
Fundamenta Informaticae XXX (2013) 1000–1038 1000

DOI 10.3233/FI-2012-0000

IOS Press

On the π-calculus and co-intuitionistic logic. Notes on logic for
concurrency and λP systems

Gianluigi Bellin∗ C

Alessandro Menti∗

Dipartimento di Informatica, Università degli Studi di Verona

Abstract. We reconsider work by Bellin and Scott in the 1990s on R. Milner and S. Abramsky’s
encoding of linear logic in the π-calculus and give an account of efforts to establish a tight connection
between the structure of proofs and of the cut elimination process in multiplicative linear logic, on
one hand, and the input-output behaviour of the processes that represent them, on the other, resulting
in a proof-theoretic account of (a variant of) Chu’s construction. But Milner’s encoding of the
linear lambda calculus suggests consideration of multiplicative co-intuitionistic linear logic: we
provide a term assignment for it, a calculus of coroutines which presents features of concurrent and
distributed computing. Finally, as a test case of its adequacy as a logic for distributed computation,
we represent our term assignment as a λP system. We argue that translations of typed functional
languages in concurrent and distributed systems (such as π-calculi or λP systems) are best typed with
co-intuitionistic logic, where some features of computations match the logical properties in a natural
way.

1. Introduction

Among the early applications of R. Milner’s π-calculus [28] we find translations of linear logic and of the
normalization of proofs in linear logic into the π-calculus, which were pursued both by S. Abramsky and by

∗We thank Phil Scott and Tristan Crolard for their cooperation over the years on the topics of this paper. We had useful
conversations with Alessandra Carbone, Giuditta Franco, Hugo Herbelin, Neil Jones, Damiano Macedonio, Vincenzo Manca,
Andy Pitts and Carolyn Talcott. We thank an anonymous referee for helpful suggestions.
CCorresponding author
Address for correspondence: Gianluigi Bellin, Dipartimento di Informatica — Università degli Studi di Verona, Strada Le Grazie
15, 37134 Verona, Italy, e-mail: gianluigi.bellin@univr.it

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1001

R. Milner around 1991 and are documented in the papers by Abramsky [1] and by Bellin and Scott [10].1

The π-calculus is meant as a paradigmatic language for concurrent and distributed computing in the same
way as the λ-calculus is paradigmatic for functional programming; since the fundamental role of the typed
λ-calculus is confirmed by the Curry-Howard correspondence with propositions of intuitionistic logic and
proofs in natural deduction, so there was the expectation that linear logic might provide a meaningful type
system for the π-calculus and normalization of proofs in linear logic might correspond to the behaviour of
concurrent processes of the π-calculus in a natural way. The need for conceptual clarity in the foundations
of concurrent and distributed computing is even more evident today, not only because, as Philip Wadler
puts it, “with the advent of multicores, mobile phones, and server farms, we have all become concurrent
programmers” [34], but also because our understanding of information processing in basic biological
entities takes the form of distributed computing.

Linear logic [16] appeared as a good candidate for a type system for concurrent logical computations:
Girard himself had presented the representation of derivations in classical linear logic in the system of
proof nets as a way to realize a “parallelization of the syntax”; in [16] this goal was regarded as already
achieved for the multiplicative fragment of linear logic and was proposed as a research project for larger
parts of the system. Therefore the encodings in the π-calculus of linear logic proofs, and in particular of
proof-nets, and the representations of proof normalization through the transformation of the corresponding
π-calculus processes were regarded as interesting tests both of π-calculus expressivity and of the claim of
linear logic to be a logic for concurrency.

Girard’s notion of a “parallelization of the syntax” through the representation of proofs as multiple
conclusions proof-nets RA1,...,An is based on the principle that all conclusions A1, . . ., An must be
regarded as equivalent “interaction ports”: this is made possible by the facts that linear negation is an
involution (i.e., A⊥⊥ = A); thus, e.g., there is no reason to give “privileged access” to one of the two
“ports” of an axiomA A⊥. Such interchangeability of conclusions is a feature of a classical logical system:
the opposite is indeed true in intuitionistic logic; more generally, when the notion of polarity is introduced,
the information flow in a logical deduction is given a definite direction. The point is delicate: within
intuitionistic proofs the notion of an information flow from input formulas AI in the elimination part of
proof-branches to output formulas CO in the introduction parts is already in Gentzen and Prawitz; but
we learnt from Girard’s proof-nets that a more complex information flow occurs within classical linear
proofs as well. This idea, developed at length in section 5 of [10], was also studied at the time by François
Lamarche [24]. Later the “information flow” was related to Chu’s construction and to the abstract form of
game-semantics, see Bellin [4]. But game-theory is a paradigm of sequential computation, rather than of
distributed computing. Much progress in linear logic in recent years are based on game-semantics and use
polarized logics and polarized proof-nets as basic tools in proof-theory. One could say that in its maturity
linear logic has moved away form the initial interest in concurrency and distribute computing; thus today
fresh new ideas are needed for a fruitful development of research in this direction.

Abramsky’s [1] and Bellin and Scott’s [10] papers witness the importance of linear logic in the early
development of the π-calculus. The goal of obtaining a tight correspondence between proof normalization
and process reduction under structural congruence only gave R. Milner a motivation for developing
a synchronous version of the π-calculus: as stated in the introduction of [10], this version of the π-
calculus was “purposely supporting some of the logical rewriting envisioned by Abramsky”. In particular,

1In 1991-2 Gianluigi Bellin and Philip Scott were in Edinburgh, learning the π-calculus from Robin Milner; also they were well
aware of the work by Samson Abramsky, who gave a lecture on it in Edinburgh in 1992.

1002 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

contextual rewriting is generally required by normalisation in logic and in the lambda calculus but
becomes impossible within a term P in the scope of a guarding prefix x(z̃)Q or x〈ã〉Q, namely, when no
interaction involving subterms of Q is allowed to start until the channel x has acted. To minimize syntactic
restrictions to interaction, the congruence ω1ω2P ≡ ω2ω1P was introduced for arbitrary prefixes ω1 and
ω3, when no free variable becomes bound and no bound variable becomes free. But Milner also allowed
the use of the “guarding dot” ω.P , regarded as an independent operator. The translation was successful
for the multiplicative fragment MLL of linear logic, where the “guarding dot” was not used, but in the
multiplicative and additive fragment the representability of cut-elimination was seriously limited by the
use of such a guard.

In the π-calculus there is an evident asymmetry between receiving prefixes x(z̃)Q, that bind the
variables z̃ in Q and sending prefixes x〈ã〉P which do not. In the case of senders there seems to be no
reason to distinguish between x〈ã〉y〈b̃〉P and y〈b̃〉x〈ã〉P and even between x〈ã〉y〈b̃〉P and y〈b̃〉‖x〈ã〉‖P ,
while receivers may impose an ordering, as in the case of x(y)y(z)P . About ten years later, e.g., in work
by C. Laneve and B. Victor [25] (particularly in the second encoding) the asymmetry between senders
and receivers is removed and binding is performed only by the ν-operator (abstraction).

However already in Bellin and Scott [10] the asymmetry between senders and receivers was regarded
as a feature to exploit rather than an obstacle to eliminate. The goal was to simulate the information flow,
which occurs within proofs, in the π-calculus translation, by representing input and output formulas with
a receiving and sending process, respectively.

Abramsky’s and Bellin and Scott’s early work has been reconsidered and developed, among others,
by E. Beffara [3]. In L. Caires and F. Pfenning [12] and in P. Wadler [34], π-calculus-like processes are
typed with linear types regarded as session types and occur in the framework of a more standard system of
functional programming. We remark that here too the context is intuitionistic, or polarized; however it is
beyond the limits of this paper to examine these interesting new ideas in detail.

1.1. Plan of the paper

This paper consists of three parts. In Part I we recall Milner’s Basic Synchronous π-calculus in the 1992
version (Section 2.1) and Abramsky’s translation of multiplicative linear logic MLL⊗℘ in the π-calculus
and we give an account the efforts in [10] and then in [4] to establish a tight connection between the “flow
of information” in logical computation and the input-output behaviour of its π-calculus encoding. In
order to represent the dynamics of cut-elimination faithfully, processes are required to reflect the structure
of sequent derivations and of proof-nets; as it turns out that the correctness conditions for proof nets
relate proof-nets for classical MLL⊗℘ with derivations in intuitionistic multiplicative linear logic with
products IMLL−◦⊗&, our investigation leads to a variant of Chu’s construction, a functor mapping a free
∗-autonomous category into a symmetric monoidal closed category with products that somehow encodes
all intuitionistic derivations induced by the correctness condition.

After remarking that Milner’s translation of the (linear) λ-calculus in the π-calculus appears to
invert the “flow of information” traditionally recognized in simply typed λ terms, we conjecture that
π-calculus translations and CPS transforms involve a passage to a dual typing. Thus in Section 3 we define
multiplicative co-intuitionistic linear logic co-IMLLr℘, a linear calculus of coroutines (Section 4.2) and
a typing of this calculus through a term assignment to co-IMLLr℘ derivations.

In Part III we touch the issue whether our logical encodings and calculus of coroutines are suitable to
represent not only concurrent but also distributed aspects of computation, by taking a look at membrane

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1003

computing. Our basic references are G. Păun [29, 30]. Păun’s membrane computing, using maximally
parallel rewriting, is paradigmatic as a distributed system; such features as (what we called) “remote
broadcasting” of substitutions are familiar in biological computing. We translate the dual linear calculus
into λP systems.

Our work can be compared with the encoding of the typed λ-calculus (and of Gödel’s system T)
into λP systems by Colson, Jonoska and Margenstern [14]. In the comparison we see immediately the
advantage of translating the dual (linear) system rather than the (linear) λ calculus: here a redex for
subtraction is immediately recognizable from the form of the p-term and does not need to be detected by
going through the membrane structure. As a consequence, any reduction strategy can be implemented in a
straightforward way, not the leftmost reduction.

In the Appendix (Section 7) we give an example of co-intuitionistic derivation with cut in the form of
a assignment of terms of the linear calculus of coroutines to Prawitz trees, together with its translation in
our system of membrane computing.

2. PART I: Abramsky and Milner’s π-calculus translations of linear logic
and Chu’s construction.

We reconsider work in [10] and [4], aiming at a tight connection in π-calculus translations between the
input-output behaviour of π-calculus processes and the logical flow of information in MLL proofs.

2.1. Basic Synchronous π-calculus

We review here the basic synchronous π-calculus presented by Robin Milner in the early 1990s.
We are given a countable family X of variables (names), denoted by a, d, c, . . . , x, y, z; we denote

vectors of names with x̃, ỹ, etc.

Definition 2.1. (Grammar)
The π-calculus processes P are denoted by the expressions (π-terms) defined by the following grammar:

P,Q := • | (νx̃)P | (P‖Q) | x〈ỹ〉P | x(ỹ)P

Here

(i) • denotes the null process. (P‖Q) denotes the process resulting from P and Q acting concurrently.

(ii) A prefix of the form x〈ỹ〉 (sender) or x(ỹ) (receiver) denotes a channel named x through which the
names in ỹ can be sent or received, respectively.

(iii) In the π-terms x(ỹ)P and (νx̃)P the receiver x(ỹ) and the expression (νỹ) (hiding) are name-
binding operators and P is their scope.

Prefixes are denoted by π and ω denotes either a prefix or a hiding operator.

Definition 2.2. (Free and bound names)
The sets fn(P) and bn(P) of free and bound names in P are defined as follows:

(a) fn(•) = bn(•) = ∅;

1004 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

(b) fn(P‖Q) = fn(P) ∪ fn(Q); bn(P‖Q) = bn(P) ∪ bn(Q);

(c) fn(x〈ỹ〉P) = {x} ∪ ỹ ∪ fn(P); bn(x〈ỹ〉P) = bn(P);

(d) fn(x(ỹ)P) = fn(P) r ỹ ∪ {x}; bn(x(ỹ)P) = bn(P) ∪ ỹ;

(e) fn((νỹ)P) = fn(P) r ỹ; bn((νỹ)P) = bn(P) ∪ ỹ.

We define α-equivalence, renaming of bound variables and capture-avoiding simultaneous substitution
P [ỹ/x̃] as usual.

Definition 2.3. (Congruence)
A congruence relation ≡ on π-terms is defined as follows:

1. ω1ω2P ≡ ω2ω1P provided no free variable becomes bound and no bound variable becomes free.

