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Summary. In this paper bi-intuitionism is interpreted as an intensional logic which
is about the justification conditions of assertions and hypotheses, extending C. Dalla
Pozza and C. Garola’s pragmatic interpretation [18] of intuitionism, seen as a logic
of assertions according to a suggestion by M. Dummett. Revising our previous work
on this matter [5], we consider two additional illocutionary forces, (i) conjecturing,
seen as making the hypotheses that a proposition is epistemically necessary, and (ii)
expecting, regarded as asserting that a propostion is epistemically possible; we show
that a logic of expectations justifies the double negation law. We formalize our logic
in a calculus of sequents and study bimodal Kripke semantics of bi-intuitionism
based on translations in S4. We look at rough set semantics following P. Pagliani’s
analysis of “intrinsic co-Heyting boundaries” [40] (after Lawvere). A Natural Deduc-
tion system for co-intuitionistic logic is given where proofs are represented as up-
side down Prawitz trees. We give a computational interpretation of co-intuitionism,
based on T. Crolard’s notion of coroutine [16] as the programming construction cor-
responding to subtraction introduction. Our typed calculus of coroutines is dual to
the simply typed lambda calculus and shows features of concurrent and distributed
computations.

to Dag Prawitz

1 Introduction.

This paper aims at developing an intensional logic of the justification condi-
tions of some illocutionary acts, namely, asserting, making hypotheses, con-
jecturing and expressing an epistemic expectation, where the intended inter-
pretation of the logical connectives and of the forms of inference are those of
intuitionistic logic1. Our work belongs to the project of a Logic for Pragmatics,

1 We wish to thank Prof Andrew Pitts and Dr Valeria de Paiva for their comments
on various aspects of this research and Dr Piero Pagliani for his expert support
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initiated by the philosopher Carlo Dalla Pozza and by the physicist Claudio
Garola [18] and later continued by Dalla Pozza and Bellin [7] and others, in
particular Bellin and Biasi [5]. Characteristic of our approach with respect to
similar ones, e.g., S. Artemov’s justification logic, is the focus on illocutionary
forces in the elementary expressions of our language, where propositions in
the classical sense are never presented without an illocutionary force and thus
an “illocutionary mood” (e.g.,, assertive or hypothetical) is inherited also by
composite expressions of the language. This fact is essential in our case study
here, bi-intuitionistic logic, where intuitionstic and its dual co-intuitionistic
logic are joined together. In natural language the acts of asserting, on one
hand, and of making hypotheses and expressing a doubt, on the other, may
in some sense be regarded as dual. Thus we have an interpretation of bi-
intuitionism as an intensional logic of assertions and of hypotheses, where the
dual intuitionistic and co-intuitionistic parts are “polarised” and kept sepa-
rate. In this framework it is perfectly appropriate and unproblematic that the
law of non-contradiction and the disjunction property hold for the assertive
notions of intuitionistic negation, conjunction and disjunction, while the law
of excluded middle and para-consistency hold for the hypothetical notions of
co-intuitionistic negation, conjunction and disjunction.

In this paper we revise and sharped the discussion of the logical properties of
assertions and conjectures in Bellin and Biasi [5], by distinguishing between
conjectures and hypotheses. In a nutshell, the justification of an assertion re-
quires epistemic necessity of the truth of the propositional content p, which is
given, e.g., by a proof of p; making a hypothesis is justified by the epistemic
possibility of the truth of the propositional content; similarly, expressing a
doubt about a statement is justified by the epistemic possibility that the state-
ment may be unjustified. But for the justification of a conjecture we need the
possibility of the epistemic necessity of the truth of its propositional content,
not just epistemic possibility. Dually, we are led to the distinction between
assertions and epistemic expectations: for the justification of an expectation,
it suffices to have the necessity of epistemic possibility, which we regard as the
assertion that in all situations it will be possible for the propositional content
to be true. It turns out that a logic of expectations satisfies the law of double
negation, a feature of classical logic.

There is a philosophical question about the nature of the epistemic modal
notions used here. Every expression of our logic for pragmatics has an inter-
pretation in classical S4, the assertion `p and hypothesis Hp of a proposition

in the Rough Sets semantics. We are indebted with Prof Tristan Crolard for his
intriguing work on bi-intuitionistic and classical logic and with Dr Hugo Herbelin
for suggestions about our calculus of coroutines for co-intuitionistic logic. Thanks
to Dr Carlo Dalla Pozza, Dr Kurt Ranalter, Dr Corrado Biasi and Dr Graham
White for their cooperation in the “logic for pragmatics” enterprise. I am grateful
to Prof Dag Prawitz, my first marvellous supervisor in Stockholm 1978 and to
Dr Luiz Carlos Pereira, a fellow student then and a supportive colleague now.
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p are interpreted as 2p and 3p, respectively; similarly, the conjecture Cp and
the expectation Ep become 32p and 23p. Thus we have an intensional coun-
terpart of all modalities of S4; but we do not regard such correspondence with
classical S4 as a definition of the new “illocutionary forces” of conjecture and
expectation. Indeed we intend the pragmatic interpretations of intuitionistic
and bi-intuitionistic logic as bona fide representations of such logics from the
viewpoint of an intuitionistic philosopher; moreover, we intend our “logic for
pragmatics” to compatible with the rich proof-theory of intuitionistic logic,
including the Curry-Howard correspondence and categorical interpretations.
Thus we are inclined to regard conjectures and expectations as examples of
how a theory of intuitionistic modalities can be developed starting from the
illocutionary forces of assertions and hypotheses as basic. However this inves-
tigation is left for another occasion2.

1.1 Logic for Pragmatics: Dalla Pozza and Garola’s approach

The aim of Dalla Pozza and Garola’s “logic for pragmatics” is to capture
the logical properties of what are called illocutionary acts – asserting, con-
jecturing, commanding, promising, and so on. Consider assertions. In their
framework there is a logic of propositions and a logic of assertions. Proposi-
tions can be either true or false, according to classical semantics, assertions
are acts that can be justified or unjustified, felicitous or infelicitous. They pro-
pose a two-layer theory with a distinctive informal interpretation, according to
which propositions have truth conditions, i.e., a semantics, whereas assertions
have justification conditions, belonging to pragmatics. As a consequence, we
can form logical combinations of propositions, which are given a classical se-
mantics as usual, but we can also form logical combinations of assertions, and
interpret these combinations along the familiar lines of Heyting’s interpreta-
tion of intuitionistic connectives. This is Dalla Pozza and Garola’s pragmatic
interpretation of intuitionistic logic: if α denotes a proposition, the elementary
expression `α stands for an assertion and `α is justified just in case we have
conclusive evidence that α is true; in the case of a mathematical statement
α, “conclusive evidence” is a proof of α. Moreover, an assertive expression of
conditional type A ⊃ B is justified by providing a method that transforms a
justification of an assertive type A into a justification of an assertive type B.

2 Since April 2011 when significant revisions were made to this paper, categori-
cal models of bi-intuitionism have been studied based on monoidal categories. In
particular, if the term assignment to a Gentzen system for co-intuitionistic logic
is used in building a categorical model, then disjunction is best given multiplica-
tive rules rather than additive ones, as it is done in this paper. Further work
on the mathematical structure and the philosophical interpretation of “polarized
bi-intuitionism” is in G. Bellin, M. Carrara, D. Chiffi and A. Menti, A prag-
matic dialogic interpretation of bi-intuitionism, submitted to Logic and Logical
Philosophy, 2013.
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It should be noticed that intuitionistic logic is represented in Dalla Pozza and
Garola’s framework as a theory of pragmatic validity only if the justification
of elementary expressions ` α does not depend on the logical structure of
the radical expression α as a classical proposition – e.g., we shall not allow
α to be p ∨ ¬p. Thus in every investigation of intuitionistic theories within
the framework of Dalla Pozza and Garola [18] it is assumed that elementary
expressions have atomic radicals, i.e., α = p. This convention is essential also
for the present investigation of our co-intuitionistic and bi-intuitionistic logic.

The novelty of Dalla Pozza and Garola’s work is that Heyting’s semantics is
applied to illocutionary types of acts, not to propositions; if the justification
of an assertion of atomic type `α is related to the semantics of the propo-
sitional content α, a complex type has only a pragmatic justification value,
not a semantic one. To recover propositions and semantic values one consid-
ers semantic projections given by the Gödel, McKinsey, Tarski and Kripke’s
translation:

( `α)M = 2α (A ⊃ B)M = 2(AM → BM )

This modal formalism can be given the usual interpretation through an epis-
temic view of Kripke S4 semantics. Thus in a Kripke model (W,R,
) for S4
every w ∈W is seen as a stage of human knowledge and the accessibility rela-
tion expresses ways in which our knowledge may evolve; at each stage atomic
propositions are locally true or false according to 
; reflexivity of R means
that what we know must be true also locally and transitivity of R expresses
the fact that human knowledge cannot be forgotten or falsified, and so on.3

The basic approach of Dalla Pozza and Garola seems to stand as a helpful
conceptual clarification, following Quine saying that a change of logic reflects

3 The interpretation of intuitionistic logic as a logic of assertions appears already
in Dummett’s work. Martin-Löf regards his intuitionistic theory of types as ex-
pressing judgements about the truth of propositions; in his system well-formed
complex types are propositions and the terms inhabiting them are witnesses of
their truth, intuitionistically understood. This view is disputed by Dalla Pozza: for
him only atomic types assert the truth of propositions, but complex types neither
are propositions nor assert propositions. To recover a proposition corresponding
to the complex type

(§) `α ⊃ ( `β ⊃ `α)

we need a semantic projection, i.e., 2(2α → 2(2β → 2α)); but justification of
the assertion type

(§§) ` 2(2α→ 2(2β → 2α))

is a semantic argument for a sentence of classical S4 while (§) is justified by
something like a program λx.λy.x, where x : `α and y : `β are variable ranging
over proofs of the truth of α and of β.
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a change of the subject matter of the logic. The remarkable technical devel-
opments of the proof-theory of classical logic in the last decades suggest the
possibility of a pragmatic interpretation of classical methods of inference; de-
spite some hints in [5], section 5, and the result in section 2.5 below, this
remains an essentially unfinished business.

Justification and felicity conditions.

Going back to the basic texts of modern pragmatics, such as Austin[2] and
Levinson[31], every speech act has a propositional content, an illocutionary
force (or pragmatic mood) and perlocutionary effects. Now it seems that the
felicity or infelicity conditions of a speech act essentially depend on the actual
circumstances of its performance and on its intended or unintended perlocu-
tionary effects. Thus a formalization of the felicity or infelicity conditions of a
statement would be based on a formal theory of actions including a represen-
tation of the agent and the addressees of a speech act and also its preconditions
and postconditions (for a first formulation of such a theory, see [60]).

On the contrary, the contribution of the illocutionary mood to the pragmatics
of speech acts can be characterized by abstracting away from the actual agents
and addressees and from their specific context, effects and goals. Thus an
impersonal illocutionary operator of an intensional logic may suffice to express
illocutionary force, if the justification of the illocutionary mood of such type of
acts makes reference to a relatively stable and uniform context (e.g., scientific
knowledge in a given time, obligations within an established legal system,
unambiguous linguistic acts within a linguistic community, and so on).

In this framework, several works have explored the “logic for pragmatics” of
obligations (Dalla Pozza [19]) and then the logic of assertions, obligations with
causal reasoning (Bellin, Dalla Pozza and Ranalter [7, 6, 48, 49]). In general,
the development of such logics requires an identification of the appropriate
modal operators or non-classical connectives used in the modal projection
and their Kripke semantics; then one proceeds to a more abstract treatment
of the proof theory, as in Ranalter’s work.

2 PART I. Conceptual analysis: assertions, hypotheses
and conjectures

In extending Dalla Pozza and Garola’s framework to a logic of hypothetical
and conjectural moods, we encounter a variety of moods with different linguis-
tic and logical properties.4 It is familiar the distinction in Latin between three

4 The conceptual development traced results from cooperation with other re-
searchers, in particular with Corrado Biasi, whose doctoral dissertation at Queen
Mary, University of London is still unfinished.
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kinds of if clauses, the first one using the indicative to express the condition as
a matter of fact, the second the present subjunctive to express possibility of
the condition and, finally, the third one using the past subjunctive for coun-
terfactuals. Also consider theory of argumentation. Here six proof-standards
have been identified from an analysis of legal practice: no evidence, scintilla
of evidence, preponderance of evidence, clear and convincing evidence, beyond
reasonable doubt and dialectical validity, in a linear order of strength [24].5

It is essential to remember that “legal reasoning is not primarily deductive,
but rather a modelling process of shaping an understanding of the facts, based
on evidence, and an interpretation of the legal sources, to construct a theory
for some legal conclusion” (Jon Bing [12] cited in [24]). More precisely, in order
to decide whether to accept or reject each element of a given set of “claims”,
one constructs a consistent “theory of the generalizations of the domain and
the facts of the particular case”, together with “a proof justifying the decision
of each issue, showing how the decision is supported by the theory” [24].

