Semantics-based Code Obfuscation by
Abstract Interpretation

MILA DALLA PREDA ROBERTOGIACOBAZZI
Dipartimento di Informatica, Universita di Verona
Strada le Grazie 15, 37134 Verona, Italy
nm | a.dall apreda@univr.it roberto.giacobazzi Qunivr.it

Abstract

In recent years code obfuscation has attracted reseasgieshias a promising
technique for protecting secret properties of programe Hdsic idea of code ob-
fuscation is to transform programs in order to hide theisgem information while
preserving their functionality. One of the major drawbaocksode obfuscation is
the lack of a rigorous theoretical framework that makesfftatilt to formally ana-
lyze and certify the effectiveness of obfuscating techegge face this problem
by providing a formal framework for code obfuscation basedabstract inter-
pretation and program semantics. In particular, we showwttiat is hidden and
what is preserved by an obfuscating transformation can peesged as abstract
interpretations of program semantics. Being able to spetifat is masked and
what is preserved by an obfuscation allows us to understargbtency, hamely
the amount of obscurity that the transformation adds tonamog. In the proposed
framework, obfuscation and attackers are modeled as ajppatigns of program
semantics and the lattice of abstract interpretationsigeswa formal tool for com-
paring obfuscations with respect to their potency. In palér, we prove that our
framework provides an adequate setting to measure not belypdotency of an
obfuscation but also its resilience, i.e., the difficultyusfdoing the obfuscation.
We consider code obfuscation by opaque predicate insatidiwe show how the
degree of abstraction needed to disclose different oparpaicates allows us to
compare their potency and resilience.

Keywords: Code Obfuscation, Abstract Interpretation, Program 3gices Static
Program Analysis.

1 Introduction

A major issue in computer security is the protection of pietary software againsha-
licious hostattacks that usually aim at stealing, modifying or tampgviith the code in
order to obtain (economic) advantages over it. A key chghen defending code that is
running on an untrusted host is that there is no limit on tbbrigues that the host can
use to extract sensitive data from the code and to violaetéectual property and in-
tegrity. Malicious reverse-engineering, software pirang software tampering are the
most common malicious host attacks against proprietargraras [3]. Given a soft-
ware application, the aim of reverse-engineering is toyamsit in order to understand
its inner working. The information collected during the eese-engineering process
can be used either to improve the application, e.g., platfgutimization and bug-fixes,
or for unlawful purposes (so-calledalicious reverse-engineerijg.g., identification

of vulnerabilities in binaries and unauthorized modifioas such as bypassing pass-
word protection. Let us observe that both software tampgeaird software piracy need
a preliminary reverse-engineering phase in order to utatedghe inner working of the
program that they want to tamper with or to steal. Thus, prérg malicious reverse-
engineering is a crucial issue when defending programsagaialicious host attacks.
Code obfuscatiorepresents one of the most promising techniques to prevaitious
reverse-engineering of software. The idea is to transfaimgnams in order to make
them more difficult to understand and analyze while presertheir functionality.

The problem. According to a standard definition, an obfuscator gentprogram
transformation that preserves the observational behawifgorograms, i.e., the input-
output behaviour [5, 7, 8]. In this context, a transformati® potent when the trans-
formed program is more complex, i.e., more difficult to reesengineer, than the
original one. Consequently, the notion of code obfuscadmased on a fixed met-
ric for program complexity, which is usually defined in terwifssyntactic program
features, such as code length, number of nesting levels amtbers of branching in-
structions [7]. To the best of our knowledge, there are noglerity measures based on
program semantics, which we suggest may provide a deepghiris the true potency
of code obfuscation.

Many researchers recognise that one of the major drawb#&cksle obfuscation is
the lack of a rigorous theoretical background. In fact, theemce of a theoretical basis
makes it difficult to formally analyze and certify the effieeiness of these techniques
in contrasting malicious host attacks. In particular, ithard to compare different
obfuscating transformations with respect to their resdeto attacks and this makes
it difficult to understand which technique is better to usaigiven scenario. Little
theoretical work on code obfuscation exists, and the desfignformal framework for
modeling, studying and relating obfuscating transfororaiand attacks is still in an
early stage.

The idea. In order to formalize and quantify the amount of “obscurigdded by
an obfuscating transformation, namely how much more coxiple transformed pro-
gram is to reverse-engineer with respect to the original ageneed a formal model
for obfuscation as well as for attack. Reverse-enginedyipigally consists of static
and dynamic program analyses which can both be modeled trachmms of program
semantics. In fact, static program analysis can be spedafean abstract interpre-
tation, i.e., as an approximation, of program semantic} [idile dynamic analysis
can be seen as a possibly undecidable approximation of grogemantics. Recall
that program semantics formalizes program behaviour aadtite precision of this
description depends on the level of abstraction of the dansd semantics, namely on
the level of abstraction of the domain over which the sencamgicomputed. In particu-
lar, Cousot [13] defines a hierarchy of semantics, where sgosat different levels of
abstractions are specified as successive approximati@agieén concrete semantics.
In the following, concrete program semantics refers togigamantics, which observes
step by step the history of each possible computation, vellifgract semantics refers
to any approximation of trace semantics. Note that the séosamodeling the input-
output (observational) behaviour of a program is an eleraktitis hierarchy because
it is an abstraction of trace semantics.

Ouridea s to provide a formal basis for code obfuscationdnsaering the effects
that obfuscating transformations have on trace semantiddg modeling attacks as

abstractions of trace semantics. In order to reason abesetmantic aspects of obfus-
cation we refer to the formal framework introduced by Couwsat Cousot [16], where
the relation between syntactic and semantic transformsii®formalized in terms of
abstract interpretation by considering programs as atigire of their semantics.

Main contribution. We provide a theoretical framework based on program seman-
tics and abstract interpretation, in which we formalizedgtand relate different ob-
fuscating transformations with respect to their potentis worth remarking that our
formal framework is language-independent, meaning ttetritdeal with the trace se-
mantics of any programming language that can be specifietrassition system. Our
examples will be instantiated in a simple imperative largua

As noticed above, attacks — static and dynamic analyzers beanodeled as ab-
stractions of trace semantics, where the abstract domainroputation modeling an
attack precisely captures the amount of information thatattack is able to deduce
while observing a program. Thus, a coarse abstraction rma@aheattack that observes
simple semantic properties, while finer abstractions,dpeloser to program trace se-
mantics, model attacks that are interested in the detademiputation. In this setting,
an attackA is defeated by a program transformatigni.e., t is potent with respect
to A, when the semantic property modelivigis not preserved by. Following this
observation we characterize the obfuscating behaviourtdresformatiort in terms
of the most concrete properdy it preserves on program trace semantics. This allows
us to provide a formalization of code obfuscation that isapastric on the most con-
crete semantic property it preserves. In particular, aaysiormatiort can be seen as
a dp-obfuscator that is potent with respect to any attécfiner thand,, and that pre-
serves all the aspects of program behaviour that are exgureys; . According to this
formalization, any program transformation can be seen axda obfuscation where
the most concrete preserved property precisely expredsasoan still be known af-
ter obfuscation, namely what it is possible to deduce of tigiral program from the
analysis of the obfuscated one. In order to characterizelfiescating behaviour of
any given program transformation, we provide a systemagthodology for deriving
the most concrete property preserved by a given transfawmat

Since the semantic properties are modeled, as usual, byetishs of trace seman-
tics, we can compare different obfuscating transformatieith respect to the degree
of abstraction of the most concrete property they preseBreen aj-obfuscator, the
more abstradi is, the bigger is the set of attacks that it is able to defehickvmeans
that the transformation potency is high and many detailfhefdriginal program be-
haviour have been lost during the obfuscation phase. Onttier band, whem is
close to trace semantics, it means that few details of thggnai program have been
hidden by the obfuscation and that the transformation haw gbtency.

The semantics-based definition of code obfuscation, tegetith the abstract in-
terpretation-based model of attacks, turns out to be peatiy useful when consid-
ering control code obfuscation by opaque predicate irmertHere, the obfuscating
transformation confuses the original control flow of pragsaby inserting “fake” con-
ditional branches guarded lmpaque predicatespredicates whose constant value is
known by the obfuscator but which is difficult for an attaci@deduce. This confuses
any attack that is not aware of the constant value of the ted@paque predicate and
erroneously sees both branches as possible (even if onedsewecuted at run time).
Even if opaque predicate insertion does not significanfigcafprogram trace seman-
tics, since during execution the opaque predicate alwagkiates the same, it might

considerably affect the abstract semantics computed oaltsigact domain modeling
the attack. In this case, we have that an attack is able tk lmeaque predicate in-
sertion only if its abstract domain is precise enough to ateatee opaqueness of the
inserted predicates. In particular, modeling attacks asratt domains allows us to
prove that the degree of precision needed by an attack td lre@paque predicate
can be expressed as a completeness problem in abstraprétégion. This result is
particularly interesting because it provides a precism#&dization of the amount of in-
formation needed by an attack to disclose a given opaquécpted Moreover, we can
measure the resilience of an opaque predicate with respaatattacker in terms of
the amount of information thad needs in order to disclose the opaque predicate, and
this allows us to compare the resilience of different opgupeelicates with respect to
A.

1.1 Related work

Some early attempts at technical software protectiony lealed code obfuscation,
are described in [24]. In recent years, code obfuscatiorattescted the interest of
researchers as a promising defence technique againstionalieverse-engineering
of software, leading to the design of different obfuscatiramsformations (e.g., [3,
4,5, 8, 30, 33, 40]). Collberg et al. present a number of atztisg transformations
classified according to the kind of information they targgt Layout obfuscatoract
on code information that is unnecessary to its executioese&lransformations include
the removal of comments and the change of identifiers. Fomple by replacing
identifiers of methods and variables with meaningless iflerg, any information on
the functionality of a method or on the role of a variable imo¥ed.Data obfuscators
operate instead on program data structures. These trarafons may for example
alter how data are grouped together, making it more diffi@ula reverse-engineer to
restore the program’s data structure. These transformsatian split, fold or merge
arrays in order to complicate the access to arrays, for ebkabyptransforming a two-
dimensional array in a one-dimensional array and vice velBsta obfuscators may
also change how data are ordered. For example, they carereoreys using a function
f () to determine the position of thieth element of the array, while theth element
is usually stored in theé-th position of the array.Control code obfuscatorattempt
to confuse program control flow. These transformationsnoféday on the existence
of opaque predicates, whose insertion allows to break tlggnat control flow of a
program.