2. ω(P‖Q) ≡ ωP‖Q, provided bn(ω) ∩ fn(Q) = ∅.

3. Parallel composition ‖, regarded as a binary operator on processes, satisfies the axioms of a
commutative monoid with unit • .

4. (νx)• ≡ • .

Definition 2.4. (Basic 1-step reduction)

(x〈ỹ〉P ‖ x(z̃)Q �1 (P‖Q[ỹ/z̃])

Rewriting is contextual and modulo ≡, so that for all contexts C, if P ′ ≡ P and Q ≡ Q′, then we have
P � Q⇒ C[P ′] �1 C[Q′].

Remark 2.5. It is important to notice that in this version of the π-calculus the notion of the scope of
a prefix is essentially related to binding. For instance, since x〈ỹ〉(P‖Q) ≡ (x〈ỹ〉P‖Q) we have
xỹx(z̃P ≡ (•‖x(z̃P) �1 P [ỹ/z̃]. To constrain the reduction process in the synchronous calculus one
uses the guarding operator (dot): π.P .

Remark 2.6. We cannot survey here the recent literature in which ideas related to the synchronous
π-calculus have been developed, but the paper by Laneve and Victor [25] is particularly relevant, as it
shows how guarding prefixes can be encoded in a calculus where the only binding operator is abstraction
(the ν-operator).

2.2. Abramsky’s π-calculus processes for MLL⊗℘ revisited.

The following is Abramsky’s encoding of classical multiplicative linear logic in the π-calculus as given
in [10]. We write the π-calculus term in a special “control area” of the sequent and decorate the sequent
formulas with free variables for the ports accessing the term. There is no type in the “control area” and
thus no similarity with Girard’s “stoup” for a distinguished formula in the sequent.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1005

Logical rule π-translation
axiom

` Ixy | x : A⊥, y : A Ixy = x(a)y〈a〉

cut
` Fx̃x | x̃ : Γ, x : A⊥ ` Gyỹ | y : A, ỹ : ∆

` Cutz(F,G)x̃ỹ | x̃ : Γ, ỹ : ∆

Cutz(F,G)x̃ỹ =

= νz
(
Fx̃x[z/x] ‖ Gỹy[z/y])

)
times

` Fx̃x | x̃ : Γ, x : A ` Gyỹ | y : B, ỹ : ∆

` Timesxyz (F,G)x̃ỹ | x̃ : Γ, z : A⊗B, ỹ : ∆

Timesxyz (F,G)x̃ỹ =

= νxy
(
z〈xy〉 (Fx̃x ‖ Gyỹ)

)
par

` Fxyx̃ | x : A, y : B, x̃ : Γ

` Parxyz (F)x̃ | z : A℘B, x̃ : Γ
Parxyz (F)x̃ = z(xy)Fxyx̃

2.3. The Cut Algebra for MLL⊗℘

Symmetric Reductions:

Cutz(Fx̃, Gỹ) = Cutz(Gỹ, Fx̃) (1)

Cutx(Fṽx, Ixy) � Fṽx[y/x] (2)

Cutz(Timesxyz (Fx, Gy),Parxyz (Hxy))x̃ỹw̃ � Cuty(Cutx(Fx, Hxy), Gy)x̃ỹw̃ (3)

≡ Cuty(Gy,Cutx(Fx, Hxy))x̃ỹw̃ (4)

Commutative Reductions: if Parcdv and Timescdv do not react with x,2 and neither c nor d occur in H ,
then

Cutx(Parcdv (Fcdx), Hx)x̃w̃ = Parcdv (Cutx(Fcdx, Hx))x̃w̃ (5)

Cutx(Timescdv (Fc, Gdx), Hx)x̃ỹw̃ = Timescdv (Fc,Cutx(Gdx, Hx))x̃ỹw̃ and (6)

Cutx(Timescdv (Fcx, Gdx), Hx)x̃ỹw̃ = Timescdv (Cutx(Fcx, Hx), Gd)x̃ỹw̃.

Theorem 2.7. (Soundness)
(See [10].) Let D be a proof in MLL⊗℘ and let π(D) be its π-calculus translation.

(i) If D �′D by a 1-step symmetric reduction in the cut-elimination process, then π(D) �1 π(D′) in
the synchronous π-calculus.

(ii) If D �′D by a 1-step commutative reduction in the cut-elimination process, then π(D) ≡ π(D′) in
the synchronous π-calculus.

2In the context of this translation it suffice to assume that c 6= x 6= d.

1006 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

2.4. Input-Output orientations on linear types.

Any π-calculus translation induces an Input-Output orientation CI or CO on the sequent formulas
depending on whether the port x associated with C is a receiver or a sender. Thus the above definition
yields the following I-O orientations:

axiom cut

` x : A⊥I , y : AO
` Γ?, x : A⊥? ` y : A?,∆?

` Γ?,∆?

Times Par
` Γ?, x : A? ` B?,∆?

` Γ?, z : (A⊗B)O,∆?

` x : A?, y : B?,Γ?

` z : (A℘B)I,Γ?

Remark 2.8. (Computational consistency)
1. There is total symmetry between A⊥ and A in classical multiplicative linear logic, thus there is no

reason why the port associated with A⊥ should be an input and that of A an output. Hence

` Ix,y | x : AI, y : A⊥O

is also an acceptable translation for an axiom.

2. Similarly there is no compelling reason why the port associated with the formulas A⊗B in a times
rule should be an output and the port of A℘B in a par rule an input. The following translations are
also acceptable:

Timesxyz (F,G)x̃ỹ = z(xy)(Fx̃x‖ Gyỹ)
)

Parxyz (F)x̃ = νxy(z〈xy〉Fxyx̃

3. Although the π-calculus translation does not put any syntactic constraint on the orientation of the
two cut formulas, a substantial requirement for a correct simulation of the cut-elimination process,
called computational consistency in [10], is that in the translation of a derivation

in any cut and in any cut resulting from the cut-elimination process, the two cut formulas
must receive opposite orientation.

Indeed if both cut-formulas A⊥ and A are inputs or both outputs no interaction is possible: the
translation yields a computational deadlock.

Thus the problem of characterizing possible Abramsky-style translations of MLL⊗℘ derivations into
the pi-calculus becomes that of finding computationally consistent I-O orientations of derivations, namely,
functions δ assigning an orientation δ(A) ∈ {I,O} to formula-occurrences A in a sequent derivation d
such that computational consistency is satisfied in the cut-elimination process. As it stands, the problem
makes sense only globally for orientations δ(d) of derivations: it cannot be solved locally, i.e., considering
only the active formulas of inferences

δ(A) δ(B)

δ(A •B)
with • = ⊗ or ℘.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1007

2.5. Proof-nets and orientations from correctness conditions.

A new twist came from the study of correctness conditions for proof-nets. We recall the basic definitions.

Definition 2.9. A proof structure is a directed graph with at least one external point© where each edge
is typed and every node (link) has one of the forms in Table 1.3

Table 1. Links of MLL⊗℘ proof nets

axiom

A⊥sss

yysss
A

LLL

%%LLL A
HHH

##HH
H A⊥

vvv

{{vvv
C

��

cut

��
• ©

A
NNN

N

&&NN
NN B

pppp

xxpppp
A

JJJ

%%JJ
J B

ttt

yyttt⊗

A⊗B

��

℘

A℘B

��

Given a proof-structureR, a Danos-Regnier switching s is a choice of an external node© and of one
of the incoming edges in each par node.

A D-R graph sR is the graph resulting from disconnecting the incoming edge not chosen by the
switching from each par node.

A proof-net is a proof-structure such that for any switching s the D-R graph sR is acyclic and
connected.

Theorem 2.10. (Girard’s theorem, [16])
There exists a “context forgetful map” ()− from sequent derivations in MLL⊗℘ to proof-nets for with
the following properties:

(i) If d is a sequent derivation of ` Γ, then (d)− is a proof-net with conclusions Γ;

(ii) (sequentialization) ifR is a proof-net with conclusions Γ, then there is a sequent calculus derivation
d of ` Γ such thatR = (d)−.

Following [10, 4] we consider orientations that are induced by Girard trips [16] on D-R graphs.

3In early work on proof-nets (e.g., in [16]) the equivalent dual graph representation of proof-structures was used, where vertices
are labelled with formulas and edges with links of the form

A A⊥
A A⊥

cut

A B

A⊗B
A B

A℘B
.

1008 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

Definition 2.11. (i) Given a proof netR and a D-R graph sR, a Girard trip on sR is the trip starting
with the selected conclusion C and running through each edge twice in opposite directions until
reaching C.

(ii) We say that the trip is covariant on an edge A if the second passage of the trip on A has the same
direction as the edge A, otherwise the trip is contravariant on A.

(iii) The I-O orientation δ(R) determined by the switching s assigns δ(A) = O if the Girard trip on sR
is covariant on A and δ(A) = I otherwise.

An interesting feature of such orientations lies in the following remark:

Proposition 2.12. (Bellin and de Wiele, 1991)
In a proof netR every orientation induced by a Girard trip makes the selected conclusion an output, all
other conclusions are inputs. Each link is oriented in one of the following admissible ways:4

axiom 1:

A⊥I AO

axiom 2:

AI A⊥O

cut 1:
AO A⊥I

cut 2:
A⊥O AI

times 1:
AO BO

(A⊗B)O

times 2:
AO BI

(A⊗B)I

times 3:
AI BO

(A⊗B)I

par 1:
AI BI

(A℘B)I

par 2:
AI BO

(A℘B)O

par 3:
AO BI

A℘BO

Does Proposition 2.12 solve the problem of finding computationally consistent orientations and of
determining suitable π-calculus translations? Clearly not. Danos-Regnier switches make arbitrary choices
on par links and thus may assign an I-O orientation to a cut-formula AI℘BO which is inconsistent with
the one assigned by the trip algorithm to the other cut-formula A⊥I ⊗B⊥O.

However computationally consistent orientations can be obtained by suitable switches for links “above”
cut-formulas, as one can prove by induction on the cut-elimination process for proof-nets (see [10], 5.4,
Theorem 13.)

But the real interest of the above analysis of orientations from Girard trips lies in the fact that it
opens the way to studying the relations between classical and intuitionistic linear logic, which are best
understood in terms of Chu’s construction [4].

2.6. Logical Input-Output orientations.

A different notion of orientation comes from the tradition of proof-theory and categorical logic. An
intuitionistic derivation either in Natural Deduction NJ or in the sequent calculus LJ and decorated with
λ-terms x1 : A1, . . . , xn : An ` t : C represents a method to transform proofs of A1, . . . , An into a proof
of C. Here it is inescapable to think of the xi : Ai as the input and of t : C as the output of a logical
computation. Categorically, such a derivation is a morphism t : A1 × . . .×An → C in a Cartesian closed
category with a source (input) and a target (output).
4Here we use the dual graphical notation where nodes are labelled by formulas and links by hedges, as in [10].

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1009

Similar ideas apply to intuitionistic multiplicative linear logic IMLL−◦⊗ with products (written in
linear logic as with &) and units, which can be formalized in the sequent calculus as in Table (2).

Table 2. Sequent Calculus IMLL−◦⊗&

axiom cut

x : A ` x : A
x̃ : Γ ` t : A x : A, ỹ : ∆ ` u : C

x̃ : Γ, ỹ : ∆ ` u[t/x]C

−◦-R −◦-L
x̃ : Γ ` t : A x : B, ỹ : ∆ ` u : C

x̃ : Γ, f : A −◦ B, ỹ : ∆ ` u[f(t)/x] : C

x̃ : ∆, x : A ` t : B
x̃ : ∆ ` λx.t : A −◦ B

⊗-R ⊗-L
x̃ : Γ0 ` t0 : C0 ỹ : Γ1 ` t1 : C1

x̃ : Γ0, ỹ : Γ1 ` t0 ⊗ t1 : C0 ⊗ C1

x̃ : Γ, x : A0, y : A1 ` t : C
x̃ : Γ, z : A0 ⊗A1 ` let z be x⊗ y in t : C

&-R &-L
x̃ : Γ ` t0 : C0 x̃ : Γ ` t1 : C1

x̃ : Γ ` 〈t0, t1〉 : C0&C1

x̃ : Γ, x : Ai ` t : C
x̃ : Γ, z : A0&A1 ` t[πiz/x] : C

i = 0 or 1.

x̃ : Γ ` ? : > ` ∗ : 1
x̃ ` t : C

y : ⊥, x̃ : Γ ` t : C

What computationally consistent Girard trips do is to recover information which can be used to map
proofs in classical multiplicative linear logic MLL⊗℘ into proofs in intuitionistic linear logic IMLL−◦⊗.
Let L⊗℘ be the language of MLL⊗℘ built from on a set of atoms P , P ′, . . .; let L−◦⊗ be the language of
IMLL−◦⊗ on the set of atoms PO, PI, P ′O, P ′I, . . . (a pair of atoms in L−◦⊗ for each atom in L⊗℘). Let
s be a D-R switching for a proof-netR with conclusions Γ, C: we write them Γ,C if C is the conclusion
selected by s.