Thus in Argumentation Theory one starts with an inconsistent knowledge
base and a set of claims and proceeds to build a consistent theory from them;
later, when deriving the claims from such a theory one uses (some fragment
of) classical logic. But in this stage it might be desirable to use a logic that
retains essential pragmatic information such as the standards of evidence of
the premises, rather than classical logic that omits it. Thus some refinement
of our logic may have applications to Argumentation Theory to establish a
closer correspondence between “theory searching” and deductive reasoning.
Here we use the notion of “standards of proof” in an informal way and regard
the possibility of developing a theory of positive evidence for hypotheses in
our framework as a suggestion for future work.

2.1 First attempt: assertive and hypothetical types

In Bellin and Biasi [5] we have given a logic of hypothetical types parallel
to Dalla Pozza and Garola’s logic of assertions. We start with elementary
illocutionary acts of hypothesis, denoted by Hα: here α is a proposition which
is presented as possibly true; such an act is justified if there are grounds

5 In the formal treatment of Carneades model of argumentation, proof-standards
occur in the definition of what it means for an argument with conclusion c from
premises P and exceptions E to be applicable in a Carneades argument evalu-
ation structure S = 〈arguments, assumptions, weights, standard〉. The definition
relies on a non-logical real-valued function weights ranging over arguments. The
notion of applicability is recursive, as it depends on the notion of a proposition p
being acceptable in an argument evaluation structure S. Here a proposition p is
acceptable with a scintilla of evidence if there is at least one applicable argument
for p and p is acceptable as dialectically valid if there is an applicable argument
for p and no applicable argument against p. All other proof standards require
comparing the weights of arguments for and against p. See [24, 13].
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for believing that α may be true in some circumstances. Next we consider
connectives building up complex hypothetical types from elementary ones.
For instance, through the connective of subtraction we build the hypothetical
expression possibly C but not D (written CrD); such an expression is justified
if it is justified to believe the truth of the hypothetical expression C while also
believing that the hypothesis D may never be true; the disjunction C gD of
the hypothetical expressions C and D is also a hypothetical expression, and
so on.

The modal projection of hypothetical expressions is also in classical S4:

(Hα)M = 3α (C rD)M = 3(CM ∧ ¬DM )

Namely, the modal translations of assertions AM and hypotheses CM are
both interpreted in models (W,R,
) where R is transitive and reflexive. This
choice is crucial for the approach of [5]: other modal candidates are possible
as discussed in [5] and in more detail below.

In natural language illocutionary acts of hypothesis may be embedded into a
context consisting of illocutionary act of assertion, for instance

Arturo is the best pianist of his generation and will not refuse to play
in this town, although the audience may be slightly noisy;

an assertive conjunction of two assertions and a hypothetical statement; con-
versely, assertions may be embedded in a hypothetical context:

We may not hear Arturo playing, because he has very high standards
and if the audience is slightly noisy then he may refuse to play.

containing a hypothetical implication with an assertive antecedent and hypo-
thetical consequent. Taking this idea seriously, one obtains a rather unman-
ageable family of mixed connectives [5]; in this paper we shall consider only the
role of mixed negations turning assertive expressions into hypothetical ones
and conversely.

Three methodological principles.

Our logical treatment of assertions and hypotheses is based on the notion of a
duality between these two illocutionary moods: informally it is a familiar idea,
since a proof of a proposition may be obtained as a refutation of the conjecture
that its dual is true. In a formal treatment, there are many aspects to this
duality, which is certainly satisfied by the modal translation in S4. In [5],
Section 1.1, three methodological principles are stated for a logic expressing
the duality between assertive and hypothetical types:

1. The grounds that justify asserting a proposition α certainly suffice also
for conjecturing it, whatever these grounds may be;



8 Gianluigi Bellin

2. in any situation, the ground that justify the assertion of α are also neces-
sary and sufficient to regard the conjecture that ¬α as unjustified;

3. the justification of non-elementary assertive or hypothetical types, built
up from elementary types using pragmatic connectives, depends on the
justification of the component types, possibly using intensional operations.

The third principle requires a sort of compositionality of justification: this is
certainly satisfied by the intended informal interpretation of the connectives.

As it stands, the second principle is inadequate. On one hand, it is indisputable
that the grounds allowing one to regard the assertion of α as justified must
override any ground in favour of the conjecture of ¬α; on the other hand, it
is wrong and contrary to common sense to say that if the conjecture of ¬α is
unjustified then the assertion of α is justified: the grounds we may have to
dismiss the conjecture that ¬α may be the case may not be strong enough to
justify the assertion that α is true. There are at least two issues here.

Firstly, we must distinguish between the illocutionary force of a mere hy-
pothesis and that of a conjecture, a distinction we shall develop later in this
paper. Let us split the second principle in two parts, replacing “hypothesis”
for “conjecture”:

2.i If the assertion of α is justified, then the hypothesis that ¬α is true cannot
be justified.

2.ii If the hypothesis that ¬α is true is unjustified, then the assertion of α is
justified.

Except for the case of counterfactuals, which are not our concern here, (2.i) is
still correct; as for (2.ii), it becomes plausible if we assume that a hypothesis
H¬α may be justified by a mere cognitive possibility of a situation, no matter
how unlikely it may be, in which ¬α is true. The epistemic interpretation of
the modal interpretation in S4 validates this reading of (2.ii).

This raises a second issue: in our framework there is no theory of positive ev-
idence; nevertheless we must be able to distinguish illocutionary forces whose
justification depends on different strengths of evidence. Thus the logic of hy-
pothetical reasoning in [5] reduces to a refutation calculus; although pure
refutation does correspond to common-sense reasoning – indeed it seems to
be very close to the medieval practice of disputation [1] 6 – it may not suffice
for applications, e.g., to a theory of laws and to legal reasoning.

Finally, the first principle is true for any reading of Hα, e.g., as hypothesis
or conjecture. Also it is true in argumentation theory: the assertion `α must
be justified by “standards of proof” at least as strong as those justifying the

6 We are grateful to an anonymous referee to [5] for making the point clear and for
indicating the reference. The same referee, acknowledging that our “refutation
calculus” is dual to intuitionistic logic, questioned whether a calculus based on a
theory of positive evidence could be co-intuitionistic: we come back to this issue
below.
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hypothesis Hα. Notice that this principle shows a basic asymmetry between
assertions and hypotheses.

A logic of assertions and hypotheses: the language LAH

The core fragment of the logic of assertions and hypotheses in [5] is a propo-
sitional language built from a countable set of atomic formulas p, p1, p2, . . .
and symbols of illocutionary force yielding elementary formulas `p (certainly
p) and Hp (perhaps p). It consists of two dual parts:

• an assertive part LA built from elementary assertions ` p, a sentential
constant for validity (g), using assertive conjunction (∩) and assertive
implication (⊃) and

• a hypothetical part LH built from elementary hypotheses Hp and a con-
stant for absurdity (f), using hypothetical disjunction (g), and hypothetical
subtraction (r).

Thus LA and LH are negation-free fragments of the language of intuitionistic
and co-intuitionistic logic. Let abs be an absurd statement in LA and val is
a valid statement in LH . Then ∼ X =def X ⊃ abs expresses assertively the
existence of a method to turn a justification of X into a justification of an
absurdity. Similarly a Y =def val r Y expresses the doubt that Y may be
true, namely, the hypothesis that a valid statement val may be compatible
with the negation of Y . Thus we have four negations:

1. if X is an assertive expression, then ∼ X is the usual intuitionistic nega-
tion;

2. if Y is a hypothetical expression, a Y is co-intuitionistic supplement;
3. if X is a hypothetical, then the mixed expression X ⊃ abs is an assertive

type;
4. if Y is assertive, then val r Y is a hypothetical type.7

Our logic is therefore bi-intuitionistic, in the sense that it has intuitionistic
and co-intuitionistic connectives, but it is polarized, as elementary formulas
are either intuitionistic ( `p) or co-intuitionistic (Hp), but not both, and con-
nectives, with the possble exception of negations, preserve the polarity. Thus
we have the following grammar of the language of polarized bi-intuitionistic
logic for the pragmatics of assertions and hypotheses LAH :

A,B := `p g A ⊃ B A ∩B ∼ C

C,D := Hp f C rD C gD a C

7 As in [5], to these pragmatic negations one should add classical negation in the
radical part ¬α; but no logical property of the radical part can be used in the
treatment of intuitionistic pragmatics. To avoid confusions with the “polarized
classical logic” in [5], section 5, in the treatment of dualities we shall assume that
the atoms occurring in the radical part are either positive p+i or negative p−i , i.e.,
that there is an involution without fixed point on atoms exchanging p+i and p−i .
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2.2 Second attempt: more general modal translations

In order to approximate alternative treatments of a logic of assertions, hy-
potheses and conjectures, we consider more general modal translations in bi-
modal S4.

Translations in Bimodal S4

Definition 1. (i) Let p range over a denumerable set of propositional vari-
ables Var = {p1, p1, . . .}. The bimodal language L2,2 is defined by the follow-
ing grammar.

α := p | ¬α | α ∧ α | α ∨ α | α→ α | 2α | 2 α

Define 3α =df ¬2¬α and 3α =df ¬ 2 ¬α.

(ii) Let F = (W,R, S) be a multimodal frame, where W is a set, R and S are
preorders on W . Given a valuation function V : Var → ℘(W ), the forcing
relations are defined as follows:

• w 
 2α iff ∀w′.wRw′ ⇒ w′ 
 α,
• w 
 2 α iff ∀w′.wSw′ ⇒ w′ 
 α.

(iii) We say that a formula A in the language L2,2 is valid in bimodal S4 if
A is valid in all bimodal frames F = (W,R, S) where R and S are preorders.

Lemma 1. Let F = (W,R, S) be a multimodal frame, where R and S are
preorders.

(i) The following are valid in F

22 2α→ 2α and 2 22 α→2 α

(ii)(a) The following are equivalent:

1.a: S ⊆ R;
2.a: the following scheme is valid in F :

(Ax.a) 2α→ 2 2 2α;
3.a: the following rule is valid in F :

(R.a)
3β ⇒3¬2α
2α⇒ 2¬ 3β

(ii)(b) The following are equivalent

1.b: R ⊆ S;
2.b: the following scheme is valid in F :

(Ax.b) 2 α→2 2 2 α
3.b: the following rule is valid in F :

(R.b)
2¬ 3β ⇒ 2α

3¬2α⇒3β
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Proof of (ii)(a). (1.a ⇒ 2.a) is obvious. (2.a ⇒ 1.a): If S is not a subset
of R, then given wSv and not wRv define a model on F where w′ 
 p for
all w′ such that wRw′ but v 6
 p; thus 2p → 2 2 2p is false at w. (2.a ⇒
3.a): If 3 β ⇒3¬2α is valid in F then so is 2¬ 3¬2α ⇒ 2¬ 3 β and the
conclusion of (R.a) is valid because of (Ax.a). From the conclusion of (R.a)
the premise follows using part (i). (3.a⇒ 2.a): (Ax.a) is obtained by applying
(R.a) downwards to 3¬2α⇒3¬2α. The other parts are similar.

2.3 Bimodal interpretations of LAH

Definition 2. The interpretation ( )M of LAH into L2,2 is defined inductively
thus:

(f)M =df ⊥ (g)M =df >
( `p)M =df 2p (Hp)M =df 3 p

(A ⊃ B)M =df 2(AM → BM ) (C rD)M =df 3 (CM ∧ ¬DM )
(A1 ∩A2)M =df AM1 ∧AM2 (C1 g C2)M =df C

M
1 ∨ CM2

(∼ C)M =df 2¬CM (a A)M =df 3¬AM

It is easy to prove that AM ⇐⇒ 2AM and CM ⇐⇒ 3CM in the semantics
of (bimodal) S4.

(i) The propositional theory PBL (polarized bi-intuitionistic logic) is the set
of all formulas δ in the language LAH such that δM is valid in every preordered
bimodal frame (i.e, in any frame (W,R, S) where R and S are arbitrary pre-
orders).

(ii) The propositional theory APBL (asymmetric polarized bi-intuitionistic
logic) is the set of all formulas δ in the language LAH such that δM is valid
in every preordered bi-modal frame (W,R, S) where S ⊆ R.

(iii) The propositional theory AHL (bi-intuitionistic logic of assertions and
hypotheses) is the set of all formulas δ in the language LAH such that δM

is valid in every preordered bi-modal frame (W,R, S) where R = S. In other
words, in the modal translation let 3X =df ¬2¬X; then δ is in AHL if and
only if δM is valid in S4.

Remark 1. (i) PBL is the most abstract theory of bi-intuitionistic logic where
all formulas are polarized as assertive or hypothetical. PBL is not a suitable
candidate for our logic of assertions and hypotheses, since the pair ( ` p)M ,
(a `p)M is consistent in bi-modal S4, contrary to the accepted principle (2.i).
We won’t speculate about possibility of interpreting a `p as a counterfactual.