Recall that the process of reverse-engineering an exdeyiedgram typically be-
gins with a disassembly phase, which translates machine tooalssembly code, then
is followed by a number of decompilation steps that try t@kee high-level code from
assembly code. Thus, in order to complicate reverse-eagirgg we can either con-
fuse the disassembly or the decompilation phase. Decotiopilaainly involves static
analysis of assembly code, including data-flow, controifmd type analysis. There-
fore, a program transformation that obstructs such statityaes acts as an obfuscating
technique. Most of the existing obfuscating transformatjdncluding the ones pre-
sented above, focus on the decompilation phase (e.g., [8, 40, 33]), while less
attention is paid to obstructing disassembly. Howevermdyg, some work has been
done in the direction of obfuscating executable code in mtdghwart well-known
static disassembly techniques, such as linear sweep andsrextraversal [30]. Ob-
structing correct disassembly can be achieved also by ahgingpeatedly the program
code while it executes [31].

Wang et al. observe that any intelligent tampering attacjires knowledge of
the program semantics, usually obtained by static anal$6is Thus, they provide
a code obfuscation technique based on variable aliasirtgdtiaatically reduces the
precision of static analysis, because aliasing analysisnsputationally hard. How-
ever, this approach is restricted to the case of intra-phoed analyses. A software
obfuscation technique based on obstructing inter-praggdunalysis and on the dif-
ficulty of alias analysis is proposed in [33], together witlhaoretical proof of its
effectiveness. Static analysis is conservative, meatiagthe properties deduced by
static deobfuscating techniques are weaker than the oaem#y actually be true (this
corresponds to an over-approximation). This guaranteesdeess, although the in-
ferred properties may be so weak to be useless. On the otlegrastdlynamic analysis
precisely observes only a subset of all possible execuadimspof a program (this cor-
responds to an under-approximation). Recent work on camgpstatic and dynamic
program analysis seems to provide a set of heuristics fotadimig some obfuscating
techniques [39].

A well known negative theoretical result on code obfuscat®given by Barak
et al. [2], who show that code obfuscation is impossible. sTheisult seems to pre-
vent code obfuscation entirely. However, this result isest@and proved in the context
of a rather specific model of code obfuscation. Barak et dldgfine an obfuscator
as a program transformér satisfying the following conditions: (1p(P) is func-
tionally equivalent taP, (2) the slowdown of9(P) with respect toP is polynomial
both in time and space, and (3) anything that one can comparte ®(P) can also
be computed from the input-output behaviouraf Hence, this formalizes an “ideal”
obfuscator, where the original and obfuscated program lukrgical behaviour (1,2)
and where the obfuscated program is unintelligible to areeshry (3). In practical
contexts, these constraints can be relaxed. In partidol§s, 7, 8, 33, 40] the authors
consider a number of obfuscating transformations that niaebfuscated program
significantly slower or larger than the unobfuscated prograhese proposals even
allow the obfuscated program to have different side effétta the original one, or not
to terminate when the original program terminates with aonrezondition. The only
requirementthey make is that tbbservable behaviour the behaviour observed by a
generic user — of the two programs should be identical. Bssichany researchers are
interested in transformations that raise the difficultyefarse-engineering a program,
even if they do not make it impossible as required by point{3je definition of Barak
et al. In fact, protection can be guaranteed by a sufficiafifficult transformation that
requires so many resources to be undone, as to make it unagmaidor an adversary
to analyze the transformed program. Moreover, the “idebfuscator of Barak et al.
has to be able to proteeveryprogram. In fact the impossibility of code obfuscation is
proved by providing a contrived class of functions that aveabfuscatable. It would
be interesting to characterize the portion of programs afical interest to which this
negative result can be applied. By relaxing the constrdiBmak’s definition, we are
able to study the practical possibilities of obfuscatirgngicant programs.

2 Preliminaries

2.1 Basic notions

Let S andT be two sets. Theg(S) denotes the powerset 6f S . T denotes the
set-difference betweefi and7’, S C T denotes strict inclusion anfl C T denotes

inclusion.

(P, <) denotes a pose® with ordering relation<, while (P, <,V, A, T, 1) de-
notes a complete latticB, with ordering<, least upper boundub) Vv, greatest lower
bound glb) A, greatest element (top), and least element (bottom). Often, <p
will be used to denote the underlying ordering of a pd3eandv p, Ap, Tp and L p
denote the basic operations and elements of a completelatti Given two ordered
structuresC' and A the notationC' = A denotes thal’ and A are isomorphic. The
downward closure of C Pis | S= {z € P| 3yeSz<y }, andforz € P,
| z is a short-land foi {z}, and the upward closureis dually defined.

We use the symbdL to denote pointwise ordering between functionsXifs any
set,Pisaposetand,g : X — Pthenf C gifforal z € X, f(z) < g(z).

If f:S —Tandg : T — Qthengo f : S — @ denotes the composition of
fandg, i.e,go f = dx.g(f(x)). If f : C — Cis aunary function then the
inverse image is defined gs*(y) = { #| f(z) =y }. Afunctionf: P — Q on
posets is (Scott)-continuous wh¢mreservesdub’s of countable chains i, while,
dually, it is co-continuous whefipreserveglb’s of countable chains if?. A mapping

f : C — D on complete lattices is additive(resp. co-additive) whenanyY C
C, f(veY) =Vpf(Y)(resp.f(AcY) = Apf(Y)). The least and greatest fixpoint of
an operatoyf on a posetP, <p), when they exist, are respectively denotedfpy” f
andgfp=" f, or by lfp f andgfp f when the partial order is clear from the context. The
well-known Knaster-Tarski’'s theorem states that any ewdus operatof : C' — C
on a complete lattic€’ admits a least fixpoint and the following characterizatiotuks:
Ifp=cf = Vien fi(Lc), where for anyi € N andx € C, thei-th power of f in z

is inductively defined as followsf?(z) = x; fi*!(z) = f(f(x)). Dually, if f is
co-continuous thenfp=c f = A,y f{(Tc).

2.2 Abstract interpretation

According to a widely recognized definitiofAbstract interpretation is a general the-
ory for approximating the semantics of discrete dynamitesys”’[12]. The key idea of
abstract interpretation is that the behaviour of a progradiferent levels of abstrac-
tion is an approximation of its (concrete) semantics. Theoete program semantics is
computed on the so-callemncrete domain.e., the poset of mathematical objects on
which the program runs, here denoted(by <) where the ordering relation encodes
relative precisione; <¢ ¢ means that; is a more precise (concrete) description than
co. For instance, the concrete domain for a program with integaables is simply
given by the powerset of integer numbers ordered by subskision ((x(Z), C). Ap-
proximation is encoded by aabstract domain A, <), which is a poset of abstract
values that represent some approximated properties ofe@nacbjects. Also in the
abstract domain, the ordering relation models relativeipien: a; < as means that
a1 is a better approximation (i.e., more precise) than For example, we may be
interested in the sign of an integer variable, so that a ®mapbktract domain for this
property may b&ign = {T,—,0,+, L} whereT gives no sign information, while the
meaning of—(resp.0)(resp.+) is that the value of a defined variable is negative(resp.
null)(resp. positive), and. represent an uninitialized variable or an error (e.g. Sitri

by zero). Thus, we have thdat < — 0,4+ < T, so that, in particular, the abstract
values—, 0 and+ are incomparable.

Galois connections. In standard abstract interpretation, concrete and albsdiac
mains are related through a Galois connection (GC), i.eadfumction [14, 15]. With
the two equivalent notation&’, «, v, A) and C' i A we denote a GC where
the concrete domaif is related to the abstract domait by the abstraction map
«a : C — A and the concretization map: A — C that give rise to an adjunction:
Va € A,c € C: a(c) <4 a & ¢ <¢ v(a). Thus,a(c) <4 a and, equivalently,
¢ <¢ v(a) means that is a sound approximation id of ¢. GCs ensure that(c) ac-
tually provides the best possible approximation in theralostiomainA of the concrete
valuec € C. In the abstract domaiftign, for example we have that({ -1, —=5}) = —
while a({—-1,+1}) = T.

Recall that a tupléC, a, v, A) is a GC iff « is additive iff v is co-additive. This
means that whenever we have an additive(resp. co-additinejion f between two
domains we can always build a GC by considering the right(rkst) adjoint map
induced byf. In fact, every abstraction map induces a concretizatiop aral vice
versa, formallyy(y) = \/ { = ’ a(z) <y }anda(z) = A { y’ z<~(y) }.

When a GC is such that o v = A\z.z, we have &alois insertion(Gl) denoted
C _*L,,\ A. Any GC may be lifted to a Gl by identifying, in an equivaleratass, those
valués of the abstract domain with the same concretization.

Of course, abstract domains can be compared with respdutitorélative degree
of precision: if A; and A, are both abstract domains of a common concrete domain
C, Ay is more precise thars, denoted byd; C As, when for anyas € A, there
existsa; € A; such thaty; (a1) = v2(a2), i.e., whemys(As) C ~v1(A;1). For example,
the well-known abstract domain of integer intervals is olngly more precise than the
sign abstract domaifiign.

Upper closure operators. Abstract interpretation can be equivalently formalized in
terms ofupper closure operatorfistead of Galois connections [15]. The two ap-
proaches are equivalent, modulo isomorphic representatibthe domain object. An
upper closure operator, or closure, on pdsét<.) is an operatop : C' — C thatis
monotone, idempotent and extensive (ive:, € C : = <o (z)). Let us recall that
each closurey is uniquely determined by the set of its fixpoints, which ssiihage
»(C). Moreover, a subseX C C'is a set of fixpoints of a closure ifX is aMoore
family of C, i.e, X = M(X) = { AS| SC X }, wherend = T € M(X). For
anyX C C, M(X) is called theMoore closureof X in C, i.e.,M(X) is the least (with
respect to subset inclusion) subsetoivhich containsX and which is a Moore family
of C. Often, we will identify closures with their sets of fixpantIf (C, «a,~, A) is

a GC theny £ ~ o « is the closure associated with, such thatp(C) is a complete
lattice isomorphic ta4, i.e., o(C) = A. Given a GC(C, a,~, A), the closurey o «
associated to the abstract domaircan be thought of as the “logical meaning” 4f

in C, since this is shared by any other abstract representatiothé objects ofA.
Thus, the closure operator approach is convenient wheomeggabout properties of
abstract domains independently from the representatitimeafobjects.

Lattice of abstract interpretation. The ordered setuco(C), C) of all upper closure
operators ot”, plays the role of the lattice of abstract interpretatioh€'¢14, 15]. Let

i (C) = A,;, the pointwise ordering onco(C') corresponds precisely to the standard
ordering used to compare abstract domains with regard toghexision: A; is more
precise thamds, i.e., Ay T Ag, iff o1 T ¢a in uco(C) iff p2(C) C ¢1(C). Let
{Ai}ier € uco(C): Uier A; is theleast (with respect td—) common abstractionf

all the A;’s, i.e., the most concrete domainimo(C') which is abstraction of alli;’s.
Moreover ;1 A; is thereduced producof all the A;’s, i.e., the most abstract domain
in uco(C'), which is more concrete than every;’'s. Complementatiororresponds
to the inverse of reduced product [10], namely an operaat;, thiven two domains
C C D, gives as result the most abstract dom@im D, whose reduceddpfroduct with

D is exactlyC, i.e.,(C & D) D = C. Therefore we have th&t & D = U{F €
uco(C)|DNE =C}.