Theorem 2.13. ([10], 5.4, Theorem 13.)
(i) Any computationally consistent orientation given by a Girard trip on a proof-net with conclusions

Γ,C in MLL⊗℘ corresponds to (a class of) sequent calculus derivations of ΓI ` CO in IMLL−◦⊗.

(ii) Every sequent derivation in IMLL−◦⊗ of ΓI ` CO corresponds to a computationally consistent
Girard trip on a proof-net with conclusions Γ,C in MLL⊗℘.

Proof:
(Idea of the proof of (i)). Given a cut free proof-netR and a Danos-Regnier switching for it, from a Girard
trip on sR we obtain an orientation δ(R) with the properties given in by Proposition 2.12. The atoms of
IMLL−◦⊗ formulas are a pair PO, PI for each atom P of MLL⊗℘. Then non-atomic formulas in aR
are translated inductively into L−◦⊗ formulas as follows:

1010 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

(P⊥)O = PI, (P⊥)I = PO for P atomic;
(A⊗B)O = AO ⊗BO, (A℘B)I = AI ⊗BI;

(A⊗B)I = AO −◦ BI if δ(A) = O; (A℘B)O = AI −◦ BO with right switch;
(A⊗B)I = BO −◦ AI if δ(B) = O; (A℘B)O = BI −◦ AO with left switch.

A sequent ` Γ,C with selected formula C is translated into IMLL−◦⊗ as ΓI ` CO. Since from the
proof-netR we can recover a MLL⊗℘ sequent derivation, it is easy to recover an IMLL−◦⊗ derivation
from it and from the translation of the formulas. Finally, if the given proof-net contains cuts and the
orientation is computationally consistent, then one shows by induction on the cut-elimination procedure
for proof-nets in MLL⊗℘ that each application of cut in a corresponding IMLL−◦⊗ derivation is correct,
in the sense that both cut-formulas are of the same form. ut

Remark 2.14. (i) F. Lamarche [24] independently presented a theory of proof nets for Intuitionistic
Linear Logic (Essential Nets) carefully developing ideas related to part (ii) of the theorem.

(ii) The above translation is non-functorial, in the sense that the map for formulas (objects) essentially
depends on the map for proofs (morphisms), as the assumption of computational consistency shows.

2.7. A functorial translation and Chu’s construction.

The key idea for removing the constraint of computational completeness from Theorem 2.13 and thus
obtaining functorial translations is to map MLL⊗℘ proof-nets to sequent derivations in multiplicative
intuitionistic linear logic IMLL⊗℘& with products. We only give here the translations and state the result
on Chu’s construction.

Table 3. Functorial trip translation, the propositions.

(P⊥)O = PI (P atomic) (P⊥)I = PO;
1O = 1, 1I = > ⊥I = 1 ⊥O = >;

(A⊗B)O = AO ⊗BO (A℘B)I = AI ⊗BI;
(A⊗B)I = (AO −◦ BI)&(BO −◦ AI) (A℘B)O = (AI −◦ BO)&(BI −◦ AO)

Theorem 2.15. ([4], section 3)
Let A be the free ∗-autonomous category on a set of objects {P, P ′, . . .} and let C be the symmetric
monoidal closed category with products, free on the set of objects {PO, PI, P

′
O, P

′
I, . . .} (a pair PO, PI in

C for each P in A).
We can give C × Cop the structure of a ∗-autonomous category thus:

(XO, XI)⊗ (YO, YI) =df (XO ⊗ YO, (XO −◦ YI)× (YO −◦ XI)
with unit (1,>) and involution (XO, XI)

⊥ = (XI, XO)

where 1 is the unit of ⊗ and > the terminal object of C.
Therefore there is a functor F from A to C × Cop sending an object P to (PO, PI.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1011

Table 4. Functorial trip translation, the proofs.

` P⊥,P ⇒ PO ` PO ` P⊥, P ⇒ PI ` PI

` Γ,A ` A⊥,∆,C
cut ` Γ,∆,C

⇒ ΓI ` AO A⊥I ,∆I ` CO cut
ΓI,∆I ` CO

` Γ,A ` ∆,B⊗O ` Γ,∆,A⊗B
⇒ ΓI ` AO ∆I ` BO ⊗-R

ΓI,∆I ` AO ⊗BO

` Γ,A ` B,∆,C⊗I ` Γ,∆, A⊗B,C
⇒

ΓI ` AO BI ,∆I ` CO −◦-L
ΓI, AO −◦ BI,∆I ` CO

ΓI, (AO −◦ BI)&(BO −◦ AI),∆I ` CO

` Γ, A,B
℘O

` Γ,A℘B
and

` Γ,A, B

` Γ,A℘B
⇒

ΓI, AI ` BO

ΓI ` AI −◦ BO

ΓI, AO ` BI −◦-R
ΓI ` BI −◦ AO

ΓI ` (AI −◦ BO)&(AI −◦ BO)

` A,B,Γ,C
℘I
` A℘B,Γ,C

⇒ AI, BI,ΓI ` CO ⊗-L
AI ⊗BI,ΓI ` CO

` 1 ⇒ ` 1
` Γ⊥O ` Γ,⊥⊥ ⇒ ΓI ` >

` Γ,A
⊥I ` ⊥,Γ,A

⇒ ΓI ` AO
1-L

1,ΓI ` AO

If π : I → ℘(Γ) is a morphism of A represented as a proof-net R with conclusions Γ, then the
morphism (1,>)→

(
℘(Γ)O, ℘(Γ)I

)
encodes all Girard’s trips (in a sense specified in [4]).

Remark 2.16. Theorem 2.15 solves the problem of characterizing the flow of information within proofs in
classical multiplicative linear logic. The solution appears as an abstract form of “game semantics”, where
the opponent/player polarity is related to the input/output and source/target polarities of intuitionistic
logic and functional programming. But does Theorem 2.15 also solve the problem of characterizing
computationally consistent translations of multiplicative linear logic into the π-calculus that directly
represent the logical flow of information through the I-O behaviour of processes? Notice that a translation
of classical multiplicative proof nets R into intuitionistic multiplicative and additive linear logic is
most naturally matched by a translation in the π-calculus with finite summations and non-deterministic
choice. However in a process P + Q any interaction involving a subterm of P requires discarding Q
(and conversely), hence term rewriting (�) is not congruent with respect to +. Thus the straightforward
correspondence between proof-nets and π-calculus terms modulo structural congruence and between
cut-elimination and process interaction is fact lost: perhaps as expected, the π-calculus representation of

1012 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

logical computation is modulo some notion of bisimulation.5 The use of summation and non-deterministic
choice in the π-calculus translation is related to the use on boxes in proof nets for multiplicative and
additive (MALL) linear logic discussed in [10], Section 6. A technique of eliminating additive boxes by
slicing is also considered there; we cannot pursue the issue here.

2.8. An anomaly in Milner’s encoding of the typed λ-calculus?

Although Theorem 2.15 does clarify the problem of characterizing the computationally consistent trans-
lations of proof-nets in MLL⊗℘ into the π-calculus, from another point of view it seems that we have
looked at the mirror image of our problem all along. Indeed (multiplicative) linear logic must be able
to represent at least the (linear) λ calculus and we do have encoding by R. Milner whose input-output
behaviour seems dual to the one given by our analysis.

Consider the encoding of the (linear) λ-calculus discussed in [10], Section 5.5:

[[λxM]]u =df u(xv)[[M]]v

[[MN]]u =df (νv)
(
[[M]]v‖(νx)v〈xu〉x(w)[[N]]w

)
(where x is not free in N);

[[x]]u =df x〈u〉

Thinking of this as a translation of the typed linear λ-calculus, we have that

• λx : A.M : A −◦ B is an output, corresponding to a consequence of a −◦-introduction, yet in
Milner’s translation [[λxM]]u the channel u is a receiver;

• [[MN]]u is an input in a cut-free (normal) derivation ending with a−◦-elimination withM : A −◦ B
an input and N : A an output; but in the standard representation with cut analysed in [10] M is an
output. In Milner’s translation the channel v in [[M]]v is a receiver but the prefix v〈xu〉 interacting
with it is a sender. Even when [[N]]w is an output, as expected from the logical orientation, the
prefix x(w) interacting with it is an input.

Thus it seems that Milner’s translation somehow reverses the logical orientation. The explanation of
this fact in [10], namely, that the roles of input and output are reversed in the computational environment
where the processes operate, is a sensible remark, but it underplays the issue. Taking the input-output
orientations of the π-calculus terms seriously one could conjecture that in the π-calculus translation links
have dual orientations to that of the terms they represent, as given in Proposition 2.12.

Definition 2.17. (Dual orientation)
Let sR be a D-R graph on a proof netR and consider the Girard trip determined by the switching s, as in
Definition 2.11. The dual orientation δ determined by s makes the assignment δA = I if the Girard trip
on sR is covariant on A and δA = O otherwise. In particular, the times and par links are oriented thus:
5It may be relevant to notice that Abramsky had propose the following translation of axioms as bi-directional buffers:

Ixy =df (x(a)y〈〉) + (y(a)x〈a〉) | x : A⊥, y : A

Abramsky did not translate in a similar way times and par links, as one ought to in order to implement Chu’s construction.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1013

times 1:
AI BI

(A⊗B)I

times 2:
AI BO

(A⊗B)O

times 3:
AO BI

(A⊗B)O

par 1:
AO BO

(A℘B)O

par 2:
AO BI

(A℘B)I

par 3:
AI BO

A℘BO

Moreover we have a dual of Theorem 2.13 (Proposition 3.1 below). Thus our conjecture amounts
to saying that in a typed setting Milner’s translation is essentially a dualizing operation and may be
thought of as taking place in co-intuitionistic logic, rather than in intuitionistic logic. The claim is hardly
extravagant, if we think that CPS transforms in Thelecke’s thesis are typed as tensor-negation types, which
are dual to implication [33].

The point may be clarified by looking again at the representation of application in [10], Section 5.5:
using the orthogonal negation ()⊥ of linear logic to express the duality, we would like to type the λ-terms
M and N in the π-calculus translation as [[M]]v : (B⊥ rA⊥ `) and [[N]]w : (A⊥ `). Thus we have

` Iuu′ | u : B, u′ : B⊥ ` [[N]]w | w : A

` Timesu
′w

v (Iuu′ , [[N]]w)u‖ u : B, v : A⊗B⊥ ` [[M]]v | v : (A⊥℘B)

` Cutv
(
Timesu

′w
v (Iuu′ , [[N]]w)u, [[M]]v

)
| u : B

where in representing λ-calculus terms a switching must choose the formulas in boldface and also B
in A⊥℘B. Applying the dual orientation, by par 2 we have (A⊥℘B)I = BI rA⊥O = B⊥rA⊥ on the left,
and dually by times 2 (A⊗B⊥)O = B⊥O rAI = B⊥ rA⊥ on the right. Please notice that the variable
v : (A⊥℘B)I is a receiver and that v : (A⊗B⊥)O is a sender, as required. Thus we have the following
typing:

u : B⊥ ` Iuu′ | u′ : B⊥ w : A⊥ ` [[N]]w |

u : B⊥ ` Timesu
′w

v (Iuu′ , [[N]]w)u‖ v : B⊥ rA⊥ v : B⊥ rA⊥ ` [[M]]v |

u : B⊥ ` Cutv
(
Timesu

′w
v (Iuu′ , [[N]]w)u, [[M]]v

)
|

Such a possible solution of a supposed “anomaly” in Milner’s translation is a motivation for the dual
linear calculus considered in Part II of this paper.

3. PART II. Multiplicative co-Intuitionistic linear Logic

We consider the fragment of co-intuitionistic linear logic co-IMLLr℘ with only the connectives sub-
traction (r) and par (℘), the dual of Multiplicative Intuitionistic Linear Logic IMLL−◦⊗ with linear
implication (−◦) and tensor product (⊗).

