are] the provable
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expansion [s] of the upper sequent [s] 51 [and SJ,then
E,?,,,p)(s) LEX,(P q)(S) is a provable expansion of the
W F

jower sequent 3.

We shall show that there exist strong analyzing functions
for all -the' rules of inference of LK (LJ) (without Cut).This
proves the Theorem,as the basis of the induction is trivial.

It is easy to see +hat Identity is a strong analyzing
function for all the rules with one premise, except a:right
and V:lefti by uging Lemma I we see that max(p,q) is a
strong analyzing function Tor all the rules with two premises
{except Cut).

LEMmMA IT. Successor is a strong enalyzing function for

V:ileft ana J:right.

Let &, Ma)—=/A\  or s, M=/ att)  (where &N is

—_— s empty in fthe
s [ ,Vxatxy=A s [N, 3xuix) intuitionistic
omse)

be an application of V:left sra:right; by induction hypo-
thesis we have a proof (8) of (G_;P(S1).

We mast distinguish the cases: t occurs or t does not
ocour in 9, If not, replace everywhere in (%) tﬂe numeral 1
for t, Kow t=1 occcurg both in Dgi and in Di, and the fellowing
argument holds again.’

If some general quantifier lies in the scope Qxalx) of
the restricted (x introduced by this rule application, then
the set of the index functions of 51 is different from that
of 8, the feormer having some function ¥y [Xi,T'”xi,n] where
the latter has ¥y [xi’1...xi,nx:|, (We consider this case only;
otherwise the proof is trivisl). 3o D?Li %DE for i2 2,

But now substitute everywhere in 5y yi[ti,f"ti,nt]

for y[t. vest, ]. We obtain a proof of the expansion (f*(s )
i, i,n 5 1
over a domain Dy such that D*’EQDPH' For instance, take the

case of a variable y whose index function is y in S1 and
becomes y[x] in 8. So if the terms

¥ yi...y.o.J, yj...yi...y...]..J,

that belong to Dg ,D§ ,DE gees oCOUr in fgp(s_}), then




y&] ,y.ﬁ.ny& ”.], j “,yl.ney[J.”] ],.,.
that beloag to D?,Df,Dg,.”wnH occur i Gy (5q).
Now by the Lemma I and by repeated applications of
&iLeTt or viright we get a proof of 5$+1{S).
It is immediate %o see that the proof (f3) of gp(s)
obtained by this procedure satisfies the condition (%), so

that in the intuitienistic case q3) is adequate.

REMARK, The "only if" part of fthe proof is very similar te

the original exposition of Herbrand.Lemma Il is gimilar also

tp the Corollary T{ii} of the Normal Form Theorem for Intuitio-
nistiec Logic in [fHAWITZ ?96%].
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