Soundness and completeness of abstract functionsin abstract interpretation, a
concrete semantic operation is then formalized as any ifggss-ary) function f :

C — C on the concrete domain. For example, a (unary) integer sguaperationsg

on the concrete domajn(Z) is given bysq(X) = {z? € Z | x € X}, while an integer
increment (by one) operatiosucc is given bysuce(X) = {z +1 € Z |z € X}.

A concrete semantic operation must be approximated on sbsteaat domaird by

a sound abstract operatiofi* : A — A. This means thaf* must be a correct ap-
proximation of f in A: for anyc € C anda € A, if a approximates: then f*(a)
must approximatef(c). This is therefore encoded by the condition: forale C,
a(f(c)) <a f¥(alc)). For example, a correct approximatiegt of sq on the abstract
domain Sign can be defined as followssg?(L) = L, s¢*(0) = 0, s¢*(—=) = +,
sqt(4+) = + ands¢f(T) = T; while a correct approximatiosucc? of succ on Sign

is given by: succf(L) = 1, succt(—) = T, succt(0) = +, succt(+) = + and
succ*(T) = T. Soundness can be also equivalently stated in terms of theretiva-
tion map, i.e., foralk € A, f(v(a)) <c v(f*(a)). These two equivalent soundness
conditions can be strengthened to two different (i.e., inparable) notions ofom-
pletenessWhena o f = f* o a holds, the abstract functioff is said to bebackward-
completdor f. On the other hand, whefoy = vo f# holds, f* is forward-completéor

f. Both backwardB) and forward§)-completeness encode an ideal situation where
no loss of precision arise in abstract computatidiiscompleteness considers abstrac-
tions on the output of operations whilecompleteness considers abstractions on the
input to operations. For exampleg” is B-complete forsq on Sign while it is not
F-complete becausey(y(+)) = {22 € Z |z >0} C{z € Z |z > 0} = v(s¢*(+)).
Also, observe thatucc? is neither backward nor forward complete farcc on Sign.
The two notions of completeness can be expressed in terniesoire operators, in par-
ticular, € uco(p(C)) is B-complete forf if o f = po fop, whileitisF-complete
for f whenf oy = ¢ o fo . While any abstract domaid induces the so-called
canonicabest correct approximatiofi* £ oo foy: A — Aof f: C — Cin A4,
not all abstract domains induceB{JF)-complete abstraction. It turns out that bdh
andF-completeness are abstract domain properties, namelyothigydepend on the
structure of the underlying abstract domain in the sensetlieaabstract domainl
determines whether it is possible to define a backward ordmtvwwomplete operation
f%on A [22, 23]. The following result gives the basis for the defonitof a system-
atic method for minimally refining a domain in order to makeatnplete for a given
function.

Theorem 1 [22, 23] Letf : C'— C be continuous ang € uco(C'). Then:
o pis B-complete forf iff J,c) maz(f~'(ly)) S ¢(C)

e ¢ is F-complete forf iff Vx € p(C).f(z) € (C)

This means thaB-complete domains are closed under maximal inverse imagfgeof
function f, while F-complete domains are closed under direct imagg dfet us recall
the definition of completeness refinement operaﬂbﬁ’sandﬂ%’;f.

Definition 1 [22] Let C' be a complete lattice and : C — C be a continuous
function. We defin@?, fRfJf s uco(C') — uco(C) such that:

o IRJ?? = AX € uco(C). MU, e x max(f~(y)));
o IR}I =X € uco(C).M(f(X)).

Thus, given a continuous functigh: C' — C and an abstract domaith € uco(C),
the more abstract domain which includésand isB-complete forf is gfp(AX.A 11
3%}3 (X)), while the more abstract domain which includéand isF-complete forf is

afp(AX.ANRT(X)) [22, 23].

Abstract semantics. As observed earlier, one interest of abstract interpiatie-
ory is the systematic design of approximate semantics ajraros. Let us consider
the concrete semanticq P] of programP given, as usual, in fixpoint forl§[P] =
Ifp=F[P], where the semantic transformgf P] is monotone an defined on the con-
crete domain of object§’. Given a GC(C, a, v, A), the abstract semantics*[P]
can be chosen d# =4 FA[P], whereF4 = o o F o ~ is given by the best correct
approximation off’ in A. The following well known result (see e.g., [15]) statesttha
if the abstract domaim! is B-complete for a monotone functioh: C — C, then

Ifp=* fA = a(lfp=cf).

Theorem 2 [FIXPOINT TRANSFER Given a GC(C, «, v, A), and a concrete mono-
tone functionf : C — C,ifaof = fAoa (resp.ao f <4 f* o) then
a(lfp=c f) = Ifp=* f* (resp.a(ifp=C f) <a lfp=*).

This means that if the abstract domairBiscomplete for the semantic transf&r then
the abstract semantics coincides with the abstractionettncrete semantics, i.e.,
SAIP] = a(S[P]).

2.3 Syntactic and semantic program transformations

A program transformation is a meaning-preserving mappéfmdd on programming
languages [35], whose aims are, for example, to improvedhahility, the produc-
tivity, the maintenance, the security, or the analysis afecoCommonly used pro-
gram transformations include constant propagation [2&tia evaluation [9, 28], slic-
ing [41], reverse-engineering [42], compilation [37], ecabfuscation [8] and software
watermarking [6]. In [16] Cousot & Cousot formally define ttedation between syn-
tactic and semantic program transformations in terms ofrattsinterpretation. In
particular, the authors provide a language-independetftodelogy for systematically
deriving syntactic program transformations as approxionatof the semantic ones (for
which it is easier to prove meaning preservation).

In the following, syntactic arguments are between doubleasg bracketq...]
while semantic and mathematical arguments are between tonackets...). Given
the setP of all possible programs, I8[P] € D denote the semantics of program
P € P. The semantic domai® is a pose{D, C), where the partial ordéE denotes

relative precision, i.e.Q C § means that semanti€contains less information than
semantic). The semantic ordering induces an orded on the domairP® of pro-
grams, where® < Q = (S[P] C S[Q]). Thus,(P/-, <) is a poset an@/-. denotes
the classes of syntactically equivalent programs, wiiere Q = (S[P] = S[Q]).

According to Cousot [16], we denote with [P — [P a syntactic program transfor-
mation and witht : D — D its semantic counterpart that, given the semarftd3] of
programP, returns the semanticqt[P]] of the syntactically transformed program. A
program transformatiohis correctif it is meaning preserving with respect to soote
servational abstractiomo, namely ifVP € P : ag(S[P]) = ao(S[t[P]]), where
a could be, for example, the observation of the input-outginaviour of programs.
Considering programs as abstractions of their semantas|® the following Galois
insertion:

(D,5) == P/~ Q) 1)

wherep[§] is the simplest program whose semantics upper approxiriate®. Ob-
serve that (1) is a Galois insertion thanks to the fact thagmms are considered up to
syntactic equivalence. In fact, given a progr&he P, p(S[P]) = P but potentially
p(S[P]) may be different fromP because of dead code elimination. Thp&S[P])
and P are syntactically equivalent since they differ only in thagntial presence of
dead code that does not appear in the semantics.

p — Y o w[Plep@(SIPD)
P S P S
S[P] % t(S[P]) C S[t[P]]

T

ag (S[P]) = o (t(S[P])) = ao (S[E[P]])

Figure 1: Syntactic-Semantic Program Transformations

The scheme in Figure 1 shows that each semantic transfammatuces a syntac-
tic transformation and vice versa:

t(S[P]) = S[elp(SIPDI b[P] = p(t(S[P]))

In particular, the above equation on the right expresseatastjc transformation as an
abstraction of the corresponding semantic transformatioithe following, we show
how from this formalization it is possible to derive a sys#tim methodology for the
design of syntactic transformations from the correspagpdiemantic ones. Observe
that when the semantic transformatiomelies on results of undecidable problems,
any effective algorithnt is an approximation of the ideal transformatipr ¢ o S.
This means that, in general(¢(S[P])) < t[P] and from Galois insertion (1) this is
equivalent tat(S[P]) C S[t[P]].

Any program transformation results, in general, in a losafermation on program
semantics [16]. This approximation can be formalized imtof the following Galois

connection: (D, C) % (D, C), that composed with Galois connection (1) gives

rise to the Galois connectioff’/ .., <) % (P/~,<). This means that, in general,
syntactic and semantic transformations can both be sedsstiactions. Following this

10

observation, let us elucidate the steps that lead to thersydic designs of the syntactic
transformatiort £ p o t o S starting from the semantic transformation

Step 1 p(t(S[P])) = p(t(ifp F[P])) where the semantics is expressed in fixpoint form:
S[P] = ifpF[P]

Step 2 p(t(IfpF[P])) = p(ifp F[P]) whereF' £ to F o, follows from Theorem 2 with
abstraction, i.e.,t(ifp F[P]) = ifp(t o F o ~)[P] (resp.C for approximations)

Step 3 p(IfpF'[P]) = IfpF[P] whereF = p o F o S follows from Theorem 2 with
abstraction, i.e.,p(IfpF'[P]) = Ifp(p o F o S)[P]

Step 4 t[P] = IfpF[P] (resp.< for approximations)

Given the fixpoint formalizatiodfpF [P] of the syntactic transformation, it is then pos-
sible to design an iterative algorithm on posets satisfifiegascending chain condition.

Algorithmic transformations. Let us say that a semantic transformatiorD — D

is algorithmicif it is induced by a syntactic transformationi.e.,t = S ot o p, that s,

if there exists an algorithm whose effects on program seicgate exactly the ones of
transformatiort.

Definition 2 A semantic transformation: D — D is algorithmic if there exists an
algorithm, i.e., a syntactic transformatioh; > — [P such thatit = Sobtop.

In the following result we observe that the abstract dornffadf programs isF-complete
for every concrete (semantic) algorithmic transformation

Lemma 1 Considering the Galois insertiofD, C) —_— (P/=, <) we have that the
P
abstract domair® is F-complete for every algorithmic transformation

PROOF Given an algorithmic transformatignwe have to show thefopotoSop =

toSop.LetX € D:
SleSpOD] = Sp(Se[p(S[pXODID] [t =S ot o p, ¢ algorithmic]
Se[p(STp(ODI [poS=id]

(S
= t(S[p(XO)]) [Sotop=1i]
O

In particular, observe th&t-completeness means that S = S o t, namely that there
is no loss of precision between the semantic and syntaetitstormations when we
compare them on the concrete dom@if program semantics. This also implies that
t = potoS. Thus, when considering algorithmic semantic transfoionat the schema
in Figure 1 commutes.