(ii) On the contrary, the asymmetric logic APBL satisfies (2.i), but not
(2.ii)8. Thus APBL may be the right context for studying assertive and hy-
pothetical reasoning where hypothetical statements have different degrees of
positive evidence and thus are not representable in a pure refutation calculus.

8 Condition S ⊆ R guarantees that if w 
 2p then w 6
3 ¬p. To see that w 
 2p
is not a valid consequence of w 6
3¬p, consider a model M = (W,R, S,
) with
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(iii) Finally, our canonical system is the bi-intuitionistic logic of assertions and
hypotheses AHL – poorly named intuitionistic logic for pragmatics ILP in [5]
– satisfying both conditions (2.i) and (2.ii). It is motivated by the epistemic
interpretation of (uni-modal) S4, where hypotheses are seen as mere epistemic
possibilities and assertions as epistemic necessities.

Dualities

Definition 3. Let ( )⊥ : Atoms → Atoms be an involution without fixed
points on the atomic formulas pi. Intuitively, we may think of p⊥i as ¬pi, but
intuitionistic dualites are defined best without any reference to the classical
part. We extend ( )⊥ to maps F : LA → LH and G : LH → LA letting

(a) F ( `p) =Hp⊥ G(Hp) = `p⊥

(b) F (A ∩B) = F (A)g F (B) G(C gD) = G(C) ∩G(D)
(c) F (A ⊃ B) = F (B) r F (A) G(C rD) = G(D) ⊃ G(C)

Lemma 2. In AHL let F (A) =a A and G(C) =∼ C. Then

1. if we interpret (p⊥)M as ¬p, then the modal translations of conditions
(a)-(c) are valid equivalences in S4;

2. GF (A) ≡ A and FG(C) ≡ C;

3.
A⇒ G(C)

C ⇒ F (A)
and

G(C)⇒ A

F (A)⇒ C

Proof. By definition of the modal translation we have

(1)(a): (a `p)M = 3¬2p ≡ 3¬p = (Hp⊥)M

(∼Hp)M = 2¬3p ≡ 2¬p = ( `p⊥)M

(1)(b):
(
a (A ∩B)

)M
= 3¬(AM ∧BM ) ≡ (3¬AM ) ∨ (3¬BM ) =

(
(a A) g (a B)

)M(
∼ (C gD)

)M
= 2¬(CM ∨DM ) ≡ (2¬CM ) ∧ (2¬DM ) =

(
(∼ C) ∩ (∼ D)

)M
(1)(c):

(
a (A ⊃ B)

)M
= 3¬2(AM → BM ) ≡ 3(3¬BM ∧ ¬3¬AM ) =

(
(a B) r (a A)

)M(
∼ (C rD)

)M
= 2¬3(CM ∧ ¬DM ) ≡ 2(2¬DM → 2¬CM ) =

(
(∼ D) ⊃ (∼ C)

)M
(2): The conditions

∼a A ≡ A and C ≡a∼ C (1)

follow from Lemma 1.(i) and (ii). The conditions in (3) follow from rules (R.a)
and (R.b) in Lemma 1.(ii).

W = {w,w′}, R and S reflexive and transitive and such that wRw′ but not wSw′,
and w 
 p but w′ 
 ¬p. Notice that H¬p is not an expression of the language
LAH , but the same remark applies to ( `p)M = 2p and (a `p)M =3¬2p.
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Remark 2. (i) Lemma 2 fails for PBL and APBL.

(ii) As the only mixed formulas in LAH are negations, Lemma 2 gives us a
(meta-theoretic) ”method for eliminating mixed formulas in AHL” modulo
the atomic involution ( )⊥, (interpreted in the modal translation as classical
negation ¬p). E.g., the mixed expression A ∩ ∼(Hpg Hq) is equivalent in the
S4 semantics to the purely assertive expression A ∩ ( `p⊥∩ `q⊥).

(iii) Sometimes we shall write A⊥ and C⊥ for F (A) and G(C), respectively.

Proposition 1. (restricted substitution) Let σ be a map

`pi 7→ Ai Hpj 7→ Cj

sending a vector ηa of assertive elementary formulas to a vector A of assertive
formulas and a vector ηh of hypothetical elementary formulas to a vector C of
hypothetical formulas. Then X(ηa, ηh) is a theorem of AHL [PBL, APBL]
if and only if X(σ(ηa), σ(ηh)) is a theorem of AHL [PBL, APBL].

On the other hand, the theories AHL, PBL and APBL are not closed under
substitution of hypothetical formulas for assertive elementary formulas (and
symmetrically). An example is the following:

∼∼∼ `p⇒∼ `p is valid, but ∼∼∼Hp⇒∼Hp is not.
Indeed 2323¬p⇒ 23¬p is valid, but 232¬p⇒ 2¬p is invalid in S4.

2.4 Sequent Calculi for PBL, APBL, AHL

The logics PBL, APBL, AHL can be formalized in G3-style sequent calculi
[59], where the rules of Weakening and Contraction are implicit, as in [5].
One then proves that the rules of Weakening and Contraction are admissible
preserving the depth of the derivation.

Definition 4. All the sequents S are of the form

Θ ; ε ⇒ ε′ ; Υ (2)

where

• Θ is a sequence of assertive formulas A1, . . ., Am;
• Υ is a sequence of hypothetical formulas C1, . . ., Cn;
• ε is hypothetical and ε′ is assertive and exactly one of ε, ε′ occurs.

The bi-intuitionistic logic of assertions and conjectures AHL is formalized in
the sequent calculus given by the axioms and rules in the table (1) 9. Let us
call this fragment standard AH-G3.

9 This calculus is essentially the system Intuitionistic Logic for Pragmatics ILP
presented and studied in [5], Section 3, restricted to the language LAH - namely,
a sequent calculus with axioms and rules for assertive validity, implication and
conjunction, hypothetical absurdity, subtraction and disjunction and two mixed
negations.
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Sequent Calculus AH-G3: axioms and rules

IDENTITY RULES
logical axiom:

A,Θ ; ⇒ A ; Υ

logical axiom:

Θ ; C ⇒ ; Υ,C

cut1 :

Θ ; ⇒ A ; Υ A,Θ′ ; ε ⇒ ε′ ; Υ

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′
’

cut2 :

Θ ; ε ⇒ ε′ ; Υ,C Θ′ ; C ⇒ Υ

Θ,Θ′ ; ε ⇒ ε′ ; Υ, Υ ′

ASSERTIVE LOGICAL RULES

validity axiom:

Θ ; ⇒ g ; Υ

right ⊃:

Θ,A1 ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ⊃ A2 ; Υ

left ⊃:

A1 ⊃ A2, Θ; ⇒ A1 ; Υ A2, Θ ; ε ⇒ ε′ ; Υ

A1 ⊃ A2, Θ ; ε ⇒ ε′ ; Υ

right ∩:

Θ ; ⇒ A1 ; Υ Θ ; ⇒ A2 ; Υ

Θ ; ⇒ A1 ∩A2 ; Υ

left ∩:

A0, A1, Θ ; ε ⇒ ε′ ; Υ

A0 ∩A1, Θ ; ε ⇒ ε′ ; Υ

CONJECTURAL RULES

absurdity axiom:

; f ⇒ ; Υ

right r:

Θ ; ε ⇒ ε′ ; Υ,C1 Θ ; C2 ⇒ ; Υ,C1 r C2

Θ ; ε ⇒ ε′ ; Υ,C1 r C2

left r:

Θ; C1 ⇒ ; Υ,C2

Θ ; C1 r C2 ⇒ ; Υ

right g:

Θ ; ε ⇒ ε′ ; Υ,C0, C1

Θ ; ε ⇒ ε′ ; Υ,C0 g C1

left g:

Θ ; C1 ⇒ ; Υ Θ ; C2 ⇒ ; Υ

Θ ; C1 g C2 ⇒ ; Υ

MIXED-TYPE NEGATIONS:

right ∼:

Θ ; C ⇒ ; Υ

Θ ; ⇒ ∼ C ; Υ

left ∼:

∼ C,Θ; ε ⇒ ε′ ; Υ,C

∼ C,Θ ; ε ⇒ ε′ ; Υ

right a:

Θ,A ; ε ⇒ ε′ ; Υ,a A

Θ ; ε ⇒ ε′ ; Υ,a A

left a:

Θ; ⇒ A ; Υ

Θ ; a A ⇒ ; Υ

Table 1. The sequent calculus AH-G3
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The polarized bi-intuitionistic logic PBL and the asymmetric polarized bi-
intuitionistic logic APBL are formalized by restricting the rules of canonical
AH-G3 as indicated below: the restrictions only modify the rules ⊃-right,
∼-right, r -left and a -left. Let us call the resulting sequent calculi abstract
PB-G3 and asymmetric APB-G3, respectively.

AH-G3:
Θ,A1 ; ⇒ A2 ; Υ ∗

⊃-R
Θ ; ⇒ A1 ⊃ A2 ; Υ

Θ∗∗ ; C1 ⇒ ;C2, Υr-L
Θ ; C1 r C2 ⇒ ; Υ

Θ ; C ⇒ ; Υ ∗
∼-R

Θ ; ⇒ ∼ C ; Υ

Θ∗∗ ; ⇒ A ; Υ
a-L

Θ ; a A ⇒ ; Υ

Υ ∗ not allowed in PB-G3, APB-G3 Θ∗∗ not allowed in PB-G3

To see why in the asymmetric APB-G3 and in the canonical AH-G3 systems
the formulas in Θ are allowed in the antecedent of the sequent-premise of r-
left and of a-left, notice that by the valid scheme (Ax.a) of Lemma 1.(ii)(a)

A⇒∼a A is valid in the semantics of APB and of AHL (3)

Thus the unrestricted rule a-left of AP-G3 and AH-G3 becomes derivable
in PB-G3 using cut with the scheme (1) taken as axiom:

(1)

B ; ⇒ ∼a B ;

B ; ⇒ A ; Υ
a-R

; ⇒ A ; Υ,a B
a-L (¶)

; a A ⇒ ; Υ,a B
∼-L ∼a B ; a A ⇒ ; Υ

cut
B ; a A ⇒ ; Υ

Similarly, using the fact that

a∼ C ⇒ C is valid in the semantics of AHL (4)

we show that in AH-G3 Υ is allowed in the succedent of the sequent premise
of ⊃-right and of ∼-right.

Using the methods of [5] one may prove the following result.

Theorem 1. The sequent calculi PB-G3 [APB-G3, AH-G3] without the
rules of cut are sound and complete with respect to the interpretation of PBL
[APBL, AHL, respectively] in bimodal S4.

2.5 First conclusions: assertions and conjectures

Although our approach to the logic for pragmatics does not provide a theory
of positive evidence, the epistemic reading of the modal interpretation in S4
does suggest a way to characterize different degrees of evidence, through the
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essential distinction between hypotheses and conjectures. While “epistemic
possibility”, namely, the mere knowledge of a situation in which α happens
to be true, does provides enough evidence to justify the hypothesis of α,
conjecturing the truth of α requires knowing conditions in which α would be
“epistemically necessary”. We write Cα to express the conjecture that α is
true.

Moreover, consider circumstances in which it is unjustified to conjecture the
truth of α. This is certainly the case when no matter how our present knowl-
edge evolves, it always reaches a state in which α fails to be true: we may call
this epistemic condition safe expectation that ¬α eventually becomes true. We
write Eα to express the safe expectation of α.

Setting (Cα)M = 32α and (Eα)M = 23α, we have a modal interpretation
in S4 that fits nicely in the above informal interpretation. In Table 2 we find
the map of all distinct modalities in S4; arrows indicate valid implications
between non-equivalent modalities.

3p
↖

↗ 323p
↗ ↖

p 32p 23p
↖ ↗

↖ 232p
↗

2p

Table 2. The modalities of S4

Table 3 presents all pragmatic expressions corresponding to modalities of S4
and the valid implications between them.

We shall not develop a full theory of assertions, hypotheses, conjectures and
expectation with four corresponding types of pragmatic connectives. We are
interested in theories obtained by extending the polarized language LAH of
assertions and hypotheses with new elementary expressions Cp for conjectures
and dually, expressions Ep for expectations. Let us write LAHC [LAHCE ] for
the extension of LAH with elementary expressions Cp for conjectures [and Ep
for expectations].