3.1. Syntax and meaning of co-IMLLr℘.

Given a countable sequence of elementary formulas denoted by η1, η2, . . . the language of co-IMLLr℘

is given by the following grammar:

A,B := η | ArB | A℘B

1014 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

Here ηi =Hpi expresses the hypothesis that proposition pi is true. IfA andB are hypothetical expressions,
then the intended meaning of Ar B is possibly A and not B; A℘B is Girard’s multiplicative parallel
disjunction (A par B). For co-intutionistic logic as a logic of hypotheses, see [6].

3.1.1. Informal explanation.

As co-intuitionistic linear logic may be quite unfamiliar, we sketch an intuitive explanation of its proof
theory. We think of co-intuitionistic logic as being about making hypotheses [8, 6]. It has a consequence
relation of the form

H ` H1, . . . ,Hn. (7)

Suppose H is a hypothesis: which (disjunctive sequence of) hypotheses H1 or . . . or Hn follow from
H? Since the logic is linear, commas in the meta-theory stand for Girard’s par and the structural rules
Weakening and Contraction are not allowed.

The main connectives are subtractionArB (possiblyA and notB) and Girard’s parA℘B. Sequent-style
Natural Deduction inference rules for subtraction are as follows.

H ` Γ, C D ` ∆
r-intro

H ` Γ, C rD,∆

H ` ∆, C rD C ` D,Υ
r-elim

H ` ∆,Υ

Notice that in the r-elimination rule the evidence that D may be derivable from C given by the right
premise has become inconsistent with the hypothesis C rD in the left premise; in the conclusion we drop
D and we set aside the evidence for the inconsistent alternative. Namely, such evidence is not destroyed,
but rather stored somewhere for future use.

If the left premise of r-elimination, deriving C rD or ∆ from H , has been obtained by a r-introduction,
this inference has the form

H ` ∆1, C D ` ∆2

H ` ∆1,∆2, C rD
.

Then the pair of introduction/elimination rules can be eliminated: using the removed evidence that D with
Υ are derivable from C (right premise of the r-elim.) we can conclude that ∆1,∆2,Υ are derivable from
H . This is, in a nutshell, the principle of normalization (or cut-elimination) for subtraction.

3.1.2. Sequent calculus for co-IMLLr℘

In Table 5 we give he rules of the sequent calculus for co-IMLLr℘ which we call co-MLJr℘. To the
subtractive fragment there is a Prawitz style Natural Deduction system, to be called co-MNJr, which is
dual to the familiar linear implicational Natural Deduction MNJ−◦. Using the “dual orientations” of
definition 2.17, section 2.8, we can state the following dual of theorem 2.13.

Proposition 3.1. (i) Any computationally consistent dual orientation given by a Girard trip on a proof-net
with conclusions Γ,C in MLL⊗℘ corresponds to (a class of) sequent calculus derivations of CI ` ΓO in
co-IMLL−◦⊗.

(ii) Conversely, every sequent derivation in co-IMLL−◦⊗ of CI ` ΓO may be associated with a com-
putationally consistent dual orientation given by Girard trip on a proof-net with conclusions Γ,C in
MLL⊗℘.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1015

axiom
A ` A

cut
E ` Γ, A A ` ∆

E ` Γ,∆

exchange
E ` Γ, B,A,∆

E ` Γ, A,B,∆

r-R
E ` Γ, C D ` ∆

E ` Γ, C rD,∆

r-L
C ` D,∆
C rD ` ∆

℘-R
E ` Γ, C0, C1

E ` Γ, C0℘C1

℘-L
C0 ` Γ0 C1 ` Γ1

C0℘C1 ` Γ0,Γ1

Table 5. Sequent Calculus MLJr℘

3.2. Example.

Consider the Petri net N in Figure 1 and the computation resulting from the given initial marking, namely,
using resources A and B to fire the first transition and obtain C and then using a resource D to fire the
second transition and obtain E.

A

B

C

D

1

1

1 1

1

1

Initial Marking: AAB DD Final Marking: A D

E

Petri Net with Markings

E

Figure 1. A Petri Net.

Such computation can be represented in Intuitionistic Multiplicative Linear Logic IMLL by a (cut free)
sequent derivation of

(A,A,B,D,D︸ ︷︷ ︸
M1

, A −◦ (B −◦ C)︸ ︷︷ ︸
T1

, C −◦ (D −◦ E)︸ ︷︷ ︸
T2

` E ⊗ (A⊗D)︸ ︷︷ ︸
M2

(8)

as shown, e.g., in [26]. There is only one such a derivation in commutative IMLL (modulo Exchange).

1016 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

By applying Theorem 2.13, (ii) and using the resulting orientation to define the π-calculus translation, we
have:

` Vvy2x2aa0bdd0 | a : A⊥I , a0 : A⊥I , b : B⊥I , d : D⊥I , d0 : D⊥I , y2 : AO ⊗ (BO ⊗ C⊥I),

x2 : CO ⊗ (DO ⊗ E⊥I), v : EO ⊗ (AO ⊗DO)

where Vvy2x2aa0bdd0
= Timese

′z
v (Sy2x2abde′ , Uza0d0

)

Sy2x2abde′ = Timesa
′y1

y2
(Iaa′ , Ry1x2bde′) Uza0d0 = Timesa

′
0d

′
0

z (Ia0a′
0
, Id0d′

0
)

Ry1x2bde′ = Timesb
′c

y1
(Ibb′ , Qx2cde′) Qx2cde′ = Timesc

′x1
x2

(Icc′ , Px1de′)

Px1de′ = Timesd
′e

x1
(Idd′ , Iee′)

The same computation can be encoded in an easy CCS computation:

a‖a‖b‖d‖d‖(νxy)
(
a.x‖b.x.y‖d.y.e

)
� a‖d‖e (9)

But here the use of guarding prefixes of CCS (or some encoding of them in the π-calculus) is essential, so
there is no way to represent the cut-elimination process of IMLL in CCS: for this purpose, as pointed out
above, contextual rewriting would be required within guarded processes.

If we decorate IMLL natural deduction or sequent derivations with the linear λ-terms with ⊗ and
let constructs as, e.g., in [11], then we have a full and faithful representation of normalization or cut-
elimination in IMLL and this allows us to represent other computation strategies. For instance, in our
simple example we may load the nodes B, D and A in this order and still the computation would go
through. Thus we have derivations D11, D12, D21 and D22 decorated with the following terms:

D11 :

g : T2, f : T1 ` λbλdλa.g(fab)d︸ ︷︷ ︸
u

: B −◦ (D −◦ (A −◦ E))

where T1 = A −◦ (B −◦ C) and T2 = C −◦ (D −◦ E) as above,

D12 :

y1 : A⊗A, b : B, y2 : D ⊗D,h : B −◦ (D −◦ (A −◦ E)) ` ` : E ⊗ (A⊗D)

where ` = let y2 be d⊗ d′ in `1 and `1 = let y1 be a⊗ a′ in (hbda)⊗ (a′ ⊗ d′);

D21 :

a : A, a′ : A ` a⊗ a′ : A⊗A
D22 :

d : D, d′ : D ` d⊗ d′ : D ⊗D
and we obtain a derivation D0 with cut as follows:

D21

D22

D11 D12 cut1
y1 : A⊗A, b : B, y2 : D ⊗D, g : T2, f : T1 ` `[u/h] : E ⊗ (A⊗D)

cut2
d : D, d′ : D, y1 : A⊗A, b : B, g : T2, f : T1 ` `[u/h][d⊗ d/y2] : E ⊗ (A⊗D)

cut3
d : D, d′ : D, a : A, a′ : A, b : B, g : T2, f : T1 ` `[u/h][d⊗ d′/y2][a⊗ a′/y1] : E ⊗ (A⊗D)

As expected, by eliminating cuts we get

d : D, d′ : D, b : B, a : A, a′ : A, g : T2, f : T1 ` g(fab)d : E

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1017

3.2.1. The example in co-Intuitionistic Multiplicative Linear Logic

Here we consider a dual representation of the same Petri Net computation as derivations of the sequent R :

E℘(A℘D)︸ ︷︷ ︸
M⊥2

` (E rD) r C︸ ︷︷ ︸
T⊥2

, (C rB) rA︸ ︷︷ ︸
T⊥1

, A,A,B,D,D︸ ︷︷ ︸
M⊥1

The following is a cut free derivation D of R in the sequent calculus for co-IMLLr℘:

E ` E D ` D r-R
E ` E rD,D

C ` C B ` B r-R
C ` C rB,B A ` A

r-R
C ` (C rB) rA,A,B

r-R
E ` (E rD) r C, T1, A,B,D

A ` A D ` D ℘-L
A℘D ` A,D

r-R
E℘(A℘D) ` T⊥2 , T⊥1 , A,A,B,D,D

If we apply the analogue of Theorem 2.13, (ii) using the “dual translation” sketched in section 2.8 we
obtain the following π-calculus translation:

` Vvy2x2a′a′
0b

′d′d′
0
| v : E⊥I ⊗ (A⊥I ⊗D⊥I) x2 : (EO ⊗D⊥I)⊗ C⊥I),

y2 : (CO ⊗B⊥I)⊗A⊥I a′ : AO, a
′
0 : AO, b

′ : BO, d
′ : DO, d

′
0 : DO

where Vvy2x2a′a′
0b

′d′d′
0

= Timesezv (Sy2x2a′b′d′e, Uza′
0d

′
0
)

Sy2x2a′b′d′e = Timesy1a
y2

(Ry1x2b′d′e, Iaa′) Uza′
0d

′
0

= Timesa0d0
z (Ia0a′

0
, Id0d′

0
)

Ry1x2b′d′e = Timesc
′b

y1
(Qx2c′d′e, Ibb′) Qx2c′d′e = Timesx1c

x2
(Icc′ , Px1d′e)

Px1d′e = Timese
′d

x1
(Iee′ , Idd′)

4. Dual calculus and term assignment for co-IMLLr℘

The calculus of sequents for IMLL−◦⊗ has sequents

x1 : A1, . . . xn : An ` t : A

decorated with linear λ terms with tensor product (Table 2). For the dual logic co-IMLLr℘. we propose
a linear calculus of coroutines assigned to sequents

x : C ` t1 : C1, . . . , tn : Cn

of co-MLJr℘ (and to the natural deduction derivations of co-MNJr℘).

4.1. From Crolard’s classical coroutines to co-intuitionistic ones

Crolard [15] provides a term assignment to the subtraction rules in the framework of Parigot’s λµ-calculus,
typed in a sequent-style natural deduction system. The λµ-calculus provides a typing system for functional
programs with continuations and a computational interpretation of classical logic.

In the type system for the λµ calculus sequents may be written in the form Γ ` t : A | ∆, with contexts
Γ = x1 : C1, . . . , xm : Cm and ∆ = α1 : D1, . . . , αn : Dn, where the xi are variables and the αj are

1018 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

µ-variables (or co-names). In addition to the rules of the simply typed lambda calculus, there are naming
rules

Γ ` t : A | α : A,∆

Γ ` [α]t : ⊥ | α : A,∆
[α]

Γ ` t : ⊥ | α : A,∆

Γ ` µα.t : A |∆
µ

whose effect is to “change the goal” of a derivation and which allow us to represent the familiar double
negation rule in Prawitz Natural Deduction.

Crolard extends the λµ calculus with introduction and elimination rules for subtraction:6

Γ ` t : A |∆
Γ ` make-coroutine(t, β) : ArB | β : B,∆

r I

Γ ` t : ArB |∆ Γ, x : A ` u : B | ∆
Γ ` resume t with x 7→ u : C |∆

r E

The reduction of a redex of the form

Γ ` t : A |∆
r-I

Γ ` make-coroutine(t, β) : ArB | β : B,∆ Γ, x : A ` u : B |∆
r-E

Γ ` resume (make-coroutine(t, β)) with x 7→ u : C | β : B,∆

is as follows:

Γ ` t : A |∆ Γ, x : A ` u B |∆
substitution

Γ ` u[t/x] : B |∆
[β]

Γ ` [β]u[t/x] : ⊥ | β : B, γ : C,∆′
µ

Γ ` µγ.[β]u[t/x] : C | β : B,∆′

Working with the full power of classical logic, if a constructive system of bi-intuitionistic logic is required,
then the implication right and subtraction left rules must be restricted; this can be done by considering
relevant dependencies.7 Crolard is able to show that the term assignment for such a restricted logic is a
calculus of safe coroutines, described as terms in which no coroutine can access the local environment of
another coroutine.