In this work we are interested in the study of the semantiaitenpart of existing
obfuscators and these semantic transformations areyckdgdrithmic, since code ob-
fuscation is, in general, an automatic program transfaomatThis means that there
is no loss of precision between the semantic and the syatsticification of an ob-
fuscation. Moreover, given the semantic characterizatiohan obfuscator the sys-
tematic methodology proposed by Cousot and Cousot [16] epadrted at the end of
Section 2.3, returns precisely the corresponding obfirsgatgorithmt = poto S.

11

Syntactic Categories: Value Domains:

nez (integers) B, = {true, false} U {5} (truth values)

XeX (variable names) nez (integers)

Lel, (labels) D, =9U{3} (variable values)

Eclk (integer expressions) , - ¢ — x D, (environments)

BebB (Boolean expressionsy, _ ¢ « @ (program states)

AecA (actions)

cecC (commands)

PeP (programs)
SYNTAX

FE:=n | X | Ey — E>
B:u=true | false | E1 < Ex | =B1 | B1 V B>
A:=X:=FE | X:=? | B
Cu=L:A—1L
P = p(C)
SEMANTICS
Boolean Expr.B: B x ¢ — B,
ArithmeticExpr. E: E x ¢ — D, B[tr ue]]p & tme
ot BJ[f al se]p & false

E[n]p o B[E: < E:x]p £ E[Ei]p < E[E:]p
E[X]p = p(X) B[-B]p = -B[B]p
E[E: — E]p S E[E\]p — E[E:]p B[B1 V B2]p £ B[Bi]p vV B[B:]p

Program ActionsA : A x € — (&)

Altrue]p < {p}

AlX =]]ddf{ [X = ALE]}
A[[X::d?f]]p:{p| Jz€Z:p =p[X:=2] }
A[Blp= {p'| B[Blp' =truenp' =p }

Figure 2: A simple programming language [16].

2.4 The programming language

In the following we refer to the simple imperative languagegdduced in [16] whose
syntax and semantics are reported in Figure 2. Given$, e useS, to denote the set

S U {5}, wheres represents an undefined vatu€ommands can be either conditional
or unconditional. A conditional command at lakklis of the formL : B — L/,
whereB is a boolean expression ard is the label of the command to execute when
B evaluates tdgrue. An unconditional command at labglis of the formL : A — L/,
where A is an action and.’ is the label of the command to be executed next. An
action can be either an assignmént= F or a random assignmeii :=7 to variable

1We abuse notation and uséo denote undefined values of different types, since thedftiee undefined
value is usually clear from the context.

12

X, whereA is an arithmetic expression aniddenotes a random value. Since each
command explicitly mentions its successors, a program doeseed to maintain an
explicit sequence of commands and it can simply be specifieadset of commands,
i.e.,P = p(C). Thest op command is expressed ly : st op= L : skip — ¢,
and theski p command byL : skip — L' = L : true — L’. The following
example shows a program that computes the factorial whighifgen in the proposed
programming language:

a: X:=7 =1 d:stop

b: F:=1 — ¢ e: F=FxX — f
c: (X=1) —»d f: X=X-1—>c¢
c: (X =1) —e

In the following we report some auxiliary functions thatoall us to isolate the labels
and variables of a command or a program and that will be usethk definition of the
semantics of the language:

lab[L: A - L']< L lab[P] £ Ucep lab[C]
var[L : A — L'] £ var[A] var[P] £ Ugep var[C]
sudL: A—L]=L ac[L: A—L']<A

LetL, be the set of program labels, [8t, be the semantic domain of variables values,
and letvar[A] be the set of variables occurring in actidn An environmenp € &
maps each variabl& € dom(p) to its valuep(X) € ©,. GivenV C X, we denote
with p|y the restriction of environmentto the domainiom(p) NV, and withp . V/
the restriction of environmenito the domaindom(p) ~ V. The notatiorp[X := n]
refers to environmeng where valuen is assigned to variabl&. Let ¢[P] denote
the set of environments of prograft) namely of those environments whose domain is
given by the set of program variables, i.éon (p) = var[P].

A program states a pair(p, C), whereC'is the command that has to be executed in
environmenp. LetY = ¢x C denote the set of all possible states, &j#] = ¢[P] x
C the set of states of prograf. As usual, theransition relationC : ¥ — p(X)
between states specifies the set of states that are reaétmabla given state. Thus,
C({p, C)) returns the set of states that might be reached when exgadinmand”
in the environmenp, formally:

C((p,C)) = { (0,C")| p' € AlactC)]p, sudC] = lab[C"] }

A state(p, C) is a final/blocking state whe®({p, C'}) =). The transition relation be-
tween states can be specified with respect to a progta@[P] : X[P] — o(Z[P]):

C[P)((p,C)) = { {,C") € C(p,C))| p,p/ €E[PINC" € P }

As usual, le®>* denote the set of all possible finite nonempty sequencesiafsst”
the set of all infinite sequences of states, aid = =+ U ©¥. Given a sequence of
statesc € £, let |o| € N U {w} denote its lengthg; its i-th element and its
final state wherr € 7. A finite maximal execution trace € S™[P] of program
P is a finite sequencey...0,,_1 € X7 of states of length, i.e.,|o| = n, such that
each state; with i € [1,n — 1] is a possible successor of the previous state, i.e.,
o; € C(o;—1), and the last state;_; is a blocking state. LeE[P] denote the set of
final/blocking states of program, i.e., £[P] = {(p.C) € Z[P] | C({p,C)) = 0}.
The maximal finite trace semantic$* [P] of programP is S*[P] £ J,,., S"[P]

13

and it can be computed &< Ft[P], whereFT[P] : p(X+[P]) — p(ZT[P]) is
defined as:

FYP(X) £g[P]U{ 0i0j0| oj € C[P](0:), ojo e X }

An infinite execution trace € S“[P] of a programP is an infinite sequence,...o;...

€ ¢ of length|o| = w, such that each state ., is a successor of the previous
state, i.e.piy1 € C(o;). S“[P] can be computed agp=F«[P], where F*[P] :
p(Z¢[P]) — p(X¥[P]) is defined as:

Fe[P](X) € {oicjo| oj € C[P](0:), ojo€X }

As usual, themaximal trace semanticS>[P] € p(X°) of programP is given by
S°[P] € S+[P] U S“[P].

3 Code obfuscation as semantic transformation

Code obfuscation is defined apatentprogram transformation that preserves e
servational behaviouof programs [5, 7, 8], where potent means that the transfdrme
(obfuscated) program is harder to understand than thenatighe. It is clear that the
standard definition of code obfuscation relies on the nodibpotent transformation,
and therefore on a fixed metric for measuring program conitylexhich is an old
problem [20, 26]. In the literature there are several d#fémetrics for program com-
plexity that can be used according to the current need. Fample, the complexity of
a program can be measured by the length of the program (théemwh instructions
and arguments) [26], by the nesting level (the number ofetesbnditions) [27], or by
the data flow (the number of references to local variablet) [Siven a metric for pro-
gram complexity it is possible to measure the potency ofresftamation, namely how
much more difficult is the transformed program to understhad the original one. It
is clear that, in order to design a good obfuscator, the pytefthe transformation
should be maximized.

Definition 3 [5, 7, 8] A program transformatios : P — P is an obfuscator if:
1. the transformatiom is potent and

2. P andt[P] have the same observational behaviour, i.eR, ifails to terminate
or it terminates with an error condition thek]P] may or may not terminate;
otherwiset[P] must terminate and produce the same outpuPas

Point 2 of the above (informal) definition requires the argiand obfuscated program
to behave equivalently whenevér terminates, whereas no constraints are specified
when P diverges. This means that in order to classify a programstoamationt

as an obfuscation, we have to analyze the behaviour of thesmmnding semantic
transformationt = S o b o p only on the finite traces irf[P] that terminate with

a final/blocking state. Thus, we should focus only on finieeés and consider the
maximal finite trace semantics domairt instead of2>*° = X tUX*. GivenX C £,
we denote with(* the set of finite traces ¢, i.e.,X™ = X NX T, and withX“ the set
of infinite traces ofX, i.e.,X* = X N X“. Given a transformatiofi : p(X* U X%) —
(X1 U X¥) we have that, in generaf,(X™") € p(XT) and f(X*) € p(X¢), which
means that a transformation @r{>* U 3*) may not preserve the (non)termination

14

of the input traces. However, this is not true when speakingpde obfuscation. In
fact, point 2 of Definition 3 says that a semantic obfuscater S ot o p should
transform finite traces into observationally equivaleritditraces, i.e YX € p(X1) :
t(XT) € p(=T) andap (((X1)) = ao(XT), whereay models the observation. In
particular, point 2 of Definition 3 is interested in presagythe input-output behaviour
of terminating computations, and it can be restated in t&fms= S ot o p as follows:

VP e P,VYo € ST[P]:3n € t(ST[P]) : 00 =no Aoy =1y

It is possible to show that the semantic transformations ¢berespond to common
obfuscating algorithms such as opaque predicate insers@mantic nop insertion,
variable renaming, substitution of equivalent commands @de reordering satisfy
the above condition. Thus, when considering the semanfiecs of an obfusca-
tion t that satisfies Definition 3, we focus only on the effects tiat dbfuscation
has on finite traces and consider the restriction of S ol o p to p(X7), i.e.,
tlos+) : p(XT) — ©(XT). In order to simplify the notation, from now on we will
writet : (1) — p(X7) instead oft |5+ : p(XT) — p(XT).

Given a set of finite traces, i.e., a maximal finite trace sdiognt is possible to
derive the corresponding set of commands, i.e., the carrelipg program, by collect-
ing all the commands that occur in the given traces [16]. Eisrmalized by function
pt : p(3T) — P that maps set of traces in set of commands. In particglaris
defined as follows:

[p>+[f)C]d:ef{C‘ JoeX:Jiel0 ol Ipe 0= (p,C) }

Since we are only interested in the effects of obfuscatioffirdte traces, from now
on we consider the following specification of the Galois mis@ (1) that defines the
relation between programs and their maximal finite tracesseits:

(6(5),©) == (P/=. <) @

3.1 Modeling attacks

Code obfuscation aims at preventing malicious host atthgksbstructing the disclo-
sure of sensitive information about proprietary progra@ede obfuscation can pro-
vide an important defense against automatic maliciougsevengineering attacks, but
it cannot provide a complete protection against malicioost lattacks: a competent
programmer, who is willing to invest enough time and efferil] always be able to
reverse-engineer any obfuscated program. Thus, in orderderstand the limits and
potentialities of code obfuscation we need to specify a rhfiteautomatic attacks.
Automatic reverse-engineering techniques typically &ins static program analysis
(e.g., data flow analysis, control flow analysis, alias asialyprogram slicing) and
dynamic program analysis (e.g., dynamic testing, profilm@gram tracing). Static
and dynamic program analyses can be formalized as instafiedsstract interpreta-
tion, which is a general theory for reasoning about programastics introduced in
Section 2.2. Following this observation we model attacks, static and dynamic pro-
gram analyzers, as abstract domains uco(p(X1)), where the properties encoded
in the abstract domaip are the ones in which the attacker is interested. In thigygett
the complete lattice of abstract domaifig:o(p(>X1)), =) provides the right frame-
work where to compare attacks with respect to their degrexbsfraction. A coarse

15

abstraction models an attacker that observes simple senpaoperties, while finer
abstractions model attackers that are interested in tladislef computation. It is clear
that what an attacker can deduce from the observation of arscdited program de-
pends both on the property of interest of the attacker anti@particular obfuscation
used.