Let AHCE be the set of all expressions in LAHCE that are valid in the S4
modal translation. We conjecture in order to axiomatize AHCE in a cut-free
sequent calculus it suffices to extend AH-G3 with the following rules:
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Hp
↖

↗ aaHp
↗ ↖

p Cp Ep
↖ ↗

↖ ∼∼ `p
↗

` p

Table 3. Assertions, conjectures, expectations and hypotheses

Θ ; ⇒ `p ; Υ
C-R

Θ ; ⇒ ; Cp, Υ
Θ, `p ; ⇒ ; Υ

C-L
Θ ; Cp ⇒ ; Υ

Θ ; ⇒ ; Hp, Υ
E-R

Θ ; ⇒ Ep ; Υ

Θ ; Hp ⇒ ; Υ
E-L

Θ, Ep ; ⇒ ; Υ

Duality between safe expectations and conjectures

Clearly the S4 translations of conjectures and of assertions are not dual from
the viewpoint of modal logic, but the modal translations of conjectures and
safe expectations certainly are; if in definition 3 and in Lemma 2 we replace the
illocutionary operators “C” (conjectures) and “E” (safe expectations) for the
operators “H” (hypotheses) and “ ”̀ (assertions), respectively, then clearly the
conditions of duality are expressible through negations within a logic AHCEL
of assertions, hypotheses, conjectures and safe expectations. For instance, the
base case becomes:

(a) setting F (Ep) = Cp⊥ and G(Cp) = Ep⊥
we have a Ep ≡ Cp⊥ and ∼ Cp ≡ Ep⊥
since 3¬23p ≡ 32¬p and 2¬32p ≡ 23¬p.

The logic of safe expectations is classical

Let LE be the language defined by the grammar

E,F := Ep | g | E ⊃ F | E ∩ F

and let bf EL be the set of all formulas δ in the language LE such that the
modal translation δM is valid in S4.

Proposition 2. The theory EL (logic of safe expectations) is closed under
the double negation rule, i.e., ∼∼ E ⇒ E is a valid axiom of EL.
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The proof shows by induction on the logical complexity that the double nega-
tion rule for molecular formulas can be reduced to applications of the double
negation rule for elementary formulas (essentially, as in [46]). The base case
is then given by the following equivalence:

(∼∼ Ep)M = 2323p ≡ 23p = (Ep)M .

On the other hand, if we extend LE with intuitionistic disjunction (∪), then
E∪ ∼ E is not a theorem of the logic of safe expectations extended in this
way. Indeed

(Ep∪ ∼ Ep)M = 23p ∨232¬p

is not valid in S4.

Historical Note.

In Appendix B of [46] Prawitz considers an extension of the language of intu-
itionistic logic with an involutory negation ¬ and then extends intuitionistic
natural deduction NJ⊃∩ with rules ¬⊃-I, ¬⊃-E, ¬∩-I and ¬∩-E; these new
rules are presented as an axiomatization of Nelson’s logic of constructible fal-
sity [38]10. Thomason [58] provides a Kripke semantics for Nelson’s logic of
constructible falsity, where w 
 ¬p if and only if w′ 
 ¬p for all w′ with wRw′;
this implies that the evaluation function must be partial. Miglioli, Moscato,
Ornaghi and Usberti [37] introduce an operator T which represents classical
truth within the context of Nelson’s logic of constructive negation: in par-
ticular we have A is classically valid if and only if ∼∼ A is intuitionistically
valid (by Gödel’s translation) if and only if TA is valid in the constructive
extended system. In [37] a Kripke semantics for the constructive logic with
T operator is presented, where Thomason’s semantics is restricted to frames
satisfying the additional condition that from each world w a terminal world
w′ is reached where all atoms and negations of atoms are evaluated. Then
the forcing conditions for Tp by Miglioli et al. are expressible as w 
 Tp if
and only if w 
 23p and w 
 ¬Tp if and only if in all w′ with wRw′ we
have that p is either not evaluated or false in w′. Comparing the operator T
to our operator E of safe expectation, when applied to atomic formulas, we
can say that their properties are similar, but in the context of a polarized
bi-intuitionistic system they can be expressed in a simpler way. We cannot
discuss the intriguing work by Miglioli and his co-workers in more detail here;
a recent discussion of their approach is in Pagliani’s book [39].

10 The negation “¬” corresponds to the orthogonality ( )⊥, as in remark 2.
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3 PART II. Rough Set Semantics

Proofs and Refutations

The idea that a characterisation of constructive logic must include a definition
not only of what proofs of a formula A are but also of refutations of A goes
back at least to D.Nelson [38] and comes up in various contexts related to game
semantics and in particular the construction of Chu spaces. Thus we may say
that a proof of A ⊃ B is a method transforming a proof of A into a proof of
B and that a refutation of A ⊃ B is a pair consisting of a proof of A together
with a refutation of B; in some contexts instead of proofs and refutations we
may speak of evidence for and against A. To study bi-intuitionistic logic and
its dualities one may say that a proof of C rD is a pair consisting of a proof
of C and of a refutation of D and that a refutation of C r D is a method
transforming a proof of C into a proof of D. But we will not go very far if the
spaces of proofs and of refutations of A coincide with the spaces of refutations
and of proofs of A⊥, respectively. This is certainly not the case if we consider
the semantics of assertions, hypotheses and conjectures rather than that of
assertions and hypotheses, as discussed informally in section 2.1. Moreover it
turns out that Rough Set semantics applied to our canonical polarized system
AHCB does provide new insight and also a bridge to geometric models [57].

3.1 Rough Sets

As pointed out in [5], any topological space provides a mathematical model of
bi-intuitionistic logic, thus also of our canonical system AHL, if we interpret
the assertive expressions by open sets and the hypothetical ones by closed
sets. A more interesting suggestion comes from the interpretation in terms of
Rough Sets, following Piero Pagliani’s work (in particular, see [40, 41] and
Lech Polkowski’s book [45], Chapter 12).

Definition 5. Given an indiscernibility space (U,E), where U is a finite set
and E ⊆ U ×U an equivalence relation, identifying objects that may be indis-
cernible from some point of view, let AS(U) be the atomic Boolean algebras
having the set of equivalence classes U/E as atoms; then (U,AS(U)) is a
topological space, called the Approximation Space of (U,E), which induces an
interior operator and a closure operator I, C : ℘(U) → AS(U). If two sub-
sets G′, G′′ ⊆ U have the same interior and the same closure, then they are
roughly equal, i.e., indistinguishable either by the coarsest classification given
by C, or by the finest classification I; thus each subset G is a representative
of a class of subsets identified by the pair (I(G), C(G)); only a clopen G for
which I(G) = C(G) is fully characterised in (U,E).

For our purpose it is more convenient the disjoint representation (I(G),−C(G))
using the complement of the closure of G, the set of object different from G
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even for the coarser classification, instead of C(G). Thus we may regard the
two clopen sets (I(G) and −C(G)) as representing the space of proofs and of
refutations of an intuitionisitc formula.

Following Pagliani, we can define the following data and operations on pairs

1 1 = (U, ∅), 0 = (∅, U);
2 (X+, X−) ∧ (Y +, Y −) = (X+ ∩ Y +, X− ∪ Y −) (conjunction);
3 (X+, X−) ∨ (Y +, Y −) = (X+ ∪ Y +, X− ∩ Y −) (disjunction);
4 (X+, X−)→ (Y +, Y −) = (−X+ ∪ Y +, X+ ∩ Y −) (Nelson’s implication)
5 − (X+, X−) = (−X+, X+) (weak negation or supplement);
6 (X+, X−)⊥ = (X−, X+) (orthogonality);
7 (X+, X−)⇒ (Y +, Y −) = ((−X+ ∪Y +)∩ (−Y − ∪X−),−X− ∩Y −) (Heyting’s

implication);
8 − (X+, X−) = (X+, X−)⇒ (∅, U) = (X−,−X−) (intuitionistic negation);
9 (X+, X−)r(Y +, Y −) = (X+∩−Y +, (−X+∪Y +)∩(−Y −∪X−) (co-intuitionistic

subtraction).

(see Pagliani[41], Polkowski [45], p. 363 – with an equivalent definition of
Heyting implication).11

Of course one will not obtain a complete semantics for intuitionistic logic
starting from a finite base of clopen sets. Thus we need to look at general
topological spaces. Since the language of our logic of assertions, hypotheses
and conjectures AHCL is polarized, in order to turn Pagliani’s operations into
a topological model of AHCL we need to make sure that the interpretation of
an assertive expression is an open set and a hypothetical expression is assigned
a closed set; this is not always the case for Pagliani’s operations, in particular
implications and negations, which have to be modified as follows.

11 Notational decisions are nightmarish if we try to match the uses in the literature
of Rough Sets, in Rauszer’s bi-intuitionistic logic and our own.
In our polarized bi-intuitionistic logic [5] we used ∼ A for intuitionistic negation
and a C for co-intuitionistic supplement, leaving ¬α for classical negation, as
required in Dalla Pozza and Garola’s framework and following the meaning orig-
inally given to the symbol “¬” by Frege.
C.Rauszer uses − A for intuitionistic negation and − A for co-intuitionistic
supplement; but in later literature on bi-intuitionistic logic ∼ A is used for co-
intuitionistic supplement.
In the literature of Rough Sets, weak-negation is sometimes written ¬C; intu-
itionistic negation is written in various ways (Pagliani uses ÷A, in Polkowski’s
book there is †A), while the symbol ∼ A is used exactly in the sense of orthogo-
nality A⊥.
However it is unnecessary to make notations uniform across three areas, where
similar connectives have different meanings: e.g., in Rough Sets negations are de-
fined in a more general algebraic setting than Heyting algebras.
Hence it seems reasonable for us to retain the notation of [5] for our polarized logic,
while using “− ”, “− ” and “( )⊥” for intuitionistic negation, co-intuitionistic sup-
plement and orthogonality in Rough Sets.
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Definition 6. Let (U,O) be a topological space, where O is the collection of
open sets on U , and I(X) and C(X) are the interior and the closure of X12,
respectively. We write (A+

o , A
−
c ) and (C+

c , C
−
o ) for pairs of disjoint sets of the

types (open, closed) and (closed, open), respectively. We define the rough set
interpretation ( )R of the language of assertions, hypotheses and conjectures
LAC (in the disjoint representation) as follows.

Fix an assignment R : ( `pi)
R = (Ai

+
o , Ai

−
c ) and (Hpi)

R = (Ci
+
c , Ci

−
o ) to the

elementary expressions of LAH . Then

1 gR = (U, ∅) and fM = (∅, U) (clopen, clopen);
2 (A ∩B)R = (A+

o , A
−
c ) ∧ (B+

o , B
−
c ) = (A+

o ∩B+
o , A

−
c ∪B−c ) ;

3 (C gD)R = (C+
c , C

−
o ) ∨ (D+

c , D
−
O) = (C+

c ∪D+
c , C

−
o ∩D−o );

4 (A+
o , A

−
c )→ (B+

o , B
−
c ) =

(
I(−A+

o ∪B+
o ), C(A+

o ∩B−c )
)

13;

5 (a C)R = −(C+
c , C

−
o ) =

(
C(−C+

c ), I(C+
c )

)
and

(a A)R = −(A+
o , A

−
c ) = (−A+

o , A
+
o );

6 (A+
o , A

−
c )⊥ = (A−c , A

+
o ) and (C+

c , C
−
o )⊥ = (C−o , C

+
c )14;

7 (A ⊃ B)R = (A+
o , A

−
c )⇒ (B+

o , B
−
c ) =

=
(
I(−A+

o ∪B+
o ) ∩ I(−B−c ∪A−c ), C(−A−c ∩B−c )

)
;

8 (∼ A)R = − (A+
o , A

−
c ) =

(
I(A−c ), C(−A−c )

)
and

(∼ C)R = − (C+
c , C

−
o ) = (C−o ,−C−o );

9 (C rD)R = (C+
c , C

−
o ) r (D+

c , D
−
c ) =

=
(
C(C+

c ∩ −D+
c ), I(−C+

c ∪D−c ) ∩ I(−D−o ∪ C−o )
)

.

Let LAHC a language of assertions, hypotheses and conjectures built from a
set of propositional atoms p0, p1, . . . and let ( )⊥ be an involution without
fixed points on the atoms. A rough set interpretation M = (U,O,R) of the
language LAHC (with an involution ( )⊥ on the atoms) is a topological space
(U,O) together with an assignment R to the elementary expressions of disjoint
pairs of the following forms:

( `p)R = (A+
o , A

−
c );

(Hp)R = (C+
c , C

−
o );

(Cpi)R =
(
C(X+), I(X−)

)
, where ( `pi)

R = (X+, X−).

Lemma 3. Let M = (U,O,R) be an interpretation of LAHC , with an in-
volution ( )⊥ on the atoms. Then M is a model of AHCL if and only if
the assignment R to elementary expressions of LAHC satisfies the following
duality conditions:

12 The notation CX is overloaded, for the illocutionary operator of conjecture in the
syntax of the language of pragmatics and for the closure operator in a topological
space. No confusion is possible, given the difference of context.