Crolard’s work suggests the possibility of defining co-intuitionistic coroutines directly, independently
of the typing system of the λµ-calculus. Since µ-variable abstraction and the µ-rule are devices to
change the “actual thread” of computation, the effect of removing such rules is that all “threads” of
computation are simultaneously represented in a single-premise multiple-conclusion sequent, but variables
y that are temporarily inaccessible in a term N are being replaced by a term y(M) by the substitution
N [y := y(M)], where M contains a free variable x which is accessible in the current context. This
approach was pursued in [6, 5, 8].

6Actually in Crolard [15] the introduction rule is given in the more general form of r-introduction with two sequent premises as
in our calculus and more general continuation contexts occur in place of β; the above formulation is logically equivalent and
suffices for our purpose.
7For instance, in the derivation of the right premise Γ, x : A ` u : B |∆ of a subtraction elimination (rE), there should be no
relevant dependency between the formula B and the assumptions in Γ, but only between B and A.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1019

4.2. A dual linear calculus for co-IMLLr℘

We present the grammar and the basic definitions of our dual linear calculus for the fragment of linear
co-intuitionistic logic with subtraction and disjunction.

Definition 4.1. We are given a countable set of free variables (denoted by x, y, z, . . .), and a countable
set of unary functions (denoted by x, y, z, . . .).

(i) Terms are defined by the following grammar:

t, u := x | x(t) | t℘u | casel(t) | caser(t) | mkc(t, x)

(ii) Let t1, t2, . . . be an enumeration in a given order of all the terms freely generated by the above
grammar starting with a special symbol ∗ and no variables (a selected variable a would also do the
job). Thus we have a fixed bijection ti 7→ xi between terms and free variables.

(iii) Moreover, if t is a term and u is a term such that y occurs in u, then postp(y 7→ u{y := y(t)}, t)
is a p-term.

We use the abbreviations (t→ y) for mkc(t, y) and wz 7→uoo for postp(z 7→ u,w).

Notice that a p-term cannot be a subterm of other terms.

Definition 4.2. (i) The free variables FV (`) in a term are defined as follows:

FV (x) = {x}
FV (x(t)) = FV (t)

FV (t℘u) = FV (t) ∪ FV (u)

FV (casel(t)) = FV (caser(t)) = FV (t)

FV (mkc (t, x)) = FV (t)

FV (postp(x 7→ u, t)) = FV (u) ∪ FV (t).

(ii) A computational context Sx is a set of terms and p-terms containing the free variable x and no other
free variable. We may represent a computational context as a list κ of terms and p-terms.

Definition 4.3. Substitution of a term t for a free variable x in a in a list of terms κ is defined as follows:

x{x := t} = t, y{x := t} = y if x 6= y;

y(u){x := t} = y(u{x := t}); (r℘u){x := t} = (r{x := t})℘(u{x := t});
casel(r){x := t} = casel(r{x := t}), caser(r){x := t} = caser(r{x := t});

mkc(r, y){x := t} = mkc(r{x := t}, y),

postp(y 7→ (u), s){x := t} = postp(y 7→ (u{x := t}), s{x := t});
(){x := t} = (), (u · κ){x := t} = t{x := t} · κ{x := t}.

1020 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

Definition 4.4. β-reduction of a redexRed in a computational context Sx is defined as follows.

(i) IfRed is a term u of the following form, then the reduction is local and consists of the rewriting
u β u

′ in Sx as follows:

casel (t℘u) β t; caser (t℘u) β u.

(ii) IfRed has the form (t→ y)
z7→uoo , i.e., postp(z 7→ u, mkc(t, y)), then Sx has the form

Sx = Red, κ, ζy, ξz

where z((t→ y)) occurs in ξz, y(t) occurs in ζy but z((t→ y)) does not and, finally, neither y(t)
nor z((t→ y)) occur in κ. Using our bijection between the set of terms and the free variables, we
can write y = y(t) and z = z((t → y)); then a reduction of Red transforms the computational
context as follows:

Sx κ, ζ{y := u{z := t}}, ξ{z := t}. (10)

Thus for ζ = u1, . . . , uk and ξ = r1, . . . , rm we have:

ξ{z := t} = r1{z := t}, . . . , rm{z := t};
ζ{y := u{z := t}} = u1{y := u{z := t}}, . . . , uk{y := u{z := t}}.

4.3. Term assignment to MLJr℘

Definition 4.5. (Term assignment)
The assignment of terms of the dual linear calculus to sequent calculus derivation in MLJr℘ is given in
Table 6.

Remark 4.6. (Binding of variables)
In our calculus the free variable y occurring in a computational context Sy becomes bound when Sy is
merged with another context Sx because of the introduction of a term mkc(t, y) with t belonging to Sx.
Similarly the free variable x occurring in Sx ∪ {u} becomes bound when a term postpone(x 7→ u, y) is
introduced, creating a new computational context Sy. Thus the terms make-coroutine and postpone

are global binders: their scope is not delimited, contrary to the binding of variables by the λ operator in
the λ-calculus or by the (νx) in the π-calculus. Global effects such as “remote binding” and “remote
substitutions” evoke features of distributed computation, e.g., in biological computing.

But variable binding requires an appropriate definition of α-equivalence, to ensure proper renaming of
variable and substitutions avoiding “capture of free variables”. We define α-equivalence by induction on
the recursive definition of a computational context given by the term assignment in Table 6.

Definition 4.7. (α-equivalence)
Let S∗x and S∗x′ be computational contexts. We say that S∗x and S∗x′ are α-equivalent (written S∗x ≡ S∗y)
if the following conditions are satisfied. We focus on the cases of make-coroutine and postpone, the
others being familiar.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1021

Table 6. Labelled sequent calculus co-MLJr℘

Labelled Sequent Calculus co-MLJr℘

identity rules
logical axiom:

x : C ` π | x : C

In what follows let Sx = π0 | ` and Sy = π1 | κ:

cut:
x : E ` Sx : Υ0 , t : C y : C ⇒ Sy : Υ1

x : E ` Sx : Υ0,Sy{y := t} : Υ1

logical rules

r right:
x : E ` Sx : Υ0, t : C y : D ⇒ Sy : Υ1

E ` Sx : Υ0, mkc(t, y) : C rD,Sy{y := y(t)} : Υ1

r left:
x : C ` Sx : Υ, u : D

y : C rD ` postp(x 7→ u, y){x := x(y)} : , Sx{x := x(y)} : Υ

℘ right

x : C ` π1 | ` : Υ, t0 : D0, t1 : D1

y : C ` π1 | ` : Υ, t0℘t1 : D0℘D1

℘ left:
x : D0 ` Sx : Υ0 y : D1 ` Sy : Υ1

z : D0℘D1 ` Sx{x := casel(z)} : Υ0,Sy{y := caser(z)} : Υ1

1. If S∗x = {x}, then S∗x ≡ S∗x′ iff S∗x′ = {x′} and x = x′;

2. if S∗x = Sx ∪ {mkc(t, y)} ∪ Sy{y := y(t)}, then S∗x ≡ S∗x′ iff S∗x′ = Sx′ ∪ {mkc(t′, y′)} ∪ Sy′{y :=
y′(t′)} and Sx ∪ {t} ≡ Sx′ ∪ t′ and, moreover, for all variables z except for a finite number
Sy{y := z} ≡ Sy′{y′ := z};

3. if S∗x = ({postpone(y 7→ u, x)} ∪ Sy){y := y(x)}, then S∗x ≡ S∗x′ iff S∗x′ = ({postpone(y′ 7→
u′, x′)} ∪ Sy′){y′ := y′(x′)} and for all variables z except for a finite number (Sy ∪ {u}){y :=
z} ≡ (Sy′ ∪ {u′}){y′ := z}.

Using definition (4.7), it is possible to define capture avoiding substitutions in the standard way (cfr.
[23]). We avoid an explicit use of α-equivalence through a bijection between terms and free variables, as
in Definition 4.1 (ii): the terms given by a term assignment encode the structure of a derivation tree, thus
the bijection will not yield undesirable identification of free variables.

1022 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

4.4. Dualities

In the following proposition we use orthogonality ()⊥ as a meta-theoretical symbol for the duality
between formulas and derivationss in MLJ−◦⊗ and in co-MLJr℘:

Proposition 4.8. (i) Given a labelled sequent calculus derivation d in MLJ−◦⊗ of x1 : A1, . . . , xn :
An ` t : A , there is a sequent derivation d⊥ in co-MLJr℘ of x : A⊥ ` π, u1 : A⊥1 , . . . , un : A⊥n ,
for some sequence of terms u1, . . . , un and a sequence of p-terms π of the dual linear calculus of
co-routines, and conversely;

(ii) If a MLJ−◦⊗ derivation d reduces to d0, then the co-MLJr℘ derivation d⊥ reduces in one step to
d⊥0 , and conversely.

The proposition is proved by a straightforward induction on the length of the given derivation (part (i)) and
on the length of the reduction sequence (part (ii)). It is understood that “a step” of reduction in the dual
linear calculus must be seen as “macro” instruction for several steps of rewriting, which may nevertheless
be seen as a unit.

4.5. Labelled Prawitz’ trees

As trees in Prawitz style Natural Deduction MNJ−◦ can be decorated with linear λ terms, so we can
draw Prawitz trees for co-MNJr derivations and decorate them with terms of the dual linear calculus of
coroutines, as in the example in Appendix (section 7.1). In the linear case the correspondence between
the sequent calculus co-MLJr and natural deduction co-MNJr is straightforward.

5. PART III. Membrane computing: λP systems as executors

In this section we will show the parallel between our dual linear calculus and λP systems. These are a
variant of P systems, a computational framework aimed at representing structured environments inspired
by cell biology, first introduced by Păun in 1998 [29] and subsequently specialized into many different
types. More specifically, P systems model initial data as sets of objects (considered with their respective
multiplicity) and evolution rules, similar to chemical reactions, inside a hierarchical set of membranes
(containers); a computation is defined as a maximally parallel application of all the evolution rules, until no
further transformation is possible. λP systems extend this model by defining additional basilar operations
on membranes and allowing some membrane transfers inside the hierarchy.

5.1. Definitions

First, we will give here the basic definitions needed to understand the structure and workings of a
λP system, referring the reader to [30] and [14] for further clarifications.8

8Some particulars of the definitions given here, such as the definition of rule in a membrane, have been simplified for ease of
comprehension.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1023

Definition 5.1. (Multiset)
A multiset M is a set of items a, b, c . . . counted with their respective multiplicities m0,m1,m2, Its
conventional representation is a listing comprising every item immediately followed by its multiplicity:

M = am0bm1cm2 . . .

Definition 5.2. (Membrane)
A membrane is a unit containing:

• a multiset of objects initially present immediately inside the membrane;

• other membranes inside, if any;

• a set of rules in the form Aa11 A
a2
2 . . . Aamm → (Bb1

1 , t1)(B
b2
2 , t2) . . . (B

bn
n , tn), where each ti must

be one of in, out or here; they express transformations that, for every i in [1;m], take away ai
instances of Ai from the membrane and, for every j in [1;n], insert bi instances of Bi in a non-
deterministically chosen membrane inside the current one (if ti is in), outside the current membrane
(if ti is out) or in the current membrane (if ti is here). If ti is here, the ordered pair (Bbi

i , ti) can
be written in the short form Bbi

i .

Definition 5.3. (Membrane structure)
A membrane structure is a hierarchically arranged set of membranes, each denoted by a label, contained
in an external membrane. The space delimited by a membrane and any membranes contained into it (if
any) is called region.

In the rest of this paper, we will denote a membrane with label α with [α]. A membrane α is said to
be a child of β if α is an inner membrane of β; if α is a child of β and there is no inner membrane of β
containing α, α is called an immediate child of β. If we consider a membrane α and one of its immediate
children β, we may denote the label of β with β (the circle intuitively means that β is visible for an
hypothetical observer placed inside α).

Definition 5.4. (Basic operations)
We define three basic operations (immediate inclusion, innermost inclusion and surrounding) as follows.