In this setting, being able to distinguish the properties,, ithe abstractions, of
program semantics that are not preserved by an obfuscatincides with the identi-
fication of the class of attacks against which the obfusnasipotent. In fact, when an
obfuscatiort does not preserve a propettye uco(p(X1)), i.e., whenp(ST[P]) #
©(ST[L[P]]), it means that an attacker that analyzes the behaviour dfahsformed
programS* [t[P]] cannot deduce propergyof the behaviour of the original program
S*[P], which means that property has been obfuscated by If, on the one hand,
the fact thatp(ST[P]) # »(ST[t[P]]) ensures that obfuscatianobstructs the dis-
closure of propertyp, namely thats is potent with respect te, on the other hand
it does not guarantee that the obfuscation cannot be easilgne, namely that is
a resilient transformation. In the following, we providea&rsantics-based definition
of code obfuscation that allows us to characterize the pgtehan obfuscation in
terms of the set of attacks thatis able to obstruct. The proposed semantics-based
definition does not deal with the resilience of obfuscatimamely we do not provide a
general framework where to measure how difficult it is for atoanatic attack to undo
an obfuscation. Thus, while our semantics-based appr@achde obfuscation pro-
vides a general framework where to compare different t@nsdtions with respect to
their potency, the resilience of different obfuscationsudti be analyzed case by case
and it might not be possible to compare the resilience oéckfiit kind of obfuscations.
However, in Section 4.5 we analyze the resilience of comtnde obfuscation through
opaque predicate insertion. In this case, it turns out tieatesilience of opaque predi-
cate insertion with respect to a given attack can be meagutedns of completeness
of the abstract domain modeling the attack. This resultnalas to compare the re-
silience of the insertion of different opaque predicatethwéspect to a given attack.

3.2 Semantics-based code obfuscation

If, on the one hand, obfuscating transformations attemptask program properties
in order to confuse the attackers, on the other hand they praserve the observa-
tional behaviour of programs. According to the standardnitédin of obfuscation
(Definition 3), preservation of the observational behavisguaranteed by the preser-
vation of the input-output behaviour of terminating pragraxecutions. Recall that
program semantics formalizes program behaviour for evesgiple inputs. The set
of all program traces, i.e., the maximal trace semanticpressing the evolution of
program states during every possible computation, is aildes®rmalization of pro-
gram behaviour, namely a possible program semantics. Ititérature there exist
many different program semantics. The most common onesdedhe big-step, ter-
mination and non-termination, Plotkin’s natural, Smytt&monic, Hoare’s angelic
relational and corresponding denotational, Dijkstra'sdicate transformer weakest-
precondition and weakest-liberal precondition and Heapa'rtial and total axiomatic
semantics. In [13] Cousot defines a hierarchy of semantibsrevthe above seman-
tics are all derived by successive abstractions from theinmaxrace semantics. In
this frameworkuco(p(X°°)) is the lattice of abstract semantics, namely each clo-
sure inuco(p(X°°)) represents an abstraction of the maximal trace semantiss. A
argued earlier, when dealing with code obfuscation we demghe maximal finite

16

trace semantics of programs computedggt), also known as thangelicseman-
tics. Observe that the angelic semantics can be formaligeghaabstraction of the
maximal trace semantics computedg@({¥>°). In particular, the angelic semantics is
obtained by approximating sets of possibly finite and inditiaices with the set of fi-
nite traces only, i.eq™ : p(2>°) — p(XT) is defined asy™ (X) = X N X, while
YT p(ET) — p(X>) is given byy™ (Y) = Y U X¥. Also the(natural) denotational
semantics DenSemwhich abstracts away the history of the computation by nbse
ing only the input/output relation of finite traces and thpunhof diverging computa-
tions, can be formalized as an abstract interpretationefithximal trace semantics:
DenSeniX) = {0 € ¥t |30 € Xt. 09 = g Aoy = 5} U{o € ¥ |36 €
X¥.0p = 8}, whereXt £ X N ot andX¥ £ X N 2. In this context, the fact
that Definition 3 requires the preservation of the inpupotidenotational semantics
on finite traces, i.eDenSemS™*[P]) = DenSenS*[t[P]]), seems like a restriction
on the possible semantic properties that a program tramsfaon could preserve. Our
idea is to relax this constraint by providing a definition ofle obfuscation which is
parametric on the semantic properties to preserve on fiaites.

In order to provide a semantics-based notion of code obfissgave need to spec-
ify a semantics-based definition of transformation potency

Definition 4 A program transformatiort : P — [P is potent if there is a property
¢ € uco(p(X1)) and a programP € P such that:p(ST[P]) # (ST [t[P]])-

The idea is that a program transformatibis potent when there exists a semantic
property € wuco(p(XT)) that is not preserved by, namely when there exists a
propertyy obfuscated by. In fact, whenp(S*[P]) # ©(ST[t[P]]) it means that
when an attack analyzes the behaviour of the transformegtqm it is not able to
derive propertyp of the behaviour of the original program. We have alreadyoled
that when dealing with obfuscations we have thato t = ¢ o S*, which means
that the potency of a transformatiénvith respect to a property can be equivalently
expressed in terms of the semantic transformatienS™ o t o p, i.e.,t is potent with
respect tap wheny(S*[P]) # o(t(ST[P])).

According to Definition 4 any program transformation thadli§erent from iden-
tity would be potent with respect to some propegty Moreover, given a program
transformatiort, each semantic property € uco(p(XT)) can be classified either
as a preserved or as a masked property with respéct lio order to distinguish be-
tween preserved and hidden properties it is useful to ddfmenost concrete property
5y € uco(p(XT)) preserved by a transformatieron all programs. In order to prove
the existence of the most concrete property that a transfilont preserves, we need
to prove that the reduced product between all the abstrawaisy;, which encodes
properties that are preservedibgn all programs, expresses a property that is preserved
by t on all programs. Thus, given the de#; };cy of the properties preserved byn
all programs, i.e.yP € P,Vi € H : p;(ST[P]) = ¢:i(ST[t[P]]), we need to show
thatVP € P: (Micupi)ST[P] = (Micapi)ST[E[P]], which is easily proved by the
fact thatvP € P: (ﬂieHgOi)S+[[P]] = ﬂieH(QpiS+[[P]]) = ﬂieH(gOiS+[[[t[[P]]]]) =
(Miempi)STL[P]]. Thus, there exists an uniqgue most concrete preserved yope
and it is computed as the greatest lower bound between tipefi®s preserved by
on programs:

8y = N {p € uco(p(SH)) VP € P: (STLP]) = p(S*[L[PI])}
Equivalently,dy = M{¢ € uco(p(X1))|VP € P : o(ST[P]) = p(t(ST[P]))}, since
we are considering algorithmic transformations. The mosteete preserved property

17

d; makes it then possible to classify each propertg uco(p(X)) either as obfus-
cated or preserved by transformatiorin particular, every property € uco(p(X1))
that is implied bydg, i.e., such that, C ¢, is preserved by transformatian while
every other property is obfuscated. In particu{af (o L) precisely expresses what
transformatiort obfuscates of property € uco(p(X)). In fact, the least common
abstractiond; LI ¢ represents what the two properties have in common; thensiy-*
tracting” the common part fromp, we obtain what hides of the property. Specifi-
cally, if propertyy is preserved, namely & C ¢, theny © (6, U ¢) = T, while for
every obfuscated property we have thab (0 Ll) # T, meaning that something
about property has been lost during transformationFollowing this observation, the
set of properties that are masked by a program transformagan be formalized as
follows:

Os, = {p € uco(p(E1)) ¢ © (R Up) # T}

Os, identifies exactly the set of attacks that are obstructed,defeated, by. In fact,

PO (0 Ug) =TIff o =y Ugiff oy C @ iff ¢ is preserved by. Thus, a program
transformatiort : P — [P can be seen as an obfuscator that is harmless with respect
to any attack modeled by an abstractiprsuch thatdyy = ¢, and that is powerful
with respect to any attack modeled by an abstractiof®n Hence, the obfuscating
behaviour of a transformation can be characterized in terms of the most concrete
propertyd; it preserves. This leads us to the following definition of eatbfuscation.

Definition 5 t : P — P is ad-obfuscator if6 = §; andO; # ().

It is worth remarking that this semantics-based definitiboarle obfuscation is lan-
guage independent and it models the effects of obfuscatidh@trace semantics of
any program written in a programming language that can beifgge as a transition
system. Moreover, when considering attacks as static andndic analyzers that are
interested in semantic properties of programs, the prapssmantics-based definition
of code obfuscation provides a formalization of the infokn@ion of obfuscator given
by Collberg et al. [5, 7] and reported in Definition 3. In fagtery program transfor-
mation that is classified as an obfuscator by the standardititefi is classified as an
obfuscator also by the semantics-based definition. Inqdati, the clas®) of pro-
gram transformations that are classified as obfuscatdmwiolg Collberg’s definition
corresponds to the set &fobfuscators wheré s at least the denotational semantics.

Theorem 3 O = {4-obfuscatorg § C DenSenj.

PROOF We have to show thad = {t | &y C DenSemOs, # 0}. The condition
Os, # 0 requires transformatianto be potent, and it is therefore equivalent to point 1
of Definition 3. Thus, we have to show that the program tramsétions that preserve
at least thddenSenof programs are the ones that preserve the observationaioein

as defined in Definition 3, namely that satisfy point 2 of Cetligs definition.

t: &y C DenSem

&S VP eP:o(ST[P]) = a(ST[L[P]])

& VP e P,Vo € ST[P],3n € ST[t[P]]: oo =no Aoy =y

< b preserves the observational behaviour according to Diefin®

d

The formalization of the notion of code obfuscation introdd by Definition 5 allows
us to consider every program transformation as a potertae obfuscator, where the

18

potency of transformatiob is characterized in terms of the most precise propéyty
preserved by. Moreover, it generalizes the standard definition of codeisdation,
where obfuscating transformations are not forced tDéeSenpreserving but they can
also be more invasive as far as the preserved property rivegreaough information
with respect to the current need. For example, let us considepplicationP that
is responsible of keeping updated the total amauwntof the bank account of each
client, and an applicatiofy that sends a warning to the bad clients every time their
total amounttot corresponds to a negative value. Assume that we are irger@st
protecting applicatior” through code obfuscation. It is clear that, in order to easur
the proper execution of applicati@p, the obfuscated version of applicatiéhhas to
preserve (at least) the sign of variabde . This means that, we can allow obfuscations
that loose the observational behaviour of applicafiblout not the sign of variablet.
In this setting, a program transformation that replacevétee of variablgot with its
double2 x tot is an obfuscation following our definition, while it is not abfuscation
following Collbergs definition.