13 There is no connective to represent Nelson’s implication as distinct from intu-
itionistic implication in LAH .

14 There is no specific connective for orthogonality in LAH .
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( `p⊥)R = (C−o , C
+
c ) = (C+

c , C
−
o )⊥ where (Hp)R = (C+

c , C
−
o )

(Hp⊥)R = (A−c , A
+
o ) = (A+

o , A
−
c )⊥ where ( `p)R = (A+

o , A
−
c )

and moreover for every (A+
o , A

−
c ) and (C+

c , C
−
o ) in R we have

A−c = −A+
o and C−o = −C+

c . (5)

Proof. Concerning conditions ∼a A ≡ A and a∼ C ≡ C of Lemma 2, notice
that

−− (A+
o , A

−
c ) = − (−A+

o , A
+
o ) = (A+

o ,−A+
o ) = (A+

o , A
−
c )

if and only if A−c = −A+
o and similarly

−− (C+
c , C

−
o ) = − (C−o ,−C−o ) = (−C−o , C−o ) = (C+

c , C
−
o )

where the last equality holds if and only if C+
c = −C−o . Moreover the con-

ditions (b) − (c) in the definition of duality between LA and LH (definition
3) are clearly satisfied by the standard Rough Set definition. As for condition
(a), given the involution ( )⊥ on the atoms, we have

(a `p)R = − (A+
o , A

−
c ) = (−A+

o , A
+
o ) = (A−c , A

+
o ) = (Hp⊥)R

where the third equality holds by condition (5) and the fourth by the condition
of duality in a model. Similarly

(∼ Hp)R = − (C+
c , C

−
o ) = (C−o ,−C−o ) = (C−o , C

+
c ) = ( `p⊥)R

as required.

Remark 3. In a model M = (U,O,R) for AHCL intuitionistic negation and
Nelson’s negation coincide:

(A+
o , A

−
c ) ⊃ (B+

o , B
−
c ) = (I(−A+

o ∪B+
o ) ∩ I(−B−c ∪A−c ), C(−A−c ∩B−c ))

= (I(A−c ∪B+
o ), C(A+

o ∩B−c ))

Thus to exploit Rough Set semantics in full, we may want to consider notions
of duality where condition (5) does not hold.

3.2 Algebra of Regions

A main reason of interest in bi-intuitionistic logic are its topos-theoretic mod-
els studied by F. W. Lawvere [32] G. Reyes and H. Zolfaghari [52], recently
reconsidered by J. Stell and M. Worboys [57] in their “algebra of regions”.
It is clearly impossible here to compare Reyes and Zolfaghari’s modal logic
to our polarized bi-intuitionistic systems, but we must say something about
Stell and Worboys’ geometric examples.

The first one is Reyes and Zolfaghari’s motivating example [52]: it provides a
model of bi-intuitionistic logic based on the subgraphs of arbitrary undirected
graphs. It ought to be possible to define graphic models of AHL and PBL,
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but we shall not attempt this here. On the other hand, “two stages sets” in
the second example are just a geometric representation of the basic notion of
“rough equality”: in an approximation space each subset G of the universe
is identified only by the pair (I(G), C(G)) – or with (I(G),−C(G)) in the
disjoint representation – where the interior and closure operator result from
two stages of process of classification.

Now it is evident that condition (5) on models of AHL restricts the in-
terpretation to sets G that are fully characterised in (U,E), i.e., such that
I(G) = C(G). We illustrate more interesting semantics applications with an
example. Consider the Kripke model K for S4 obtained from the reflexive and
transitive closure of the graph in Figure 1.

w2 ||   qw1 ||   p

w0

w5

w3 ||   p w4 ||   q

Fig. 1. “Kripke model”.

Writing αK for the set of possible worlds satisfying α, we have ( `p)K = {w1},
(Cp)K = {w0, w1} and (H p)K = {w0, w1, w3, w4, w5} = K \ {w2}. We are
satisfied with the Rough Set interpretation of assertions in the disjoint repre-
sentation as ( `p)R = ({w1},K \ {w1}): after all, the grounds for an assertion
ought to be a “stable” state of knowledge; by duality the representation of
hypotheses as (Hp)R = (K \ {w2}, {w2}) is appropriate. On the other hand,
the state of knowledge justifying conjectures is “unstable”; thus there seems
to be a meaningful “two-stage set” representation of conjectures of the form
(Cp)R = ({w1},K \ {w0, w1}), of type (open, open). We notice that such
an interpretation is possible for the logic AHCL of assertions, conjectures
and hypotheses, as it does not interfere with the basic symmetry between
assertions and hypotheses. It remains an open problem whether these very
conjectural remarks can be developed into an interesting rough set semantics
of a logic of assertions, hypotheses, conjectures and expectations.
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4 PART III. Proof theory

We shall start with the definition of a sequent-style single-assumption multiple-
conclusions natural deduction system for the subtractive-disjunctive fragment
NJrg of co-intuitionistic logic. We have sequents of the form

A ` C1, . . . , Cm

where A indicates the only open assumption in a derivation with the multiset
C1, . . ., Cm of open conclusions. The rules of inference are in Table 4.

assumption
A ` A

g0-I g1-I g-E
E ` Γ,C0

E ` Γ,C0 g C1

E ` Γ,C0

E ` Γ,C0 g C1

E ` Γ,C0 g C1 C0 ` Γ0 C1 ` Γ1

E ` Γ, Γ0, Γ1

r-I r-E
E ` Γ,C D ` ∆
E ` Γ,C rD,∆

E ` Γ,C rD C ` (D)k,∆

E ` Γ,∆
(D)k is a multiset with k occurrences of D.

Table 4. Natural Deduction NJrg

Definition 7. We say that C1, . . . , Cm is derivable from A if there is a natural
deduction derivation of the sequent A ` Γ where all formulas in the multiset
Γ are among C1, . . . , Cm.

Remark 4. (i) Looking at the deduction rules in Table 4, notice that r-
introductions, g-eliminations and r-eliminations discharge the open assump-
tion(s) of the sequent-premise(s) to the right, but a r-elimination discharges
also a multiset of open conclusions. As a consequence, r-eliminations are the
only inferences that cannot be permuted freely with other inferences. From
another point of view, here we have a limit to the “parallelization of the syn-
tax”, a box in the sense of Girard. To remove such a box, a device is needed
to discharge open conclusions preserving as much as possible the geometry of
proofs. In this section we recover Prawitz trees as an appropriate representa-
tion of proofs in NJrg.

(ii) As in Prawitz’s natural deduction weakening is not explicitly represented
in proof-trees and contraction appears only in the discharging of conclusions
in a r-E inference.
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Definition 8. (i) (active and passive formula-occurrences) In assumptions
and in rules of inference the indicated formula-occurrences in the succedent of
a sequent are active and all occurrences in the multisets Γ , Γi, ∆ are passive.
Also the discharged assumptions in a r-I, g-E and r-E are active, all other
assumptions are passive. An active formula in the sequent-conclusion of an
inference is also called the conclusion of the inference.

(ii) (segments) If Υ occurs in the premise and in the conclusion of an inference
then an occurrence Di ∈ Υ in the premise is the immediate ancestor of the
occurrence Di in the conclusion. Then as in Prawitz [46] we define a segment
as a sequence D1, . . ., Dm of occurrences of the same formula where D1 and
Dm are active, and Di is the immediate ancestor of Di+1, for i < m.

(iii) Thus we may speak of a segment as the conclusion or the premise of some
inference.

(iv) A maximal segment is the conclusion of an introduction rule which is
premise of an elimination. A derivation is normal if it does not have maximal
segments.

4.1 Structure of normal proofs

The structure of normal deductions in co-intuitionistic logic NJr,g mirrors
that of normal deductions in intuitionistic logic NJ⊃,∩.

Definition 9. (i) A Prawitz path in a normal deduction is a sequence C1,
. . ., Ci, . . ., Cn of segments such that

• C1 is an assumption, either open or discharged by a r-introduction;
• for j with 1 ≤ j < i, Cj = C rD is a premise of a g- or r-elimination

and Cj+1 = C is an assumption discharged by the inference;
• for j with i ≤ j < n, Cj is a premise of a g- or r-introduction with

conclusion Cj+1;
• Cn is a conclusion of the derivation, either open or discharged by a r-E.

(ii) The collection of all Prawitz paths in a derivation is a graph, called the
tree of Prawitz paths τ . If we collapse segments to their formulas, the resulting
tree yields a graphical representation of proofs which we shall call Prawitz tree
for NJrg. Such trees are similar to those in Prawitz-style Natural Deduction
derivation for NJ⊃∩, but in NJrg the logical flow goes from the root to the
leaves, rather than from the leaves to the root as in NJ⊃∩.

(iii) The definition of the depth of a path π in a tree τ is familiar: the depth of
π is 0 if its first formula C1 is open; the depth of π is n+1 if C1 is discharged
by a r-introduction with conclusion in a path of depth n.

From this analysis we derive as usual the subformula property for normal
deductions:
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Proposition 3. Every formula occurring in a normal deduction of A `
C1, . . . , Cm is a subformula either of A or of Ci for some i.

Example. We constuct a derivation d in NJrg of

C rA ` ((C r (B gD)) rA, ((B rA) g (D rA))2

It may be helpful to think of the dual derivation in NJ⊃∩ of

(A ⊃ B) ∩ (A ⊃ D), A ⊃ ((B ∩D) ⊃ C) ` A ⊃ C.

We write F for (B rA)g (D rA) and G for C r (B gD).

C ` C B gD ` B gD r-I
C ` C r (B gD), B gD B ` B D ` D

g-E
C ` C r (B gD), B,D A ` A

r-I
C ` GrA,A,B,D

C rA ` C rA

... A ` A r-I
C ` GrA, (A)2, B rA,D A ` A

r-I
C ` GrA, (A)3, B rA,D rA A ` A

g0-I
C ` GrA, (A)3, (B rA) g (D rA), D rA

g1-I
C ` (A)3,GrA, (F)2

r-E
C rA ` GrA, (F)2

In Fig. 2 we find the tree-structure of “Prawitz’ paths” of the derivation d.

[A] DB

[A][A](B \ A) (D \ A)

(B v D)

C 

C \ (B v D)

G \ A

[F] [F] 

G = (C \ (B v D)) F = (B \ A) v (D \ A) 

(C \ A)

Fig. 2. A Prawitz tree.
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4.2 Sequents with tail formula

A very perspicuous representations of derivations in co-intuitionistic logic is
through sequent calculus with tail formula q-LJrg, the exact dual of the well-
known sequent calculus with head formula t-LJ⊃∩15. Here sequents have the
form

E ⇒ Υ ;C

with one formula in the antecedent, a multiset in the ordinary area and at
most one formula in the linear area (stoup) of the succedent. The principal
formulas of the right-rules are in the stoup and left-rules require empty stoup
in the sequent-premies16. The rules of q-LJrg are given in Table 5.
The following fact is the dual of a well-known correspondence between Natural
Deduction derivations in NJ⊃∩ and Sequent Calculus derivations in t-LJ⊃∩.
For sequent calculi with head formulas or tail formulas see, for instance, [20].

Proposition 4. There is a bijection between trees of Prawitz paths of normal
derivations in NJrg and cut-free derivations in q-LJrg (modulo the order
of structural inferences).

Proof. Given a Prawitz tree τ , by induction on τ we construct a q-LJrg

derivation with the property that the formula in the stoup (tail formula),
if any, is the conclusion of a path of depth 0 (main path) of τ . If τ begins
with an elimination rule, the result is immediate by the inductive hypothesis
applied to the immediate subtree(s) from the top, since we may assume that
the corresponding cut-free derivations have conclusions with empty stoup. If
τ begins with an introduction rule, then there is only one main path and we
remove the last inference of it: if the concusion was a formula C r D, the
inductive hypothesis yields two q-LJrg derivations; in one the endsequent
must have C in the stoup, since C belongs to the main path; in the other
the endsequent has D in the antecedent and we may assume that it has no
formula in the stoup, by applying dereliction if necessary. Therefore we may
apply r-R to obtain the desired derivation. The other cases are obvious.
The fact that two derivations d′ and d′′ corresponding to the same tree τ
can only differ for the order of structural inferences is due to the fact that in
q-LJrg logical inferences cannot be permuted with each other. Indeed, the
principal formulas of all inferences occur either in the antecedent or in the
stoup, and the rule of dereliction is irreversible.