1. The immediate inclusion α→ [α]in[β] takes a membrane α and all its inner structure and includes
it in a membrane β at the same level, such that α becomes an immediate child of β;

2. the innermost inclusion α→ [α]in∗[β] takes a membrane α and all its inner structure and includes it
in the innermost membrane of β;

3. the surrounding operation α→ [β[α]] surrounds α with a membrane β.

Additionally, we define their respective inverses as follows:

1. the inverse of the immediate inclusion is α→ [α]out[β] (it takes the membrane α, which must be an
immediate child of β, and moves it outside β, so that α and β are at the same level);

2. the inverse of the innermost inclusion is α→ [α]out∗[β] (this is the same operation described above,
with the only difference that α needs to be just a child of β);

1024 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

3. the inverse of the surrounding operation applied to a membrane α is δin[β], where with δ, following
the usual notation for P systems, we refer to the dissolution of the β membrane itself.

These are, generally speaking, the fundamental operations performed in λP systems; while building
the λP system that will act as an executor of our dual linear calculus, we shall use the immediate inclusion,
the surrounding operation and its inverse extensively.

We are now ready to introduce λP rules, evolution rules that expand the general notion of rule in
P systems by letting certain membranes taking part in a reaction and allowing direct transfers to the
innermost or outermost membranes (with regards to the one to which the rule is applied).

Definition 5.5. (λP rule)
Let O denote the set of objects that can appear in the system. A λP rule is a rule of the form
X1, X2, . . . , Xn → Y 1

tarZ1
, Y 2

tarZ2
, . . . , Y m

tarZm
, where:

• Xi ∈ O or Xi = Z (Z ∈ Λ, where Λ is the set of membrane labels as defined below);

• Y i ∈ O or Y i = [Z] or Y i = [Z [U]] (Z, U ∈ Λ);

• tar ∈ {in, in∗, out, out∗, here}, where with in∗ and out∗ we denote a transfer to the innermost or
outermost membrane inside, or outside, the one to which the rule is applied.9

Definition 5.6. (λP system)
A λP system is a construct

Π = (Λ ∪ O, µ(V), R, f)

where:

• Λ is the set of membrane labels;

• O is the set of objects that can appear in the membranes (for our convenience, we will always
assume that δ belongs to O);

• µ(V) is the initial membrane structure (V is the set of membranes);

• R is a set of λP rules;

• f is a function V 7→ Λ.

We will now introduce a tree representation of membrane structures in a λP system, as well as the
definition of initial objects in a membrane. The first one is a commonly used, intuitive way to visualize the
hierarchy and nesting of membranes; the second definition, normally employed in basic P systems, needs
to be given for λP systems, as the notion of initial configurations ([14], 2.2) is not sufficiently expressive
to represent the exact location of all the objects (only more general sets comprising all the elements in a
subtree can be derived; we will need a finer degree of control while performing some translations later in
this paper).

9In the paper by Colson et al. ([14]), the authors use stay instead of here, although with the same meaning; we have chosen the
latter form, as it is consistent with Păun ([29]).

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1025

Definition 5.7. (Tree representation of a λP system — see e.g. [30], Section 6)
The membrane structure of a λP system Π can be represented by a tree µ as follows:

1. there is a bijection between the nodes in the tree and the membranes in the λP system;

2. every node in the tree is labelled with the label of the corresponding membrane;

3. a nodeN2 is a child ofN1 if, and only if, the membrane corresponding toN2 is inside the membrane
corresponding to N1.

Definition 5.8. (Initial objects)
For each membrane M in a λP system Π, we define the set of initial objectsOM as the multiset containing
all the objects present in M before the computation starts, counted with their multiplicities.

As in standard P systems, to perform a computation all the evolution rules are applied, whenever
possible, in parallel and in a non-deterministic order. A computation is successful if and only if it halts
(no more evolution rules can be applied) and if the output region still exists.

5.2. Translating the dual linear calculus

We shall show that the dual linear calculus can be simulated by a λP system by giving a constructive way
to build an initial system representing every initial set of terms and by modelling β-reductions so that they
respect Definition 4.4, translating each rule in the labelled sequent calculus MLJr℘ to an operation in a
λP system.

Definition 5.9. (Term translation)
Terms in the dual linear calculus can be translated to a membrane structure as follows.

• For each term of type x we build a membrane structure [xx] and add a new object x to the set of
objects O.

• For each term of type x(t) we build a membrane structure [x(t)M], where M is the membrane
structure for t.

• For each term of type t℘u we build a membrane structure [t℘uMtMu], where Mt and Mu are the
membrane structures for t and u.

• For each term of type casel(t) we build a membrane structure [casel(t)M], where M is the
membrane structure for t. The same rule applies to terms of type caser(t).

• For each term of type mkc(t, x) we build a membrane structure [mkc(t,x)MtMx], where Mt and Mx

are the membrane structures for t and x.

• For each term of type postp(x 7→ u, t) we build a membrane structure [postp(x7→u,t)MxMuMt],
where Mx, Mu and Mt are the membrane structures for x, u and t.

In every built membrane structure, we treat the label as a unique identifier that keeps track of the
original term type. This will allow us to identify the exact rules to insert to perform substitutions and
β-reductions.

Note that these assignments preserve the sets of free variables defined in Definition 4.2 and that terms
that are not simple variables are created by enclosing them.

1026 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

Definition 5.10. (Simulation of substitutions)
Substitutions defined in Definition 4.3 can be modelled in λP systems with immediate inclusions and is
defined by inspection of each case. If M is the membrane representing the term where we need to perform
the substitution and t is the term corresponding to it:

• if t is of the type (){x := t}, nothing is to be done;

• if t is of the type x{x := t}, we add the rule X → T , where X and T are the labels of the
membranes representing the terms x and t;

• if t is of the type y{x := t} and x 6= y, we add the same rules as in the previous case;

• in every other case, we just apply the procedure recursively to the membranes representing the
correct subterm (the recursive step can not be applied to the submembrane representing the x term
in a membrane modelling mkc(t, x) or in one modelling postp(x 7→ u, t), as capture of variables
may occur).

Lemma 5.11. (Initial computational context model)
Let Sx be a computational context. Then Sx can be modelled by a λP system ΠSx .

Proof:
We first start with an “empty” system

Π = (Λ ∪ O, µ(V), R, f)

where Λ = {S}, O = {δ}, µ(V) is a membrane structure consisting only of a skin membrane labelled
S, R = ∅ and f is the function associating the skin membrane with its label. Consider then the list of
terms and p-terms κ representing Sx. For each term t in κ, build the membrane system corresponding to t
(this process is guaranteed to terminate as the term construction is inductive), according to Definition 5.9,
adding all labels and modifying f accordingly. In the end, put all the membrane systems obtained at the
precedent step inside the skin membrane S. ut

Definition 5.12. (Simulation of β-reductions)
β-reductions defined in Definition 4.4 can be modelled in a λP system as follows. Consider a computational
context model ΠSx . For each membrane M in ΠSx :

• if M has a label M of the type casel(t) and the membrane corresponding to t is one modelling a
t1℘t2 term, let us call P the membrane corresponding to t, TL the one corresponding to t1 and TR
the one corresponding to t2; put a λP rule P → δin[M] in the parent membrane of P and TR → δ in
P ;

• if M has a label of the type caser(t) and the membrane corresponding to t is one modelling a
t1℘t2 term, follow the same rule as above, replacing TR with TL in the last λP rule;

• if M has a label of the type postp(x 7→ u, z) and Z is a membrane representing a term of the type
mkc(t, y):

1. apply the bijection described in definition 4.4;

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1027

2. perform the substitution u{z := t} in the membrane corresponding to u (as described before);

3. for every child of the skin membrane S that contains a child membrane structure representing
the term y(t) (let m be their total number), perform the substitution y := u{z := t} (by
copying the membrane representing the term y(t) inside the skin membrane and performing a
recursive substitution, this can be easily achieved); we also record the fact that this step has
been completed by putting a new “trigger” object (let us call it S1) inside the parent membrane
of M (let it be SF) when the copy of the term inside the skin membrane has been performed;

4. for every child of the skin membrane S that contains a child membrane structure representing
the term z((t → y)) (let n be their total number), perform the substitution y := u{z := t}
with the same technique described as above, this time using a new object S2 as the trigger;

5. add the reaction S1S2AM → A, where A is an enumeration of the immediate child mem-
branes of SF (excluding M itself), so that the postp term itself is deleted only when both
substitutions have been started.

We have thus proved that:

Theorem 5.13. (Existence of a λP system)
The dual linear calculus defined in Section 4.2 can be executed by a λP system.

The “low-level” execution of the dual linear calculus in a λP system we have just shown seems quite
complicated at first, if not frightening. That happens because we needed to introduce a single membrane
for every term, so as to perform substitutions and β-reductions correctly or, in other words, to represent
and model the “language structure” of the dual calculus.

There is, however, another possibility to express these concepts in a more intuitive way. Recalling
the tree representation of λP systems given in Definition 5.7, it becomes intuitive to associate the basic
operations described in Definition 5.4 with subtree moves: for instance, the operation 1 moves the subtree
corresponding to α and all its inner membranes so that the root of the subtree becomes a child of the node
corresponding to β. Entire terms can be represented as subtrees and substitutions and β-reductions can be
(mostly) modelled as fundamental operations (substitutions become immediate inclusions with subtree
cloning, casel/caser operations become subtree prunings and inverse surroundings, while β-reductions
of postp/mkc terms are combinations of these tree operations).

5.3. Going backwards: representing λP systems

A more interesting problem is checking whether the inverse of Theorem 5.13 holds, as it would be shown
that our dual linear calculus can simulate a particular distributed computing model. This is indeed true,
at least under the assumption that the maximum multiplicity of every object inside each membrane at
any given time is upper bounded; however, we shall not perform (as we did in the previous case) a direct
translation from an arbitrary λP system to its representation in the dual linear calculus, but give a method
to transform it into a Petri net. The latter will be then encoded into a co-IMLLr℘ computation and finally
into the calculus we gave.

Theorem 5.14. (Translation of λP systems to Petri nets)
The structure and computational behaviour of a λP system S, where the maximum multiplicity of every
object inside each membrane at any given time is upper bounded, can be represented by a Petri net N .

1028 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

The general idea of the proof is to build a Petri net using the technique envisioned by Klejin, Koutny and
Rozenberg ([22]), extending it conveniently to represent the dynamic evolution of the membrane structure
typical of λP systems. More specifically, we need to keep track of the location of each membrane, so that
rules that specify a target ti relative to the current membrane (that is, in/in∗ and out/out∗) will always ex-
ecute correctly. Each place will thus represent an ordered triplet (membrane, object,membrane position),
where membrane position is a unique identifier that distinguishes representations of the same membrane
put into different places in the membrane structure.

Proof:
The Petri net we will build will be in the form N = (P, T,W,M0) where, as usual:

• P is a finite set of places and T is a finite set of transitions,

• P and T are disjoint,

• W : (P × T) ∪ (T × P) 7→ N is a multiset representing the arcs, and

• M0 is a multiset of places (the initial marking of the net).

Let us call the original λP system we need to translate S. Apply the following algorithm to obtain the
required Petri net.

1. (Initial membrane structure) For each possible (membrane, object) couple initially present in S (by
“initially present” we mean that the membrane exists and at least one occurrence of the specified
object is present inside that membrane), generate a new place in the Petri net, labelling it with
the original membrane label, the name of the object and a unique identifier that serves the sole
purpose of discriminating between different locations inside S of the same membrane. We can, for
example, recalling the tree representation of λP systems given in Definition 5.7, consider the path
〈M1,M2, . . . ,Mn〉 going from the root to the desired membrane Mn (by design of the λP system,
that path exists and is unique) and, if Li is the label of Mi, use L1‖L2‖ . . . ‖Ln as the identifier
(where ‖ denotes string concatenation).

2. (Encoding of λP rules and basic operations implementation) For each λP rule specified in S, let M
be the membrane associated to the rule. Then, for each possible position of M in the system, we
perform the translation as follows.

(a) We insert a transition T into the Petri net.