Moreover, it is clear that our notion of code obfuscationvisies a more precise
characterization of the obfuscating behaviour of a programsformatiort even when
t satisfies the Collbergs definition. In fact, while the staddaotion of obfuscation
only distinguish between transformations that pres&gaSenand the ones that do
not preservédenSemour definition of code obfuscation relies on a much finersitas
fication that distinguishes between every possible aligirecof trace semantics.

3.3 Constructive characterization ofd;

Since the obfuscating behaviour of a program transformatiecharacterized in terms
of the most concrete properdy it preserves, it is important to provide a constructive
methodology for deriving; from a given transformatiotr We have already observed
that, when dealing with algorithmic transformations, agey ¢ € uco(p(X1)) is
preserved by if and only if it is preserved by = S o L o p. In this section we refer
to the semantic properties preserved by the semantic tnanafiont since we find it
more convenient.

In the following we provide a constructive characterizataf the most concrete
property preserved by a transformation in terms of its firmi In particular, given a
semantic transformatianand a progran®, we define a predicatBresp; : p(X1) —
{true, false} that identifies the elements pf>") that are fixpoints of a closure oper-
ator that encodes a property preserved by programP (Lemma 2). Next we show
that this property is exactly the most concrete propertgemeed byt on programP
(Theorem 4), and then we show héwcan be obtained as the least upper bound of the
most concrete properties preservedby p™ o t o ST on each program (Theorem 5).

Given a progran® and a semantic transformation p(X1) — o(31), we define
a domain transformeKp; : uco(p(X7)) — uco(p(XT)) that returns the abstract
domain preserved hyon P that is closer to the input domajne uco(p(XT)).

Kpt Z M. 11{p € uco(p(SH)) | p C o A(STIP]) = o(t(ST[P]))}

Intuitively Kp, loses the minimal amount of information with respect to segiab-
stract domain in order to obtain a property preservetdyP. Consequentlyis p ; (id)
is the most concrete property preserved by transformat@mmprogrampP. By defini-
tion K p.(id) is a closure operator and it is therefore uniquely deterthinethe set of
its fixpoints.

19

Let us consider the predicat&esp, : p(X1) — {true, false} over set of traces.
Given a set of trace¥ € p(X*) we have thaPres p+(X) = true when:

ST[P]CX < t(ST[P]) C X

Hence, predicat@res p, does not distinguish between the set of original tratefP]

and their obfuscationS*[P]), namely it does not distinguish between the behaviour
of the original and obfuscated program. The following reshbws that the elements

X € p(X1) that satisfyPres p, form an abstract domain that encodes a property that
is preserved by transformatieron programp.

Lemma 2 Given a transformation : p(X1) — o(X1) and a programP € P, there
existspp: € uco(p(Xh)) such thatpp,(p(XT)) = {X € p(Z) | Presp(X)},
moreoverpp . is preserved by transformatidgron programpP.

PROOF Let us show tha{X € (%) | Presp:(X)} is a Moore family. It is clear
that ST[P] C ©t & t(ST[P]) € X*, and therefor&&™ € {X | Presp(X)} is
the top element. We have to show that the{8éte o(X*) | Presp:(X)} is closed
underglb, namely that give{ X;};c; such thatvi € I : Presp,(X;) = true, then
Pres(NicrX;) = true. In fact we have thas™ [P] C N X; iff Vi € T : ST[P] C
X; iff Vi € T:¢(ST[P]) C X, iff t(ST[P]) C NierX;. This proves that there exists
a closure operator, denoteth; € uco(p(X")), such thatpp(p(XT)) = {X €
o(XT) | Presp(X)}.

Now we have to prove that the property expressegby € uco(p(X1)) is pre-
served byt on P, namely thatop(ST[P]) = pp+(t(ST[P])). Let Xy be the best
approximation oS [P] in pp . (p(X7)), namely letpp,(ST[P]) = X;. This means
that ST[P] C X, and sincePresp.(X;) = true we have that(ST[P]) C X;.
Now we have to prove tha¢; is the best approximation ofS*[P]) in ¢p:(p(X1)).
Assume thatpp,(t(ST[P])) = X2 whereXy = Xy, namely that there exists an
elementX; € ¢p.(p(XT)) that approximates(S*[P]) better than whai(; does.
This means that(S*[P]) C X, which, sincePresp;(Xs) = true, implies that
ST[P] € Xo. But this would imply thatpp(S*[P]) = X2 which contradicts the
hypothesispp . (ST[P]) = X;.

d

The following result shows that the closure operator whogmofits are characterized
by the predicatéresp, i.e.,op(p(X1)) = {X € p(XT) | Presp+(X)}, is the most
concrete property preserved by transformation programpP.

Theorem 4 Kp,(id)(p(X7)) = {X € p(XT) | Presp+(X)}.

PROOF Letus show thal{p(id) = ¢p,. By definitionK p,(id) is the most concrete
property preserved byon P, while from Lemma 2y p; is a property preserved liy
on P, thereforep . (id) C ¢p.. Thus, we have to show thalp; C K p,(id), namely
that Kp(id)(p(21)) C ppi(p(XT1)). Let us assume thatX € Kp(id)(p(XT))
such thatl ¢ pp(p(X1)). In this case we have thdtresp . (X) = false, namely
that ST[P] € X while ¢(ST[P]) € X, or thatST[P] € X while ¢(ST[P]) C X.
Let us consider the case whese [P] C X while t(ST[P]) € X (the other case is
analogous). LeW be the element oi p . (id)(p(X")) that better approximates both
ST[P] andt(ST[P]), namely letK p,(id)(ST[P]) = Kp(id)(t(ST[P])) = W. It

is clear thatW # X, since we are in the case whe(& ™ [P]) € X. This implies that

20

ST[P] € Wandt(ST[P]) CW. SinceK p,.(id)(p(X")) is a Moore family we have
thatXnWis an element o p . (id)(p(X1)). Moreover, it holds thaf ™ [P] € XN'W,
while t(ST[P]) € X N'W. This would imply thatK p;(id) (ST [P]) = X N'W while
Kp.(id)(t(ST[P])) = W, whereX N W # W since(X N'W) = ‘W, which leads to
the contradictionK p;(id) (ST [P]) # Kp,(id)(t(ST[P])).

a

Therefore, Kp(id)(p(X1)) = {X € p(X1) | Presp.(X)} is the most concrete
property preserved by the transformatioon programP. Hence, the most concrete
property preserved byon all programs, is given by the least upper bound between the
most concrete properties preserved on each progtan® by ¢, i.e.,| |, p Kp¢(id).

More precisely the following holds.

Theorem 5 Lett : P — P, thendy = | |pcp Kp stopopt (id).

PROOF Let us first show that |, Kp:(id) is the most concrete property pre-
served by transformation on all programs. (1) |, p Kp(id) is preserved: ob-
serve that given a progra) € P then K ;(id) C | |pcp Kp(id), by definition
Kq,(id) is preserved by on Q, thereforevQ € P : | |pop Kp(id)(ST[Q]) =
Upep Kpi(id)(t(ST[Q])). (2) [Ipep Kp.(id) is the most concrete property pre-
served byt. Considen) € uco(p(X1)) whereVP € P : n(ST[P]) = n(t(ST[P])),
then| |pcp Kpi(id) C niff VP € P : Kpy(id) T 7 which is true sincek'p ¢ (id)

is the most concrete property preservedibyn P. To conclude recall that is an
algorithmic transformation, therefore we can wiite ST ot o p™.

a

The proposed characterization of the most concrete prppegserved by a program
transformation is used in Section 3.5 in order to specifyabfiscating behaviour of

constant propagation, and in Section 4.3 in order to forradhie obfuscating behaviour
of opaque predicate insertion.

3.4 Comparing transformations

The semantics-based definition of obfuscation allows ustopare obfuscating trans-
formations with respect to their potency, namely accordintpe most concrete prop-
erty they preserve. In other words it allows us to formalizgeaatial order relation
between obfuscating transformations with respect to tke afeproperties hidden by
each transformation. On the one hand, it comes naturalr& that a transformation

is more potent than a transformatiorif it obfuscates more properties, namely ifie-
feats more attacks than whidtdoes. On the other hand, it may be interesting to know
which obfuscation is more potent with respect to a particattacky € uco(p(X1)),
namely which obfuscation is better to use when we want torobisan attack modeled
by the abstract domaip. The idea is thal is more potent thai' with respect tap if ¢
obfuscates the propergymore than what’ does, namely if the amount of information
thatt looses about property is bigger than the one lost Ity.

Definition 6 Given two transformationis t’ : P — P and a propertyp € O5, N Os,, :
e [is more potent thafy, denoted by’ < t, if Os5,, C Os,

e [is more potent than’ with respect tap, denotedt’ <, t, if ¢ © (6 U) C
0O (o Uyp)

21

From the structure of the lattice of abstract interpretetiaco(p(321)) it is possible
to give an alternative characterization of the set of proge®;, obfuscated by a pro-
gram transformation. This leads to the observation of soaséclproperties that relate
transformations and preserved properties to the set ofedgsloperties.

Proposition 1 Letd, u € uco(p(X1)).
()05 = { n e uco(p(E1) | w16)
-(2) If p C d thenO,, C O;

- (3) Oéuu = 05 U O;L

PROOF

- (1) Recall that given a latticé’ and a domairnD such thatC = D thenC & D =
T&C=DI[25]. Thusipe (Uwp) #T & dUp#p < udld. Therefore
{1 € uco(p(S1)) | e (6 U p) # T} is equivalent tofu € uco(p(=1)) | 1 #1 6.

- (2) We have to prove thaty € O, theny € Os. By definition a property belongs
t0 O, iff ¢ €T p = {¢| p C +}. By hypothesig: C ¢, therefore ifd T ¢ thenyu C 1,
therefore]l 6 C7T p. This means thatip ¢1 ptheny €7 4, namely ifp € O, then
p € Os.

-(3)We needto showthat ¢7 6 A p €T 1 < ¢ &7 (6 U). Thisis equivalent to
pETONpET u & el (dUp),whichistruesincé C pAp C ¢ < dUu C .

d

In the following section we consider a basic program tramsédion: the standard
constant propagation, and we show how it can be consideraccade obfuscator in
the proposed semantics-based framework.