15 The “q” in q-LJrg stands for queue, tail, as the “t” in t-LJ⊃∩ stands for tête,
head.

16 It ought to be clear that the use of focalization in the sequent calculus q-LJrg

and in the dual t-LJ⊃∩ (see Table 8), Appendix III), is unrelated to the use
of the “stoup” in our sequent calculi AH-G3, PB-G3 and APB-G3 for bi-
intuitionistic logic, where it is used simply to highlight the restrictions of intu-
itionistic systems.
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Sequent Calculus q-LJrg

identity rules

logical axiom:

C ⇒ ; C

tail-cut:
E ⇒ Υ1 ; C C ⇒ Υ2 ; D

E ⇒ Υ1, Υ2 ; D

central-cut:
E ⇒ Υ1, C ; C ⇒ Υ2;

E ⇒ Υ1, Υ2 ;

structural rules
contraction:

E ⇒ Υ,C,C ; D

E ⇒ Υ,C ; D

weakening:

E ⇒ Υ ; D

E ⇒ Υ,C ; D

dereliction:
E ⇒ Υ ; D

E ⇒ Υ,D ;

logical rules

r right:

E ⇒ Υ1 ;C D ⇒ Υ2 ;

E ⇒ Υ1, Υ2 ; C rD

r left:

C ⇒ Υ,D ;

C rD ⇒ Υ ;

right gi:
E ⇒ Υ ; Ci

E ⇒ Υ ; C0 g C1

left g:
C0 ⇒ Υ ; C1 ⇒ Υ ;

C0 g C1 ⇒ Υ ;

Table 5. The sequent calculus q-LJrg

Example. (cont.) The following sequent derivation dq corresponds to the
natural deduction derivation d:

C ⇒; C

B ⇒; B

A⇒; A
der

A⇒ A ;
r-R

B ⇒ A ; B rA
g0-R

B ⇒ A ; F
der

B ⇒ A,F ;

D ⇒; D

A⇒; A
der

A⇒ A ;
r-R

D ⇒ A ; D rA
g1-R

D ⇒ A ; F
der

D ⇒ A,F ;

B gD ⇒ A,A,F,F ;
r-R

C ⇒ A,A,F,F ; C r (B gD)

A⇒ ; A
der

A⇒ A ;

C ⇒ A,A,A,F,F ; GrA
contr, der

C ⇒ A,F,GrA ;
r-L

C rA⇒ F,GrA ;



Assertions, hypotheses, conjectures, expectations. 29

5 PART IV.Term assignment for co-intuitionistic logic

In a tantalising pair of papers [42, 44] Michel Parigot introduced Free Deduc-
tion, a formalism consisting of elimination rules only, with the property that
both Natural Deduction and the Sequent Calculus could be represented in it
simply by restricting the order of deduction, e.g., by permutations of infer-
ences. Free Deduction was conceived to study the computational properties
of classical logic, but it can be adapted to intuitionistic and co-intuitionistic
logic through the analogue of Gentzen’s restrictions on sequents.

For instance, although they do not appear in this form in [42], the rules for
multiplicative implication and subtraction can be formulated as follows:

multiplicative implication

Γ,A→ B ` ∆ Π,A ` B, (Σ¶)
→ elim left

Γ,Π ` ∆,Σ

Γ ` ∆,A→ B Π ` Σ,A Π ′,B ` Σ′
→ elim right

Γ,Π,Π ′ ` ∆,Σ,Σ′

multiplicative subtraction
Γ,ArB ` ∆ Π ` Σ,A Π ′,B ` Σ′

r elim left
Γ,Π,Π ′ ` ∆,Σ,Σ′

Γ ` ∆,ArB (Π¶),A ` B, Σ
r elim right

Γ,Π ` ∆,Σ

The intuitionistic restriction (Σ¶), namely, that Σ is empty, applies to the
secondary premise of the→-left elimination rule, and the dual restriction holds
for r-right elimination. The sequent calculus rules are obtained by killing
the main premise (i.e., keeping it only as an axiom). Here are the rules for
subtraction:

subtraction rules, as in the sequent calculus
ArB ` ArB Π ` Σ,A Π ′,B ` Σ′

r-R
Π,Π ′ ` ArB,Σ,Σ′

ArB ` ArB [Π¶],A ` Σ,B
r-L

ArB,Π ` Σ
Natural Deduction, on the other hand, is given by keeping all inputs on the
left. Namely: for left elimination rules, we kill the main premise; for right
elimination rules, we kill the secondary premises which have only a left active
formula. Thus no premise is killed in subtraction elimination right.

subtraction rules, as in natural deduction
ArB ` ArB Π ` A, Σ Π ′,B ` Σ′

r intro
Π,Π ′ ` ArB,Σ′

Γ ` ArB,∆ [Π¶],A ` B, Σ
r elim

Γ,Π ` ∆,Σ
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Since Free Deduction yields a multiple conclusion natural deduction system in
a very straightforward way, one would expect that a term assignment to Free
Deduction might be distributed to all formula in the succedent of sequents.
On the contrary in 1992 Michel Parigot introduced the λ-µ calculus as “an
algorithmic interpretation of classical Natural Deduction”, which is based on
a notion of “central control”. In the last part of this paper we propose a
distributed term assignment to co-intuitionistic logic.

5.1 Term assignment to the subtraction rules in the λ-µ calculus

Recently the proof theory of bi-intuitionistic (subtractive) logic has been stud-
ied by T. Crolard [15, 16]: in [16] a Natural Deduction system is presented with
a calculus of coroutines as term assignment. 17 Crolard works in the framework
of Parigot’s λµ-calculus: sequents may be written in the form18 Γ ` t : A | ∆,
with contexts Γ = x1 : C1, . . . , xm : Cm and ∆ = α1 : D1, . . . , αn : Dn, where
the xi are variables and the αj are µ-variables. In addition to the rules of the
simply typed lambda calculus, there are naming rules

Γ ` t : A | α : A,∆

Γ ` [α]t : ⊥ | α : A,∆
[α]

Γ ` t : ⊥ | α : A,∆

Γ ` µα.t : A | ∆ µ

It is well-know that the λµ-calculus provides a computational interpretation of
classical logic and a typing system for functional programs with continuations
(see, e.g., [17, 54]).

Crolard extends the λµ calculus with introduction and elimination rules
for subtraction:19

Γ ` t : A | ∆
Γ ` make-coroutine(t, β) : ArB | β : B,∆

r I

Γ ` t : ArB | ∆ Γ, x : A ` u : B | ∆
Γ ` resume t with x 7→ u : C | ∆

r E

The reduction of a redex of the form resume(make-coroutine(t, β)) with x 7→
u : C yields µγ.[β]u[t/x], where the µ-variables are typed as β : B and γ : C.
Namely,

17 This part is joint work with Corrado Biasi and incorporates important contribu-
tions from his still unfinished doctoral dissertation at Queen Mary, University of
London.

18 Parigot and Crolard actually write sequents in the form t : Γ ` ∆;A, where the
term t is given the type of the formula A in the stoup, if such a formula exists. If
the stoup is empty, the notation allows one to think of t as being assigned to the
entire sequent or to a formula ⊥ implicitly present in the stoup.

19 In Crolard [16] the introduction rule corresponds to the more general form r-I
given above, and more general continuation contexts occur in place of β; the above
formulation suffices for our purpose here.
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Γ ` t : A | ∆
r-I

Γ ` make-coroutine(t, β) : ArB | β : B,∆ Γ, x : A ` u : B | ∆
r-E

Γ ` resume (make-coroutine(t, β)) with x 7→ u : C | β : B,∆

reduces to

Γ ` t : A | ∆ Γ, x : A ` u : B | ∆
substitution

Γ ` u[t/x] : B | ∆
[β]

Γ ` [β]u[t/x] : ⊥ | β : B, γ : C,∆′
µ

Γ ` µγ.[β]u[t/x] : C | β : B,∆′

Working with the full power of classical logic, if a constructive system of bi-
intuitionistic logic is required, then the implication right and subtraction left
rules must be restricted by considering relevant dependencies.20 Crolard is
able to show that the term assignment for such a restricted logic is a calculus
of safe coroutines, namely, terms in which no coroutine can access the local
environment of another coroutine.

5.2 A distributed term assignment for the subtractive fragment

When we consider a term assignment for the Natural Deduction system NJrg

of dual intuitionistic logic only, we are led to ask what Crolard’s calculus
becomes when separated from its λµ context. Indeed the naming rules of the
λµ calculus allow us to represent the action of an operating system jumping
from one thread of computation to another: when a name β for a coroutine
has been created by make-coroutine, it can be later accessed by the system
and the coroutine executed.

On the contrary in our proposal different terms are simultaneously assigned
to the multiple conclusions of a sequent in a sequent-style Natural Deduc-
tion, (or in the Sequent Calculus with tail formula). There is no mechanism
to simulate the passage of control from one “thread” to another. A process
is stopped by the operator assigned to subtraction elimination (called here
postpone rather than Crolard’s resume) and becomes active only in the nor-
malization process. Thus in presence of different processes running in parallel,
one wonders whether our system can still be regarded as a calculus of corou-
tines: it is perhaps closer to an abstract representation of a multiprocessing
system.

Before giving formal definitions, let us survey the most distinctive features of
our calculus for the terms assignment to the subtractive fragment only. Most
characteristic is the treatment of variables: there is no operator for explicitly
binding variables or delimiting the scope of an implicitly binding operation.
We may say that a computational context is characterized by exactly one free

20 For instance, in the derivation of the right premise of a subtraction elimination
(rE), there should be no relevant dependency between the formula B and the
assumptions in Γ , but only between B and A.
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variable and that a free variable a becomes bound when its computational
context Sa is plunged into the computational context Sb associated with an-
other variable b. In this case, the variable a is replaced everywhere by a(t)
for some term t containing b; here the function a is vaguely reminiscent of
a Herbrand function. In the normalization process the term a(t) may later
be replaced by another term u throughout the new computational context;
thus we assume that a mechanism is in place for broadcasting substitutions
throughout an environment.

We have the following operators:

• the term mkc(t, y), which is assigned to the conclusion of a r-introduction,
connects two disjoint computational contexts, say, Sx and Sy. Every term
in Sx contains exactly one free variable x, and we assume that the term
t represents a thread starting from x21. The computational context Sy
contains the free variable y and all threads starting from y. When the
term mkc(t, y) is introduced, the substitution y := y(t) must be performed
throughout the environment Sy. Thus the term mkc(t, y) represents a jump
extending the thread t to all threads in Sy{y := y(t)}; the substitution of
y(t) for y throughout Sy has the effect that the extended computational
context contains only the free variable x. Here we retain Crolard’s name
make-coroutine for historic reasons; a more precise but more redundant
description would be the following:

mkc(t, y) stands for extend thread t from y(t).

• The term postp(z 7→ `, t), which is assigned to the conclusion of a r-
elimination, takes a computational context Sz containing the only free
variable z, and plunges it into another context Sx where the only free
variable is x; this is done by selecting the list ` of threads starting from
z and the term t with free variable x, replacing z with z(t) throughout
Sz and freezing `{z := z(t)} until through normalization the term t is
transformed to a term of the form extend thread. A fuller description is
therefore the following:

postp(z 7→ `, w) stands for postpone subthreads `{z := z(w)} until w.

Let M be mkc(t, y) and let P(v) be postp(z 7→ `, v). Then

P(M) = postp(z 7→ `, mkc(t, y))

is a redex. The main idea of a reduction is to replace the jump from t to y(t)
with each one of the subthreads in `. But such an operation has important
side effects. A redex P(M) occurs in a computational context Sx of the form

21 Here we use the term “thread” in the sense of Prawitz [46], p.25; namely, a thread
is a branch in the proof-tree from the a leaf to the root. The equivalent notion
here is that of a branch in Prawitz’ tree τ from the root to the leaf. No claim is
made here about the computer science usage of the term “thread”.
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Sx : postp(z 7→ `, mkc(t, y)), κ, ζy, ξz

where ζy is a sequence of terms containing y(t), ξz a sequence of terms con-
taining z(mkc(t, y)) and κ a sequence containing neither y(t) nor z(mkc(t, y)).
Thus the side effects consist in the replacement of z(mkc(t, y)) with t in ξz and
in each subthread sk of `; let `′ = s′1, . . . , s

′
n be the resulting sequence. Finally,

we replace y(t) in ζy with each one of the subthreads s′k, thus expanding the

sequence ζy in a sense to be made precise below. To indicate such a rewriting
process we shall use the notation

S ′ = Sx −P(M) {z := t} {y := `{z := t}}

where z = z(mkc(t, y)) and y = y(t).
In an enterprise where notation is in danger of growing out of control, read-
ability is essential. The notations mkc(t, y) and postp(z 7→ `, w) are already
effective abbreviations, as from them we can recover the terms y(t) and z(w)
present in the context. Further simplification is given by Corrado Biasi’s ele-
gant notations:

t→ y for mkc(t, y) and t
z7→`oo for postp(z 7→ `, t).

If we consider the typed version of the above rewriting we have the following
reduction. Let us write22

Sx : ∆ for π0 : • | κ : ∆

Sy : Υ for π1 : • | ζ : Υ

Sz : Ξ for π2 : • | ξ : Ξ
and also

Sx : ∆,Sy : Υ,Sz : Ξ for π0, π1, π2 : • | κ : ∆, ζ : Υ, ξ : Ξ.
Next

let Sy : Υ be Sy{y := y(t)} : Υ ,
let Sz : Ξ be Sz{z := z((mkc(t, y))} : Ξ.