(b) For each object O on the left hand side of the rule (excluding δ), we draw an arc from the
place representing the triplet (M,O, current position of M) to T ; its weight is equal to the
multiplicity of O in the rule.10

(c) For each object O on the right hand side of the rule (excluding δ), we draw an arc from T
to the place representing the triplet (M ′, O, current position of M ′). M ′ is determined as
follows: if the target for O is out or out∗, M ′ is the outer (respectively, outermost) membrane
of M (note that it can be determined with certainty, thanks to the fact that we have kept track

10We deliberately ignore “membrane labels” like A here, as they are merely a reference to the labels written in the basic
operations on the right hand side.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1029

of the dynamic changes of the system); if the target is here, M = M ′, trivially; if the target is
in or in∗, to preserve the indeterminacy with which the inner membrane is chosen, we draw
multiple arcs to each possible inner (or innermost) membrane. The weight, as before, is equal
to the multiplicity of O on the right hand side.
If during this phase a needed place does not exist, it suffices to create it, paying attention to
add all possible transitions that could move objects (or membranes) inside the new one.
The considerations about the target and the creation of new places if needed are the same
throughout the proof and will be implied for brevity in the next cases.

(d) For each [A] on the right hand side, what we need to do is consider the entire membrane and
transfer it if needed.11 We don’t know, in general, the number of objects present inside the
membrane (and inside all its children) at the time the transfer is performed; however, using the
hypothesis that the multiplicity of any object is always upper bounded, we can simply generate
all the possible combinations of multiplicities, add arcs going from the places representing
possible objects inside A or its children (whether immediate or not) with weights equal to the
specific multiplicity in each combination, create as many copies Ti of T (as well as the arcs
connected to T) as the number of combinations and add arcs going from each Ti to the places
representing the same objects inside the same membranes, but at the appropriate positions
(depending on the target of the λP rule, as we specified in point 2c).

(e) For each [B[A]] on the right hand side, we simply create (if needed) new places representing
objects into the new membrane B, at the appropriate positions (depending on the target), then
transfer [A] inside B, as in the previous point.

(f) For each δ object (membrane dissolution), we consider the membrane M ′ specified by the
target and transfer the objects inside M ′ (as well as any inner membrane structure) to its
parent.

Note that points 2e and 2f can be seen as special cases of point 2d.

3. (Initial marking) The initial marking M0 of the Petri net is built as follows: for each object X in
the OM sets in the λP system, we place a number of tokens equal to the multiplicity of X in the
place corresponding to (X,M, position of M inside the initial membrane structure).

ut

Corollary 5.15. (Translation of λP systems to the dual linear calculus)
Each computation performed by a λP system S, under the assumptions of Theorem 5.14, can be translated
to its equivalent in the dual linear calculus presented in Section 4.2.

Proof:
Thanks to Theorem 5.14, a generic λP system can be translated to an equivalent Petri net N . It now
suffices to encode N into a co-IMLLr℘ computation, as shown in Sections 3.2 and 3.2.1, and to make
use of the term assignment given in Table 6 to obtain the final dual linear calculus translation. ut

11Just like A , [A] may be used in this context only to signal that the specific membrane is considered in the rule: see Rule 2 in
Section 3.3 of [21] for an example. For this reason, we need to interpret the notation and decide whether the transfer is required
or not before performing the translation.

1030 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

The translation we proposed has the clear advantage of showing that the intrinsic parallelism and
distributed aspect of λP systems (all the applicable rules are executed at the same time in multiple mem-
branes) and of Petri nets (where all suitable transitions, involving different places, are fired concurrently)
can be expressed effectively by our dual linear calculus. An important point to be stressed is that we had
to make use of the upper bound on the multiplicities to ensure the number of possible transitions is not
infinite (in that case, the resulting Petri net would be equivalent to an infinite encoding in co-IMLLr℘);
a further step towards a general translation technique could be extending this proof and making use of
boundedness analysis algorithms to prune the unused places and transitions.

6. Concluding remarks and future work.

In this paper we reconsidered a version of Milner’s synchronous π-calculus used in the early days of the
subject and Milner and Abramsky’s translation of classical multiplicative linear logic into the synchronous
π-calculus as documented in [10]. In particular we revisited the efforts to represent the “logical flow
of information” in Girard’s proof nets in the input-output behaviour of interacting π-calculus terms
modulo structural congruence. We saw that such “logical flow of information” has the form of the
abstract game semantics in the framework of Chu’s construction ([4]) and noticed that the most natural
π-calculus representation of it would involve the non-deterministic choice operator (+) modulo a suitable
bisimulation. We also noticed that Milner’s translation of the linear λ calculus into the π-calculus seems
to reverse the logical orientation and suggested that in a typed setting the π-calculus translation is best
seen as a dualizing operation, i.e., passing to co-intuitionistic linear logic.

For such a logic we presented a linear calculus of co-routines: this is a co-intuitionistic version
of Tristan Crolard’s calculus of co-routines [15], originally proposed in the setting of the classical λµ-
calculus. One of our goals here is to investigate the properties of such a calculus and to compare it with
other systems of logics for concurrency. Thus as a concluding remark we ask the question whether the
linear calculus of co-routines is suitable for representing not only concurrent but also distributed aspects
of computation.

Co-intuitionistic logic is naturally formalized in a single-premise multiple-conclusions sequent calculus
(or natural deduction) system and our calculus assigns a term to each formula in the succedent of a sequent:
this fact suggests an interpretation of our term assignment as a distributed system, where each formula
inhabits a distinct location. Moreover the terms for subtraction and the behaviour of their redexes present
intriguing “geometric” features. A subtraction redex is a p-terms of the form postpone the threads
y 7→ u in virtue of make-coroutine(t, x)) and are not assigned to a logical type: in our calculus
p-terms are control expressions corresponding to the pointers marking the discharge of assumptions in
ordinary Prawitz-style natural deduction. Thus the reduction of a redex for subtraction appears to involve

“broadcasting remote substitutions” to terms in different locations.
Clearly these suggestions do not constitute conclusive evidence for claiming that the linear calculus of

coroutines is a distributed system. But it may be useful to compare the form and behaviour of various
term assignments considered above, in the interpretation where each formula in a multiple-conclusion
sequent inhabits a distinct location.

• The λµ-calculus is typed in a sequent style natural deduction system with sequents of the form

x1 : A1, . . . , xn : An ` t : C | α1 : B1, . . . , αm : Bm

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1031

where all computation takes place within the term t: clearly here we have a calculus based on
“central control”.

• The π-calculus translations of linear derivations can be represented in sequents of the form

` Va1...an | a1 : A1, . . . , an : An

where computation within Va1...an is concurrent and a1, . . . , an are the accessible ports to it.
Here the hiding operator (νx) acts globally on the space of computation whose “ports” may be
distributed.

• The co-intuitionistic linear calculus of coroutines has sequents of the form

x : A ` π | t1 : C1, . . . , tn : Cn

where the terms t1, . . . , tn are indeed “distributed” to the locations of A1, . . . , An and the “control
terms” in π are in a separate area. Reduction of par-redexes is local; reduction of subtraction-
redexes is within “control terms” but has global effects. An explicit hiding operator is avoided
through the use of functions x(t) representing dependencies.

The distributed features exhibited by the co-intuitionistic linear calculus of co-routines do not guarantee
that it may be applied to issues (such as security) that are relevant to the study of distributed computing
as a logic of distributed processes. On the other hand, the π-calculus was not designed specifically for
distributed computation. Indeed since the 1990s distributed versions of the π-calculus have been provided
(see, e.g., [2, 32, 19, 18] and the book [17]) as a theoretical framework for the study of real distributed
systems in presence of nodes and link failure, or for the solution of concrete problems, such as safety
and control of mobile code. Distributed π-calculi extend the π-calculus with symbols and actions for
locations and sometimes differ in the treatment of basic operators: in some early papers, e.g., in [2, 32],
communication is global, while for others [19, 18] only processes in the same location can interact.

We extended our research in the direction of a paradigmatic example of distributed computing, namely,
λP systems of membrane computing. The tight connections are known between λP systems and Petri
Nets and also between Petri Nets and intuitionistic (and thus co-intuitionistic) multiplicative linear logic:
thus our work here is a first investigation into the details of the resulting correlation, to be continued and
refined in the future.

Also for future work is reconsidering π-calculus translations of the whole system of linear logic
linear with suitable notions of bi-simulation and its applications: here we may exploit recent work by
E. Beffara [3] and the new direction of research on session types in the framework of a system of functional
programming in L. Caires and F. Pfenning ([12]) and in P. Wadler ([34]).

References
[1] Abramsky, S.: Proofs as Processes, Theor. Comput. Sci., 135(1), 1994, 5–9.

[2] Amadio, R. M.: An Asynchronous Model of Locality, Failure and Process Mobility, COORDINATION
(D. Garlan, D. L. Métayer, Eds.), 1282, Springer, 1997, ISBN 3-540-63383-9.

[3] Beffara, E.: A Concurrent Model for Linear Logic., Electr. Notes Theor. Comput. Sci., 155, 2006, 147–168.

1032 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

[4] Bellin, G.: Chu’s Construction: A Proof-theoretic Approach, Logic for Concurrency and Synchronisation
(R. J. de Queiroz, Ed.), number 18 in Kluwer Trends in Logic, 2003.

[5] Bellin, G.: A Term Assignment for Dual Intuitionistic Logic, LICS’05-IMLA’05 Workshop, Chicago, IL, June
2005.

[6] Bellin, G.: Assertions, hypotheses, conjectures and expectations. Rough set semantics and proof-theory,
Advances in Natural Deduction - Proceedings of the Natural Deduction conference in Rio de Janeiro, 2011.

[7] Bellin, G., Biasi, C.: Towards a logic for pragmatics. Assertions and conjectures, Journal of Logic and
Computation, 14(4), 2004, 473–506.

[8] Bellin, G., Biasi, C.: Towards a Logic for Pragmatics. Assertions and Conjectures., J. Log. Comput., 14(4),
2004, 473–506.

[9] Bellin, G., Hyland, M., Robinson, E., Urban, C.: Categorical proof theory of classical propositional calculus,
Theor. Comput. Sci., 364(2), 2006, 146–165.

[10] Bellin, G., Scott, P. J.: On the π-Calculus and Linear Logic, Theor. Comput. Sci., 135(1), 1994, 11–65.

[11] Bierman, G.: On Intuitionistic Linear Logic, Technical Report 346, University of Cambridge Computer
Laboratory, 1994, PhD Dissertation.

[12] Caires, L., Pfenning, F.: Session Types as Intuitionistic Linear Propositions, CONCUR (P. Gastin,
F. Laroussinie, Eds.), 6269, Springer, 2010, ISBN 978-3-642-15374-7.

[13] Cockett, R., Seely, R.: Linear Distributive Categories, Journal of Pure and Applied Algebra, (114), 1997,
133–173.

[14] Colson, L., Jonoska, N., Margenstern, M.: λ-P Systems and Typed λ-Calculus, Workshop on Membrane
Computing (G. Mauri, G. Păun, M. J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.), 3365, Springer, 2004,
ISBN 3-540-25080-8.

[15] Crolard, T.: A Formulae-as-Types Interpretation of Subtractive Logic, J. Log. Comput., 14(4), 2004, 529–570.

[16] Girard, J.-Y.: Linear Logic, Theor. Comput. Sci., 50, 1987, 1–102.

[17] Hennessy, M.: A distributed π-calculus, Cambridge University Press, 2007.

[18] Hennessy, M., Merro, M., Rathke, J.: Towards a behavioural theory of access and mobility control in distributed
systems, Theor. Comput. Sci., 322(3), 2004, 615–669.

[19] Hennessy, M., Riely, J.: Resource Access Control in Systems of Mobile Agents, Inf. Comput., 173(1), 2002,
82–120.

[20] Hyland, M., de Paiva, V.: Full Intuitionistic Linear Logic, Ann. Pure Appl. Logic, 64(3), 1993, 273–291.

[21] Jonoska, N., Margenstern, M.: Tree Operations in P Systems and λ-Calculus, Fundam. Inform., 59(1), 2004,
67–90.

[22] Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane Systems., Workshop on
Membrane Computing (R. Freund, G. Paun, G. Rozenberg, A. Salomaa, Eds.), 3850, Springer, 2005, ISBN
3-540-30948-9.

[23] Krivine, J.-L.: Lambda-calculus, types and models., Ellis Horwood series in computers and their applications,
Masson, 1993, ISBN 978-0-13-062407-9.

[24] Lamarche, F.: Proof Nets for Intuitionistic Linear Logic: Essential Nets, 2008.

[25] Laneve, C., Victor, B.: Solos In Concert, Mathematical Structures in Computer Science, 13(5), 2003, 657–683.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1033

[26] Martí-Oliet, N., Meseguer, J.: From Petri Nets to Linear Logic, Category Theory and Computer Science,
Manchester, UK, number 389, Springer-Verlag, 1989.