3.5 Case study: Constant propagation

Constant propagation is a well-known program transforomettiat, knowing the values
that are constant at a given program point on all possibletgians of a program, prop-

agates these constant values as far forward through thegonas possible. The effects
of constant propagation on trace semantics have alreadydtedied by Cousot and
Cousot in [16], where the authors derive an efficient algani for constant propaga-
tion as an approximation of the corresponding semanticteemation. In this section

we first describe the semantic transformation that perfaonstant propagation, and
then we study its obfuscating behaviour by specifying thestnconcrete property it

preserves.

Semantic aspects of constant propagation [16]. TheresidualR[D]p of an arith-
metic or boolean expressidn € EU B in an environmenp is the expression resulting
from specializingD in that environment (see Table 1). When expresdiboan be
fully evaluated in environment, i.e.,var[D] C dom(p), we say that expressian is
staticin the environmenp, denotedstatic[D]p. WhenD is not static it isdynamic
It is clear thatstatic[D]p means that the specialization of expressioin environ-
mentp leads to a static value, i.e., a constaRf,D]p € ©, U B,. Recall that the
correctness of expression specialization follows fromfétwe that given two environ-
mentsp andp’ such thadom(p) C dom(p’) andvz € dom(p) : p(X) = p/'(X), then
A[R[D]p]p’ = A[D]p’ andin particulaA [R[D]p]p" = A[R[D]p](p’ ~ dom(p)).
The specialization of actiod in environmenp, denoted aR [A]p, produces both a
residual action and a residual environment as defined ireTabl

22

Arithmetic Expressions ReEx¢—E

Rln]p = n
R[X]p £ if X e dom(p)thenp(X) elseX
R[E, — Ex]p £ letE] = R[E:]pandE} = R[Es]pin

if BT =>o0r E5 =>thens
else ifE] = n1 andE5 = ns thenn = ny — neo

elseFE] — E3
Boolean Expressions ReBx¢—B
R[E: < Ex]p ¥ letE] = R[E:]pandEs = R[Ex]pin

if E{ =>o0r E5 =>thens
else ifE] = ny andE5 = ny andb = n1 < ns thenb
elseE] < Ej
R[B:V B]p £ letB] =R[Bi]pandBs = R[B:]pin
if B] =>o0r B5 =>then>
elseif B =trueor B5 =truethentrue
else ifB] = f al se thenBj
else ifB5 = f al se thenB]
elseBy V By
R[-B]p = letB"=R[B]pin
if B" =>thens
else if B" =t rue thenf al se
elseif B" = f al se thentrue

else—B"
Rftruelp £ true
Rffalse]p £ false

Table 1: Expression Specialization

Let o, be theobservational abstractiothat has to be preserved by constant prop-
agation in order to ensure the correctness of the transt@man [16] o§, : p(X1) —
p(€T) is defined as follows:

ay(X) £ {ah(0)|o € X} a§(o) € N.ah (o) ag((p,C)) £ p

Thus, functionag, abstracts from the particular commands that produce aicerta
environment evolution keeping only the environment tragien a set of finite traces
X € p(X71), letX¢ denote the result of a preliminary static analysis detgatonstants.
Formally X< is a sound approximation of°(X) where:

a(X) = ALAX. | J{p(X) |30 € X:3C € C: 3 01 = (p,), lab[C] = L}

whereu is the pointwise extension of the least upper bophith the complete lattice
D= D,U{T, L}, whereVez € ®°: L C 2 C z C T. This means that, given
a programP and a labelL € lab[P], a¢(ST[P])(L) is an environment mapping
(denotedv§, for short when the set of traces is clear from the contextptvhgiven a
variableX € var[P], returns the value oX if X is constant at program poidt, T
otherwise. Thus, a variabl& of programP has a constant value at program paint

whenat(SH[P])(L)(X) # T, i.e.,p%(X) # T.

23

Actions ReAx¢E¢—-ExA

R[Blp = (o R[Blp)
R[X :=?p £ (p\X,X:=?)
R[X :=E]p £ if static[E]p then(p[X := R[E]p], ski p)
else(p\ X, X := R[E]p)

Table 2: Action Specialization

The semantic transformatiafi : (3) x a“(p(X1)) — E(X1) performing
constant propagation is constructively defined as follows:

t[X, X°] £ {t°[o, X | o € X}
t[o, X°) E Ni.t*[oy, X 1°[(p, C), Xe(lab[C])] = (p,°[C, pf, 1))

where command specialization is defined as:

def

t°lL:A— L, p5|=L:t[A pi] — L'
t°[4,p5] = let(p,, Ar) Z R[A]p|(xexps (x)eo.) IN Ay

The correctness df follows from the fact that the transformed traces are valides,
i.e.,oc € ¥ = t°l0,X°] € £, and that{, is preserved by since the transformation
leaves the environments unchanged [16].

Following the steps elucidated at the end of Section 2.3 poissible to derive a
constant propagation algorithtfi= p* o t¢ o S*. We omit here such details because
they are not significant for our reasoning.

Obfuscating behaviour of constant propagation. In order to understand the ob-
fuscating behaviour of constant propagation, we need tgidenthe most concrete
propertyd,;. preserved by the transformatiohdefined above. Following the charac-
terization proposed by Theorem 5 we can formadizeas follows:

Sie = | [{X € p(5F) | Prespe(X)}

pPeP
where, given a set of trac8se (X 1) we have thaPres p - (X) = true when:
SHP] CX & VS°[P] 3 a®(ST[P]) : t°[ST[P],S°[P]] € X

This means that an eleméXitis a fixpoint ofd,. if it is not able to distinguish between
the semantics of a program and its specialization througlkteat propagation, when-
ever constant propagation is performed based on a sounthobasalysis. Thus, by
specializing with respect to any sound constant analysis/garogram trace semantics
given by a sefl € p(XT), we obtain the set of fixpoints @.. As shown in Sec-
tion 3.2, the characterization of the most concrete prgpgrtpreserved by constant
propagation allows us to classify each attackin(p(3)) either as an harmful or as
a succeeding attack.

On the one hand, let us consider the closure opetfor ¢ o af, corresponding
to the observational abstractierf,, where~g is the concretization map induced by
abstractiom,. Itis clear that, since the observational abstractignis preserved by

24

a:= 1; b:=2; c:=3; d:=3; e:=0;
while B do

b: =2+a; d:=d+1; e:=e-a;

a: =b-a; c:=e+d;
endw

Li:a:=1; b:=2; c¢:=3; d:=3; e:=0; — Lo
LQZB—>L3

LQZﬁB—>L5

Lz :b:=2+a; d:=d+1; e:=e-a; — L4
Ls:a:=b-a; c:=e+d; — Lo

Ly :stop—/

Table 3: A simple program from [11]

t¢, theny§, € uco(p(XT)) is preserved by transformatiagf. Thus, by definition of
d:e, we have thab.. T g and thereforef, © (¢§ U d.) = T, which, from a code
obfuscation point of view, means that propeggy is not obfuscated by constant propa-
gation. In fact, property§ of the original program traces can be precisely learned also
by the analysis of the obfuscated traces, i.e., fteisi* [P], S¢[P]] for any S¢[P] that
correctly approximated<(S*[P]).

On the other hand, every propertye uco(p(X7)) such thaty & (o U 6pe) # T
is not preserved by constant propagation, meaning thatttaeka modeled by these
abstractions are obstructed by constant propagation.ctpnvidnenevery is such that
» © (pUde) # T, it means that one of the following holds:

e IX € p(p(X1)), AP € P, 3S[P] : a°(ST[P]) C S¢[P] such thatST[P] C
X while t[ST[P], S¢[P]] € X

e IX € p(p(XT)), IP € P, ISC[P] : a“(ST[P]) C S¢[P] such thatS*T[P] £
X while t[S*[P], S°[P]] € X

In both cases we have thatS™[P]) # ¢(t(ST[P])), which means that propertyis
able to distinguish the trace semantics of the original @ogfrom the trace semantics
of the obfuscated one, namely that propertyf the behaviour of the original program
cannot be derived by the analysis of the behaviour of thesuafied program. Hence,
constant propagation is a potent transformation with retsfpean attack modeled by
©.

As an example of an attack obstructed by constant propagdéb us consider
propertyd € uco(p(X1)), observing the environments and the type of the actions,
namely:

(X)) = { ap(o) ’ ceX } (o) = N (07)

ao({p, C)) = (p, type[acqC]])

wheretype maps actions into the following set of action tydessign, skip, test}. Itis
clear that this property is not preserved:bysince in generalype[A] # type[R[A]p]
(see Example 1). This means that propérig obfuscated by constant propagation,
namelyd € Os,., i.e.,0 © (U ;) # T. This means thaD;,. #), thust© is an
04c-obfuscator following Definition 5.

25

Example 1 As observed above, propertyis not preserved by°, namely it could
happen that:0(ST[P]) # 6(t¢[ST[P], S¢[P]]). In the following we represent the
environment as a tuplév,, v, v, v4, v.) Of values corresponding to the variables
a,b,c,d, e in a certain execution point. Let us run the program in TaBlend con-
sider the statesrr, = ((1,2,3,3,0),Ls : b := 2xa;d := d+1; e := e —
a — L4)andos = ((1,2,3,4,-1),Ly : a := b—a;c:= e+d — Ly). Their
transformed versions aret(c2) = ((1,2,3,3,0),Ls : d := d+1; e := e —

a — Ly) andt®(o3) = ((1,2,3,4,—1), Ly : ski p — Lo). In this cased(oz) =
((1,2,3,3,0), Ls, Ly, assign) and 6(o3) = ((1,2,3,4, —1), L4, Lo, assign); while,
considering the transformed stateg;°(o2)) = ((1,2,3,3,0), L3, Ly, assign) and
0(t°(o3)) = ((1,2,3,4,—1), L4, Lo, skip), showing that the propertg is not pre-
served.

Moreover, we can show that what transformatiohides of property is the type
of actions. In fact, consider the closujes uco(p(X1)) which observes theype of
actions:

n=X.{o |0 € Xand¥i.o; = (p;, Ci),0; = (p;, Ci) : type(C;) = type(C7)}
Theorem 6 6 (6 Ul &) = 1.

PROOEF Let us prove thafl L é;c = ¢§ . By definition ofé;. it follows thatd;. T .
Let us show thaf C ¢, namely that (p(X7)) C g (p(XT)).

0(X) = {o | o’ € X andVi. o; = (p;, C;), 0} = {pi, C}) : type(C;) = type(Cl)}

vo(X) ={o |0 € XandVi. o; = (p;, i), 0} = (pi, C})}

ThusvVX € p(X7) : §(X) C ¢°(X) and thereford C ¢f,. Moreovery, is the most
concrete property thétands,. have in common. In factitis clear thét= g My, and
since theype of actions, i.e.y, is not preserved b we have thafl andd,- share only
the observation of the environments. Hence, we havedthatt LI §;-) = 0 © ¢f, =
(p5 Mn) © i = n. Where the last equation holds singis the most abstract domain
which reduced product with§ returnsg.