Then we have:

x : E ` Sx : ∆, t : C y : D ` Sy : Υ
r-I

x : E ` Sx : ∆,Sy : Υ, mkc(t, y) : C rD z : C ` Sz : Ξ, ` : D
r-E

x : E ` postp(z 7→ `, mkc(t, y)) : •,Sx : ∆,Sy : Υ,Sz : Ξ

reduces to

x : E ` Sx : ∆, t : C z : C ` Sz : Ξ, ` : D
subst

x : E ` Sx : ∆,St : Ξ, `{z := t} : D y : D ` Sy : Υ
subst

x : E ` Sx : ∆,S`{z:=t} : Υ,St : Ξ

where St = Sz{z := t}, S`{z:=t} = Sy{y := `{z := t}}
22 The expression • is not a formula, but a non-logical expression, which cannot be

part of other formulas; its meaning could be though of as an absurdity.
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6 A distributed term assignment for co-intuitionistic
logic NJrg

We present the grammar and the basic definitions of our distributed calculus
for the fragment of co-intuitionistic logic with subtraction and disjunction.

Definition 10. We are given a countable set of free variables (denoted by x,
y, z . . .), and a countable set of unary functions (denoted by x, y, z, . . .).

(i) Terms and lists of terms are defined by the following grammar:

t := x | x(t) | inl(t) | inr(t) | casel(t) | caser(t) | mkc(t, x)
` := () | t · `

(ii) Let t1, t2, . . . an enumeration in a given order of all the terms freely gen-
erated by the above grammar starting with a special symbol ∗ and no variables
(a selected variable a would also do the job). Thus we have a fixed bijection
ti 7→ xi between terms and free variables.

(iii) Moreover, if t is a term and ` is a list such that for each term u ∈ `, y
occurs in u, then postp(y 7→ `{y := y(t)}, t) is a p-term.

We use the abbreviations (t→ y) for mkc(t, y) and w
z7→`oo for postp(z 7→

`, w).

Thus a p-term cannot be a subterm of other terms. In the official definition
above lists appear only as arguments of postp23 It is notationally convenient
to extend the above definition so that our operators apply to lists in addition
to terms:

Definition 11. Let op( ) be one of x( ), inl( ), inr( ), casel( ), caser( ),
mkc(( ), x), postp(x 7→ `, ( )).
Then the term expansion op(`) is the list of terms defined inductively thus:

op(()) = () op (t · `) = op (t) · op (`)

Remark 5. By term expansion, a term consisting of an operator applied to a
list of terms is turned into a list of terms; thus terms may always be trans-
formed into an expanded form where operators are applied only to terms,
except for expressions ` occurring in terms of the form postp(y 7→ `, u).

Definition 12. (i) The free variables FV (`) in a list of terms ` are defined
as follows:

23 In our definition we use lists of terms where multisets are intended. A multiset
can be represented as a list ` = (t1, . . . , tn) with the action of the group of
permutations σ : n→ n given by `σ = (tσ(1), . . . , tσ(n)).
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FV (()) = ∅
FV (t · `) = FV (t) ∪ FV (`)
FV (x) = {x}

FV (x(t) = FV (t)
FV (inl(t)) = FV (inr(t)) = FV (t)

FV (casel(t)) = FV (caser(t)) = FV (t)
FV (mkc (t, x) = FV (t)

FV (postp(x 7→ `, t) = FV (`) ∪ FV (t).

(ii) A computational context Sx is a set of terms and p-terms containing the
free variable x and no other free variable.

Definition 13. Substitution of a term t for a free variable x in a term u is
defined as follows:

x{x := t} = t, y{x := t} = y if x 6= y;
y(u){x := t} = y(u{x := t});

inl(r){x := t} = inl(r{x := t}), inr(r){x := t} = inr(r{x := t});
casel(r){x := t} = casel(r{x := t}), caser(r){x := t} = caser(r{x := t});

mkc(r, y){x := t} = mkc(r{x := t}, y),
postp(y 7→ (`), s){x := t} = postp(y 7→ (`{x := t}), s{x := t}).

We define substitution of a list of terms ` for a variable x in a list of terms
κ:

(){x := `} = () (t · κ){x := `} = t{x := `} · κ{x := `}
t{x := ()} = () t{x := u · `} = t{x := u} · t{x := `}

If ζ is a vector of lists `1, . . . , `m, then ζ{x := `} = `1{x := `}, . . . , `m{x := `}.

Definition 14. β-reduction of a redex Red in a computational context Sx is
defined as follows.
(i) If Red is a term u of the following form, then the reduction is local and
consists of the rewriting u β u

′ in Sx as follows:

casel (inl(t)) β t; caser (inr(t)) β t.
casel (inr(t)) β (); caser (inl(t)) β ();

(ii) If Red has the form (t→ y)
z7→`oo , i.e., postp(z 7→ `, mkc(t, y)), then

Sx has the form
Sx = Red, κ, ζy, ξz

where y(t) occurs in ζy and z((t → y)) occurs in ξz and neither y(t) nor
z((t → y)) occurs in κ. Writing y = y(t) and z = z((t → y)), a reduction of
Red transforms the computational context as follows:

Sx  κ, ζ{y := `{z := t}}, ξ{z := t}.

Thus for ζ = u1, . . . , uk, for ξ = r1, . . . , rm and for ` = s1, . . . , sn we have:
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ξ{z := t} = r1{z := t}, . . . , rm{z := t};
ζ{y := `{z := t}} = u1{y := s1{z := t}}, . . . , u1{y := sn{z := t}}, . . .

. . . uk{y := s1{z := t}}, . . . , uk{y := sn{z := t}};
= ζ{y := s1{z := t}}, . . . , ζ{y := sn{z := t}}.

Given the correspondence between Prawitz style Natural Deduction deriva-
tions in NJ⊃∩ and sequent derivations in t-LJ⊃∩, and the dual correspon-
dence between Prawitz trees for co−NJrg and sequent derivations in q-
LJrg, we find it convenient to define the term assignment directly to sequent
calculus in q-LJrg, given in Appendix III, Table 7.

Definition 15. (term assignment) The assignment of terms of the dis-
tributed calculus to sequent calculus derivation in q-LJrg is given in Appendix
III, Table 7. In Table 8 we give the familiar assignment of λ-terms to sequent
calculus with head formulas t-LJ⊃∩.

Remark on free variables and α conversion. Since in our calculus the
binding of a free variable x is expressed through its substitution with a term
x(t), the so-called “capture of free variables” takes a different form. Suppose
a free variable y has been replaced by y(t) in the construction of a term
M = mkc(t, y) or P (t) = postp(y, `{y := y(t)}, t): all other occurrences of y
in the previous context have been replaced with y(t) in the current context,
represented, say, by a vector `, and we may say that M or P (t) is a binder of
y(t) in `.

In the process of normalization such a “bound” term y(t) may be replaced
by another term u. It would be natural to think of such a replacement as
a two-steps process, first recovering the free variable y and then applying a
substitution {y := u} to the current computational context. However, it may
also happen that in the process of normalization different occurrences of the
term y(t) evolve to y(t′) and to y(t′′) so that distinct variables y′ and y′′

are needed for distinct substitutions. For this reason we have established a
bijection between freely generated terms and free variables.

This may not solve all problems: indeed in the untyped formulation of our
calculus it might happen that the same free variable y has been replaced
with y(t) in the construction of two distinct terms of `: our syntax may not
have tools to disambiguate the “scope” of the bindings and some further
restrictions may be needed to block such pathologies. However, if the calculus
is used for assigning term to derivations in NJrg, then to avoid “capture of
free variables” it is enough to set the following condition.

Convention. We assume that

• Derivations have the pure parameter property, i.e., that in a derivation free
variables assigned to distinct open assumptions are distinct;

Since to distinct free variables x, y there correspond distinct unary functions
x, y, then it is clear that in the term assignment to derivations with the pure
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parameter property the above indicated ambiguity cannot occur. Moreover,
a derivation resulting by normalization from a derivation with the pure pa-
rameter property can be transformed again into a derivation with the pure
parameter property. Indeed, the set of terms assigned to a NJrg derivation
encode a tree-structure, and it is easy to see that if different occurrences of
the term y(t) evolve to y(t′) and to y(t′′) in a tree, then the terms t′ and t′′ are
distinct as they encode distinct threads. Thus once again apply the bijection
between terms and free variables can be used to produce a derivation with
the pure parameter property.

Examples. (i) Assigning terms to the derivation dq in section 4.2 we obtain
the following assignment to the endsequent:

z : C rA⇒ z
c7→(a′,a′′,a′′′)oo : • | (t′, t′′) : F, ((c(z)→ e)→ a′′′) : G rA

where we have
a′ = a1(casel(e(c(z)))), a′′ = a2(caser(e(c(z)))), a′′′ = a3((c(z)→ e)) : A;
t′ = inl((casel(e(c(z)))→ a1)), t′′ = inr((caser(e(c(z)))→ a2)) : F,
F = (B rA)g (D rA), G = (C r (B gD)).

(ii) Applying cut-elimination to the derivation

a : A⇒ ; a : A

a : A⇒ : inl(a) : A gB

...

a′ : A⇒ ; a′ : A

b : B ⇒ ; b : B c : C ⇒ c : C ;

b : B ⇒ c(b) : C ; (b→ c) : B r C

e : A gB ⇒ casel(e) : A, c(caser(e)) : C, (caser(e)→ c) : B r C ;

a : A⇒ t1 : A, t2 : C, t3 : B r C ;

we obtain the following rewritings: t1 = casel(inl(a)) a;

t2 = c(caser(inl(a)))) (), t3 = (caser(inl(a))→ c) ()

and the term assignment

a : A⇒ a : A, () : C, () : B r C ; .

6.1 Duality between the distributed calculus and the simply typed
λ calculus

Consider the term assignment in Appendix III, Tables 7 and 8. In this setting
the following facts are clear:

• given a sequent S in q-LJrg, there is a dual sequent S⊥ in h-LJ⊃∩, and
conversely;

• given a derivation d of S in q-LJrg, there is a dual derivation d⊥ of S⊥

in h-LJ⊃∩, and conversely.
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Therefore any cut-elimination procedure in h-LJ⊃∩ induces a cut-elimination
procedure for q-LJrg; clearly the steps of such reduction procedure for q-
LJrg must be seen as “macro” instructions for several steps of rewriting,
which may nevertheless be seen as a unit. Thus we have the following fact:

Theorem 2. There is a correspondence between reduction sequences starting
from a derivation d of S in q-LJrg and reduction sequences from a derivation
d⊥ of S⊥, and conversely.

In the present setting this result seems obvious and its proof straightforward.
Going through the details of the construction, as done in [8], does give an
insight into the structure of terminating computations in our distributed cal-
culus. Assigning terms to derivations in q-LJrg as in in Appendix III, Tables
7 makes the structure of the calculus more clear and provides a bridge to the
representation of computations in the graphical notation of Prawitz trees as
in Appendix II.

7 Conclusions

In this paper we have given an account of research in the logic for pragmatics
of assertions and conjectures, following the paper Bellin and Biasi [5] and also
of work in the proof-theory of co-intuitionistic logic aiming at defining natural
deduction system and a distributed term-assignment for it.

A conceptual clarification of the distinction between hypotheses and conjec-
tures with respect to their interpretation in epistemic S4, where hypotheses
are justified by mere epistemic possibility of the truth of their propositional
content and conjectures require possible necessity, has shown connections with
other areas of logic and semantics. On one hand, within our framework we
can make distinctions which may be relevant to work on standards of evidence
in the theory of argumentation [24, 13]. On the other hand, the semantics of
rough sets and the notion of an approximation space provide another seman-
tics to a theory of assertions, hypotheses, conjectures and expectations, in
addition to Kripke models through the translation in epistemic S4 and in bi-
modal S4, as in [5]. Rough sets point at promising connections with research
by P. Pagliani [40, 41].

Abstract relations between functional programming and concurrent program-
ming have been studied extensively, e.g., through translations of the λ cal-
culus into R. Milner’s π-calculus. Abstract forms of the continuation-passing
style, e.g., as in Thielecke’s work, have been typed in classical logic, suggest-
ing an interpretation of these relations as a logical duality between classical
and intuitionistic logic. In this way, the λµ calculus is naturally invoked here.
In [8] and this paper we propose the duality between intuitionistic and co-
intuitionistic logic as the most basic type theoretic setting for studying the
relations between distributed and functional programming calculi. Our calcu-
lus distributed displays exactly the programming features that are required in
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order to implement such a logical duality. In this way this paper and other still
unpublished work by Corrado Biasi give a type-theoretic framework for study-
ing the relations between safe and unsafe coroutines in the sense of Crolard:
typically, safe coroutines are those which can be represented as constructs
of a distributed calculus without making essential use of the λµ calculus and
can be typed in co-intuitionistic logic. Thus the term assignment to proofs in
co-intuitionistic logic can be seen as a contribution to a challenging problem,
namely, providing a logical foundation to distributed calculi by means of a
typing system, in the Curry-Howard approach. Clearly solving such a prob-
lem has a clear interest in computer science, if only to ensure properties of
such systems such as termination and confluence.