[27] Merro, M.: On the observational theory of the CPS-calculus, Acta Inf., 47(2), 2010, 111–132.

[28] Milner, R.: The polyadic π-calculus: A tutorial, Logic and Algebra of Specification (Bauer, Brauer, Schwicht-
enberg, Eds.), 94, NATO ASI, Springer, 1993.

[29] Păun, G.: Computing with Membranes, J. Comput. Syst. Sci., 61(1), 2000, 108–143.

[30] Păun, G.: Introduction to Membrane Computing, in: Applications of Membrane Computing (G. Ciobanu, M. J.
Pérez-Jiménez, G. Păun, Eds.), Natural Computing Series, Springer, 2006, ISBN 978-3-540-25017-3, page
1–42, Also available at http://psystems.disco.unimib.it/download/MembIntro2004.pdf.

[31] Sangiorgi, D., Walker, D.: The π-Calculus - a theory of mobile processes, Cambridge University Press, 2001,
ISBN 978-0-521-78177-0.

[32] Sewell, P.: Global/Local Subtyping and Capability Inference for a Distributed π-calculus, ICALP (K. G.
Larsen, S. Skyum, G. Winskel, Eds.), 1443, Springer, 1998, ISBN 3-540-64781-3.

[33] Thielecke, H.: Categorical Structure of Continuation Passing Style, Ph.D. Thesis, University of Edinburgh,
1997, Also available as technical report ECS-LFCS-97-376.

[34] Wadler, P.: Propositions as Sessions, Draft paper, available at http://homepages.inf.ed.ac.uk/wadler/
topics/recent.html.

7. APPENDIX. Examples of computation.

In this appendix we come back to the example in Section 3.2 and in Section 7.1 we give a derivation in
Natural Deduction co-MNJr, labelled with terms of the linear calculus of coroutines, which is the dual
of the following Prawitz style MNJ−◦ Natural Deduction derivation of

g : T2, f : T1, a : A, b : B, d : D ` (λdλdλa.g(fab)d)bda : E

where T1 = A −◦ (B −◦ C) and T2 = C −◦ (D −◦ E).

g : T2

f : T1

(1)
a : A

fa : B −◦ C
(2)

b : B

fab : C

g(fab) : D −◦ E
(3)
d : D

g(fab)d : E
(1)

λa.(g(fab)d) : A −◦ E
(3)

λdλa.(g(fab)d) : D −◦ (A −◦ E)
(2)

λb.λdλa.(g(fab)d) : B −◦ (D −◦ (A −◦ E)) b : B(
λb.λdλa.(g(fab)d)

)
b : D −◦ (A −◦ E) d : D(

λb.λdλa.(g(fab)d)
)
bd : A −◦ E a : A(

λb.λdλa.(g(fab)d)
)
bda : E

Next in Section 7.2 we translate the co-MNJr derivation in our membrane computing model and
represent one step of the normalization process.

http://psystems.disco.unimib.it/download/MembIntro2004.pdf
http://homepages.inf.ed.ac.uk/wadler/topics/recent.html
http://homepages.inf.ed.ac.uk/wadler/topics/recent.html

1034 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

7.1. Example in the dual linear calculus

For convenience, we still draw trees with the root at the bottom, keeping in mind that here derivations are
built from bottom up. We shall use the notation (t→ a) for mkc(t, a) and e7→u // t for postp(e 7→ u, t).

S0 : r,
Red0

w7→a′
oo v,u7→b′oo w,v7→d′

oo a, d, b, ((c→ b′)→ a′),

((u→ d′)→ c)

•
((c→b′)→a′)IIII

ddIIII

a′

::uuuuuuuuuu •
(c→b′)KKKK

eeKKKK

b′

::uuuuuuuuu

((u→d′)→c)KKKK

eeKKKK
c

99ssssssssss •
(u→d′)KKKK

eeKKKK

d′

::uuuuuuuuu

u

OO

v

OO

w

OO

r=(((z→b)→d)→a)KKKK

eeKKKK
a

::vvvvvvvvv

((z→b)→d)HHH

ddHHH

d

;;vvvvvvvv

(z→b)HHH

ccHHH

b

;;wwwwwwww

z

OO

reduces to

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1035

S1 : w,
Red1

v7→d′
oo v,u7→b′oo a′, d, b, ((c→ b′)→ a′),

((u→ d′)→ c)

((c→b′)→a′)KKKK

eeKKKK

a′

::uuuuuuuuuu •
(c→b′)IIII

ddIIII

b′

;;wwwwwwww

((u→d′)→c)KKKK

eeKKKK
c

::uuuuuuuuuu •
(u→d′)IIII

ddIIII

d′

;;wwwwwwww

u

OO

v

OO

w=((z→b)→d)III

ddIII

d

::uuuuuuuuu

(z→b)III

ddIII

b

;;wwwwwwww

z

OO

reduces to

1036 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

S2 : v,
Red2

u7→b′oo a′, d′, b, ((c→ b′)→ a′),

((u→ d′)→ c)

((c→b′)→a′)IIII

ddIIII

a′

;;wwwwwwwww •
(c→b′)GGG

ccGGG

b′

;;vvvvvvvv

((u→d′)→c)JJJJ

eeJJJJ
c

::uuuuuuuuu
(u→d′)

ddIIIIIIIII d′

::uuuuuuuuu

u

OO

v=(z→b)III

ddIII

b

::vvvvvvvvv

z

OO

reduces to

S3 : a′, b′, d′, ((c→ b′)→ a′) ((u→ d′)→ c)

((c→b′)→a′)KKKK

eeKKKK

a′

::uuuuuuuuu

(c→b′)III

ddIII

b′

::uuuuuuuuu

((z→d′)→c)KKKK

eeKKKK
c

::uuuuuuuuu

(z→d′)III

ddIII

d′

::uuuuuuuuu

z

OO

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1037

We show here the steps of the computation:

∣∣∣

S0 :

r,
Red0
w7→a′oo v,u7→b′oo w,v7→d′oo a, d, b, ((c→ b′)→ a′), ((u→ d′)→ c)

where r = (((z → b)→ d)→ a), and b = b(z), d = d((z → b)),

a = a(((z → b)→ d)), w = w(r), v = v(w), u = u(v), d′ = d′(u),

c = c((u→ d′)), b′ = b′(c), a′ = a(c→ b′).

ReducingRed0:
S1 = S0 −Red0 {w := ((z → b)→ d)} {a := a′{w := ((z → b)→ d)}}

S1 : w,
Red1
v 7→d′oo v,u7→b′oo a′, d, b, ((c→ b′)→ a′), ((u→ d)→ c)

where w = ((z → b)→ d) and b = b(z), d = d((z → b)), v = v(w),

u = u(v), d′ = d′(u), c = c((u→ d′)), b′ = b′(c), a′ = a((c→ b′)).

ReducingRed1: S2 = S1 −Red1 {v := (z → b)} {d := d′{v := (z → b)}}.

S2 : v
Red2
u7→b′oo a′, d′, b, ((c→ b′)→ a′) ((u→ d)→ c)

where v = (z → b) and b = b(z), u = u(v), d′ = d′(u),

c = c(u→ d′), b′ = b′(c), a′ = a((c→ b′)).

ReducingRed2: S3 = S2 −Red2 {u := z} {b := b′{u := z}}.

S3 : a′, b′, d′, ((c→ b′)→ a′), ((z → d)→ c)

where d′ = d′(z), c = c((z → d′)), b′ = b′(c), a′ = a((c→ b′)).

∣∣∣

1038 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

7.2. Example in a λP system

We will show here, in tree form, the first β-reduction of the derivation we implemented in the dual linear
calculus in Subsection 7.1.

We start at first with the computational context postp(w 7→ a′, r), postp(u 7→ b′, v), postp(v 7→
d′, w), mkc(mkc(c, b'), a′), mkc(mkc(u, d'), c), with all the additional subterms defined as in Subsec-
tion 7.1. In Fig. 2 we build the initial tree (note that, for brevity, some subterms have been omitted and
that many substitutions in the parts of the tree that are not affected by the first reduction have not been
performed). In Fig. 3 we show the state of the tree after the first postp term has been reduced.

G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems 1039

S

qq dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

dd
dd

d

tt ii
ii

ii
ii

ii
ii

ii
ii

ii
ii

ii

��
,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

--[[[

--\\

p
o
s
t
p

{{ww
ww

ww
ww

w

��

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
p
o
s
t
p

||yy
yy

yy
yy

y

��
""DDDDDDDDD

p
o
s
t
p

|| zz
zz

zz
zz

z

��
##GGGGGGGGG

m
k
c

|| zz
zz

zz
zz

��

m
k
c

|| zz
zz

zz
zz

��

su
b
te

rm
s

w ��

a

##GGGGGGGGG
u

b′
v

v
d
′

w ��

m
k
c

~~}}
}}

}}
}}

��

a ��

m
k
c

~~||
||

||
||

��

c

m
k
c

##GGGGGGGGG

��

m
k
c

 BBBBBBBB

��

c
b′

m
k
c ��

 BBBBBBBB
u

d
′

m
k
c

##GGGGGGGGG

��

a
c

b′
m
k
c

""DDDDDDDDD

��

m
k
c

 AAAAAAAA

��

c
b′

m
k
c

##GGGGGGGGGG

��

d
m
k
c

""EEEEEEEEE

��

a
m
k
c

 BBBBBBBB

��

a

z
b

m
k
c

""EEEEEEEEE

��

d
m
k
c

 BBBBBBBB

��

d

z
b

z
b

Fi
gu

re
2.

Tr
ee

re
pr

es
en

ta
tio

n
of

th
e

in
iti

al
st

at
e

of
th

e
λ

P
sy

st
em

.

1040 G. Bellin, A. Menti / Intuitionistic duality, π calculus and λP systems

S

tti i

��
,, X

X X
X X

X X
X X

X X
X X

X X
X X

X X
X X

X X
X X

X X
X X

X X
X X

-- [
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[
[[

[[

-- \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\ \

\ \
\

p
o
s
t
p

||z z z z z z z z z

��
"" D

D D
D D

D D
D D

p
o
s
t
p

||z z z z z z z z z

��
G

G G
G G

G G
G G

m
k
c

||z z z z z z z z

��

m
k
c

||z z z z z z z z

��

su
b
term

s

u
b ′

v
v

d
′

w��

m
k
c

~~ } } } } } } } }

��

a��

m
k
c

~~ | | | | | | | |

��

c

c
b ′

m
k
c��

 B
B B

B B
B B

B
u

d
′

m
k
c

 A
A A

A A
A A

A

��

c
b ′

m
k
c

 B
B B

B B
B B

B

��

d

z
b

Figure
3.

Tree
representation

ofthe
state

ofthe
λP

system
afterthe

firstreduction
has

been
perform

ed.N
otice

thatthe
p
o
s
t
p

term
has

been
rem

oved
and

thatthe
substitution

in
the

w
term

has
been

done.A
lthough

itis
notshow

n
here

forspace
reasons,the

a
term

has
been

replaced
as

w
ell,as

described
in

Subsection
7.1.

	Introduction
	Plan of the paper

	PART I: Abramsky and Milner's pi-calculus translations of linear logic and Chu's construction.
	Basic Synchronous pi-calculus
	Abramsky's pi-calculus processes for MLL(x)p revisited.
	The Cut Algebra for MLL-xp
	Input-Output orientations on linear types.
	Proof-nets and orientations from correctness conditions.
	Logical Input-Output orientations.
	A functorial translation and Chu's construction.
	An anomaly in Milner's encoding of the typed lambda-calculus?

	PART II. Multiplicative co-Intuitionistic linear Logic
	Syntax and meaning of co-IMLL.
	Informal explanation.
	Sequent calculus for co-IMLL

	Example.
	The example in co-Intuitionistic Multiplicative Linear Logic

	Dual calculus and term assignment for co-IMLL
	From Crolard's classical coroutines to co-intuitionistic ones
	A dual linear calculus for co-IMLL\P
	Term assignment to MLJ\P
	Dualities
	Labelled Prawitz' trees

	PART III. Membrane computing: lambda-P systems as executors
	Definitions
	Translating the dual linear calculus
	Going backwards: representing lambda-P systems

	Concluding remarks and future work.
	APPENDIX. Examples of computation.
	Example in the dual linear calculus
	Example in a lambda-P system