All the paths followed in this research are open and point at possible direc-
tions of work, as already suggested. Other projects could explore the proof-
net representation of co-intuitionistic logic and the construction of a term
model for co-Cartesian Closed Categories. The proof theory of classical logic
is the framework of Crolard’s investigations [15, 16] and the concern of Bellin,
Hyland, Robinson and Urban [9]: it is expected that eventually research in
bi-intuitionistic logic may improve our understanding of classical logic. But
this is now a good point to take a rest.

8 APPENDIX I. Polarized Rauszer’s logic.

The main stream of bi-intuitionistic logic follows the tradition of Cecylia Rauszer,
who created the theory of bi-Heyting algebras [50, 51], and defined its Kripke
semantics, later studied with categorical methods by Lawvere [32], Makkai,
Reyes and Zolfaghari [33, 52]; more recently, proof theoretic treatments of sub-
tractive or bi-intuitionistic logic have been given by Rajeev Gore [25], Tristan
Crolard [14, 15] and others.

In Rauszer’s possible-world semantics the forcing conditions for implication
refer to up-sets of possible worlds with respect to the accessibility relation,
while the forcing conditions for subtraction refer to down-sets. Namely, (A ⊃
B)M = 2(AM → BM ) is true in a world w if for all w′ such that wRw′

AM → BM is true in w′; on the other hand, (C r D)M = 3 (CM ∧ ¬DM )
is true in a world w if for some w′ such that w′Rw we have CM ∧ ¬DM is
true in w′; in other words, modal translations are interpreted in modelsM =
(W,R, S,
) where R and S are pre-orders such that S = R−1. This suggests
a temporal dimension in the bi-modal translation: the forcing condition for
the operator 2 may be seen as referring to “future knowledge” and those for
3 to “past knowledge”.

We see at once that Rauzer’s bi-intuitionistic logic is as inadequate for a
representation of assertions and hypotheses as PBL: letting ` p = 2p and
H¬p =3 ¬p, it is consistent to assert p (with respect to “the future”) and
also to conjecture ¬p (in the past). Although the issue is beyond the range of
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the present paper, it may be interesting to catch a glimpse of what polarized
Rauszer’s logic looks like in our framework.

Tense-sensitive polarization

Is there a pragmatic interpretation of dual intuitionistic logic which retains
such a temporal element and is thus closer to Rauszer’s tradition? The ques-
tion does make sense. Clearly the justification conditions for assertions and
conjectures concerning the future and the past are different in several im-
portant ways: for instance, direct observations of some future events will be
possible, but never of past events. Thus it would be plausible to introduce
tense-sensitive illocutionary operators, giving assertive force to statements
about the future ( `•α) and about the past ( •`α) and, similarly, conjectural
force to statements about the future (H•α) and about the past ( •Hα). More-
over, we would have strong negation about the future (∼•) and about the past
( •∼) and weak negation about the future (a•) and about the past (•a). More
generally, all pragmatic formulas would become tense-sensitive and could po-
larized in four ways,

(A•) future-assertive , (•A) past-assertive,
(C•) future-hypothetical and (•C) past-hypothetical :

We define a language LPBt according to the grammar in Table 6.

A• := `•p | A• ⊃ B• | A• ∩B• | ∼• X
C• := H•p | C• rD• | C• gD• | a• X
•A := •`p | •A ⊃ •B | •A ∩ •B | •∼ X
•C := •a p | •C r •D | •C g •D | •a X

Table 6. Tense-sensitive polarized bi-intuitionistic language.

This would lead to the development of a tense-sensitive polarized bi-intuitionistic
logic (PBt). The “semantic reflection” of LPBt is in temporal S4, where formu-
las of L2,2 are interpreted in bimodal frames F = (W,R, S) with R a preorder
and S = R−1.

The following fact is standard (see, e.g., Ryan and Shobbens [53]):

Proposition 5. Given a bimodal frame F , the following are equivalent:

1. S = R−1;
2. α→ 2 3α and 32α→ α are valid in every Kripke model over F ;
3. the following rule is valid and semantically invertible in F

3α→ β

α→ 2β
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Therefore the following are equivalent:

1. the modal interpretation ( )M of the language LPBt is in temporal S4;
2. for any formula δ• and •δ, the sequents δ• ⇒∼• •∼ δ• and •aa• •δ ⇒ •δ

are valid axioms of PBLt.

We leave the task of finding a suitable formalization of PBLt as an open
problem.

9 APPENDIX II. Example of computation.

In this section we consider an example of computation that is dual to a familiar
reduction sequence for Church’s numerals.

Two times zero

We consider the dual of a computation of the term representing 2× 0 :

(λm.λn.λf.m(nf))(λg.λx.g(gx))(λh.λz.z) : (A ⊃ A) ⊃ (A ⊃ A)

We follow a call by value strategy:

λf.(λg.λx.g(gx))((λh.λz.z)f)  λf.(λg.λx.g(gx))(λz.z) (i)
 λf.λx.(λz.z)((λz′.z′)x))) (ii)
 λf.λx.((λz.z)x)) (iii)
 λf.λx.x (iv)

9.1 Labelled Prawitz’ trees

As trees in Prawitz style Natural Deduction NJ⊃ can be decorated with
λ terms, so we can assign terms of our dual calculus to Prawitz trees of
subformulas for co−NJr derivations. For convenience, we still draw trees
with the root at the bottom, keeping in mind that here derivations are built
from bottom up. We shall use Biasi’s notation (t → a) for mkc(t, a) and

e 7→` // t for postp(e 7→ `, t).
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S0 : g,
y 7→(b)oo (e→ j),

Red1

g7→((y→a),(a→b))oo h,
x 7→(x)oo (j → f),

Red0

h7→()oo n
e7→(f)oo

(a→b)

cc

b

>>

(y→a)

ee

a

;;
x

OO

y

OO
h

OO

g

cc
k=(j→f)

gg

f

88

m=(e→j)

jj

j

33

e

OO

n

OO

reduces to
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S1 (e→ j),
Red1

g 7→((y→a),(a→b))oo

g,
y 7→(b)oo j,

x 7→(x)oo n
e7→()oo

(a→b)

ff

b

99

and to

(y→a)

bb

a

88

y

OO

g

gg

x

OO

(e→j)

ff

j

88

e

OO

n

OO

S2 : (y → a)
Red2

x′ 7→(x′)oo e
y 7→(b)oo

(a→ b)
Red3

x′′ 7→(x′′)oo n
e 7→()oo

x′′

OO

x′

OO

j=(a→b)

cc

b

@@

j=(y→a)

cc

a

;;

y

OO

e

OO

n

OO

S3 : (y → a)
Red2

x′ 7→(x′)oo e
y7→(a)oo n

e 7→()oo

x′

OO

j=(y→a)

ii

a

77

reduces to

y

OO

reduces to

e

OO

n

OO

S4 : e
y 7→(y)oo n

e 7→()oo

y

OO

e

OO

n

OO

We show here the steps of the computation:
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S0 : g,
y7→(b)oo (e→ j),

Red1

g7→((y→a),(a→b))oo h,
x7→(x)oo (j → f),

Red0

h7→()oo n
e7→(f)oo (o)

where e = e(n), j = j(e), f = f(j), h = h((j → f)), x = x(h)
g = g((e→ j)), y = y(g), a = a(y), b = b(a).

Reducing Red0: S1 = S0 −Red0 {h := j} {f := ()}

S1 : g,
y 7→(b)oo (e→ j),

Red1

g7→((y→a),(a→b))oo j,
x7→(x)oo n

e7→()oo (i)

where e = e(n), j = j(e), x = x(j),
g = g((e→ j)), y = y(g), a = a(y) b = b(a).

Reducing Red1: S2 = S1 −Red1 {g := e} {j := ((y → a), (a→ b)){g := e}}.

S2 : e,
y7→(b)oo (y → a),

Red2

x7→(x′)oo (a→ b),
Red3

x7→(x′′)oo n
e7→()oo (ii)

where e = e(n), y = y(e), a = a(y), b = b(a),
and, crucially, x′ = x((y → a)), x′′ = x((a→ b)).

Reducing Red3: S3 = S2 −Red3 {x′′ := a} {b := (x′′){x′′ := a}}.

S3 : e,
y7→(a)oo (y → a),

Red2

x7→(x′)oo n
e7→()oo (iii)

where e = e(n), y = y(e), a = a(y), x′ = x((y → a)).

Reducing Red2: S4 = S3 −Red2 {x′ := y} {a := (x′){x′ := y}}.

S4 : e,
y7→(y)oo n

e7→()oo , where e = e(n), y = y(e). (iv)
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de Doctorat, Université de Paris 7, 1996.
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10 APPENDIX III. Term assignment to q-LJrg

Sequent Calculus q-LJrg

identity rules
logical axiom:

x : C ⇒ π : • | ; x : C

tail-cut:

x : E ⇒ π1 : • | ` : Υ1 ; t : C y : C ⇒ π2 : • | κ : Υ2 ; u : D

x : E ⇒ π1, π2{y := t} : • | ` : Υ1, κ{y := t} : Υ2 ; u{y := t} : D

central-cut:

x : E ⇒ π1 : • | ` : Υ1, ` : C ; y : C ⇒ π2 : • | κ : Υ2;

x : E ⇒ π1, π2{y := `} : • | ` : Υ1, κ{y := `} : Υ2 ;

structural rules
contraction:

x : E ⇒ π : • | ` : Υ, ` : C, κ : C ;u : D

x : E ⇒ π : • | ` : Υ, ` ∗ κ : C ;u : D

weakening:

x : E ⇒ π : • | ` : Υ ; u : D

x : E ⇒ π : • | ` : Υ, () : C ; u : D

dereliction:

x : E ⇒ π : • | ` : Υ ; u : D

x : E ⇒ π : • | ` : Υ, (u) : D ;

logical rules

r right:

x : E ⇒ π1 : • | ` : Υ1 ; t : C y : D ⇒ π2 : • | κ : Υ2 ;

E ⇒ π1, π2{y := y(x)} : • | ` : Υ1, κ{y := y(x)} : Υ2 ; mkc(t, y) : C rD

r left:

x : C ⇒ π1 : • | ` : Υ, ` : D ;

y : C rD ⇒ π1 : •, postp(x 7→ `{x := x(y)}, y) : • | `{x := x(y)} : Υ ;

g0 right:

x : E ⇒ π : • | ` : Υ ; t : C0

x : E ⇒ π : • | ` : Υ ; inl(t) : C0 g C1

g1 right:

x : E ⇒ π : • | ` : Υ ; t : C1

x : E ⇒ π : • | ` : Υ ; inr(t) : C0 g C1

g left:

x : C0 ⇒ π0 : • | `0 : Υ0 ; y : C1 ⇒ π1 : • | `1 : Υ1

z : C0 g C1 ⇒ π′0, π
′
1 : • | `′0 : Υ0, `

′
1 : Υ1

where π′0 = π0{x := casel(z)}, π′1 = π1{y := caser(z)}

`
′
0{x := casel(z)}, `′1 = `1{{y := caser(z)}.

Table 7. The sequent calculus q-LJrg



50 Gianluigi Bellin

Sequent Calculus t-LJ⊃∩

identity rules

logical axiom:

x : A ; ⇒ x : A

head-cut:
x : C ; x : Θ1 ⇒ t : A y : A ; y : Θ2 ⇒ u : B

x : C ; x : Θ1, y : Θ2 ⇒ u{y := t} : B

central-cut:
; x : Θ1 ⇒ t : A ; y : A, y : Θ2 ⇒ u : B

; x : Θ1, y : Θ2 ⇒ u{y := t} : B

structural rules
contraction:

y : C ; x : Θ, x1 : A, x2 : A ⇒ t : B

y : C ; x : Θ, x : A ⇒ t{x1 := x, x2 := x} : B

weakening:

y : C ; x : Θ, ⇒ t : B

y : C ; x : Θ, x : A ⇒ t : B

dereliction:
x : A ; x : Θ ⇒ t : B

; x : A, x : Θ ⇒ t : B

logical rules

⊃ right:

; x : Θ, x : A ⇒ t : C

; x : Θ ⇒ λx.t : A ⊃ B

⊃ left:

; x : Θ0 ⇒ t : A y : B ; y : Θ1 ⇒ u : C

f : A ⊃ B ; x : Θ0, y : Θ1 ⇒ u{y := f(t)} : C

∩ right:

; x : Θ0 ⇒ t0 : A0 ; y : Θ1 ⇒ t1 : A1

; x : Θ0, y : Θ1 ⇒ 〈t0, t1〉 : A0 ∩A1

∩0 left:

x : A0 ; x : Θ ⇒ t : C

z : A0 ∩A1 ; x : Θ ⇒ t[π0(z)/x] : C

∩1 left:

x : A1 ; x : Θ ⇒ t : C

z : A0 ∩A1 ; x : Θ ⇒ t{x := π1(z)} : C

Table 8. The sequent calculus t-LJ⊃∩