4 Control code obfuscation

By control code obfuscatomse refer to obfuscating techniques that act by masking the
control flow behaviour of the original program. These transfations are often based
on the insertion of opaque predicates. Two major types ofjoparedicates exist:
true opaque predicate’’ that always evaluate ttrue, and false opaque predicates
PF that always evaluate tfulse. Figure 3 shows these types of opaque predicates,
where solid lines indicate paths that are always taken asdedhilines paths that will
never be taken. Given such opaque predicates, it is pogsilglenstruct transforma-
tions that break up the flow of control of the program by insgrtlead or buggy code

in branching guided by opaque predicates. Consider, fomple the insertion of a
branch instruction controlled by an opaque predidafe In this case the true path
starts with the next action of the original program, while fhlse path leads to termi-
nation or to buggy code. This confuses the attack that iswateof the always-true

26

Figure 3: Opaque predicates

evaluation of the opaque predicate, and it has to considérgsths as possible. It is
clear that this transformation does not affect program sgics since at run time the
opaque predicate is always evaluatedrtiee and therefore the true path is the only one
to be executed. Opaque predicate insertion aims at cowgftlsgrprogram control flow,
which may not have significant effects on program trace séiogsince control flow
is an abstraction of trace semantics). The insertion ofdanefalse opaque predicates
might be detected by an attack that monitors the executitmegirogram and observes
that a certain predicate always evaluatettie or to false In order to overcome this
limitation Palsberg et al. [36] introduced the notionaufirelated opaque predicates
as a possible improvement over the standard opaque presligaisented above. The
idea is to define a family of correlated predicates whichusta to the same value in
any single program run, but this value might vary over ddfgrprogram runs. It is
clear that the opaqueness of correlated opaque predisadéfigult to disclose even
for an attack that monitors program execution. The notiodysfamic opaque predi-
cate has then been extendeddmporary unstabler distributedopaque predicates in
a distributed environment [32]. The value of a temporarnytaile opaque predicate
may change in different program points during the same ruheprogram. The idea
is that the opaque predicate value depends on predetererimeedded message com-
munication patterns between different processes thattaiaithe opaque predicate.

In this section we focus on the semantic aspects of the inset standard opaque
predicates, namely on the insertion of opaque predicatgsetraluates tarue or to
falseduring every execution of the program. Once we have undetste limits and
potentiality of standard opaque predicates we could diskow it might be possible to
extend our reasoning to correlated opaque predicates embtary unstable opaque
predicates. In particular, in the rest of this section wesaer opaque predicates that
always evaluate ttrue. It is clear that every result that we obtain in the case dof tru
opaque predicates can be restated in an analogous way $erdphque predicates.
Thus, from now on the term opaque predicate will refer to addiad opaque predicate
that always evaluates toue.

In the following, we start by defining the semantic transfationt©* that mimics
the effects of opaque predicate insertion on program trangastics. In particular,
tOF transforms the maximal finite trace semantics of the origimagram by simply
adding opaque tests that always evaluateue, and this clearly modifies the structure
of traces. Following the methodology proposed by Cousot@adsot in [16], and
elucidated in Section 2.3, we derive from the semantic foanmsationt“* its syntactic
counterparptot®”oS*. Next, we extengh*ot©" oS+ in order to obtain an algorithm
t9F : P — P that performs the insertion of true opaque predicates. iticodar, the
syntactic transformatiotf’” inserts true opaque predicatesas t“F o S*) together
with their potential false path (added manuallytoo t9F o ST). Given the semantic
understanding of true opaque predicate insertion, we studgtails the obfuscating

27

behaviour of this transformation with respect to attacksleted, as usual, by abstract
domains.

4.1 Semantic opaque predicate insertion

LetJ : P — p(L) be the result of a preliminary static analysis that given@ypam
returns the subset of its labels, i.e., program points, tés possible to insert opaque
predicates. Usually the preliminary static analysis cstgsif a combination of liveness
analysis and static analyses. On the one hand, livenesssanialtypically used to en-
sure that no dependencies are broken by the inserted ptedivd that the obfuscated
program is functionally equivalent to the original one. ®@a bther hand, static analy-
ses such as constant propagation may be used to check wbp#tgre predicates have
definitive valuedrue (or false), namely if the predicate can be trivially broken. Given a
programP, we assume to know the sgtP] C lab[P] of labels where we are allowed
to insert opaque predicates.

Let OP be a set of true opaque predicates. We define the semantéararation
tOF . o(XF) x p(L) — (=) that inserts true opaque predicates € OP in
the traces iNC € p(X*) at program points identified by the allowed locations in
K € p(L). In particular, the semantic transformation that perfotinesinsertion of true
opaque predicateB” from the seO P is defined as follows:

tOP X, K] € {t°P [0, K] | 0 € X}
t9P[(p,L: A — L')o, K] £

(p,L: A— L") t°P[o, K] if LK
(p,L: PT — L)(p,L: A— L) t%P[0,K] if LeK

Here L denotes an unused location: one that is not present in aryeafdmmands
that occur in the traces ifX, i.e., L ¢ lab[p™(X)]. By definition, transformation
tOF changes each trace af independently and state by state. In particular,Zlet
be a candidate label for opaque predicate insertion, angh)ét : A — L’) be the
(original) program state whose command is labeled.bffransformationt®” inserts
the true opaque predicafe! at the candidate labél with co-label L, which results
in the transformed statg, L : PT — L). In order to preserve program functionality,
action A has to be the first action of the true branch of the opaque gatf”. This
is guaranteed by inserting the new stéyﬁei : A — L'). Thus, transformation®”
performs the insertion of a true opaque predidateby replacing statép, L : A — L')
with the two statesp,L : PT — L)(p,L : A — L'). ltis clear that program
environment remains unchanged since test actions, sucbeagie predicates, do not
affect the value of variables (at least in our model). Figdirshows how program
traces are modified by opaque predicate insertion: the wdoite denote the states of
the original trace, while the black dots denote the statesponding to the inserted
opaque tests.

It is clear that the semantic transformatiét’, that transforms traces by inserting
true opaque predicates fromP in the allowed program point&(kK), transforms finite
traces into finite traces (as shown by the following result).

Lemma 3 Giveno € =+ andK € p(L), thent?F[o, K] € &+,

28

1 2 3 4 5
o o0—=0—>0—>>0—>0 J[P]={2,4,5}

op 1 PT 2 3 PT 4 PT 5
t?" [0, 3[P]] o—=0—=0—=0—=>0—=0—=0—=0

Figure 4: Semantic opaque predicate insertion

PROOF Giveno € X7, let|o] = n. Observe thati € [1,n — 2] the transfor-
mation of the subtrace; ,0;0;,, of o is still a trace, i.e.t°"[o; 10041, K] =
ol _t9P[0;0441, K] € F. Two are the cases that we have to consider. (L} If I,
then we have that!_,t9F[0;0:11,K] = o]_,0i0},,, ando; € C(o}_,), o, €
C(0;) follow form o € ¥7; (2) on the other hand if; € K, we have that:

o) _1t%Poi0i1, K] = o}_y{pi,Li: PT — Li){ps, Li : A; — Lis1)o}

_ / a b _/
= 0,100,041

wherec® = (p;, L; : PT — L;) ando? = (p;,L; : A; — L;;1). The test action
given by the opaque predicate does not change the stateemént and it is clear that
of € C(o]_,), 0% € C(0¢) ando],, € C(c?). This holds also for the initial and final
state, in fact ifLy € K theno, € C(o}) and if L,,_; € K theno? ;, € C(o,_2).
This proves that given = t97[o, K] thenVi: n; € C(n;—1). Moreover if|K| = h
then|n| = n + h =k, thusy € XF.

4.2 Syntactic opaque predicate insertion

Given the semantic transformatiofi” it is possible, following the procedure eluci-
dated in Section 2.3, to derive the syntactic transformagterforming the insertion of
true opaque predicates form the 68P. In particular, transformatiop™ o t9F o S+
simply inserts in a program commands which actions are tradipates fromOP.
Such syntactic transformation can be easily extended tfoqmercode obfuscation
based on opaque predicates insertion (denotetl 4sn the following), by inserting in
the transformed program also the dead code forming the aésech of P7". In fact,
following the definition ofp™, these instructions cannot be preseniine t©F o S+,
since the commands of the never-executed false path areesamni in the transformed
program semantics.

In the following we describe an opaque predicate insertigoréghm obtained
by extending (with the insertion of false paths) the aldoritsystematically derived
through the methodology explained in Section 2.3 (detdith® derivation are in the
Appendix). Let us denote witB a set of commands composing a possible false path of
a true opaque predicate (never executed at run time), aihdabif3] the label of the
starting point of the execution d$. Let B range over a given collection of programs
B C p(C), and letNew C L be a set of “new” program labels.

29

Opaque(P, J[P], New, OP,B)
Q=10
T={CeP|sudC] eL[P] }
while there exists an unmarked commahd A — L in T do
markL : A — L’
if L € 3[P]
then takeL € New
New = New ~ L
let PT € OP
(%) let B € B
Q=QU{L:PT - L;L:A— 1"}
(%) Q=QU{L:-PT —lab[B]}
elseQ=QU{L: A— L'}
T=Tu{CeP|3C"eT:sudC] =lab]C'] }
The algorithmOpagque considers each commardd: A — L’ of the original pro-
gramP, if L is a candidate label for opaque predicate insertion, f.&,&¢ J[P], the
commands. : PT — L,L: A — L' andL : -PT — lab[B], encoding opaque pred-
icate insertion are added to the &e(initially empty), otherwise the original command
L: A — L'isadded taQ. In particular, command. : -PT — lab[B] encodes the
false branch of the true opaque predicate and inserts a fakelibconnecting the con-
trol flow of the original program to the control flow of the newexecuted code starting
at labellab[B]. In the end, the se&p corresponds to the obfuscated program. It is clear
that | New| > |3[P]|. Observe that the lines denoted), encoding the insertion
of commands forming the false path of the true opaque pregiteve been added
manually top™ 0 t9F o S*. This happens because the false path of a true opaque pred-
icate is never executed and therefore its commands are es¢trin the transformed
program semantics. In fact, the insertion of an opaque pagglinserts “dead code”
in the program (i.e., code that is never executed) and, byitefi, the abstractiop™
cannot return such dead code. Let us denote With[P, 3] P]] the extended syntactic
transformation corresponding to algoritlipaquereported above. Observe that, if on
the one hang* (t9F[S*[P], 3[P]]) = tOF[P,3[P]] since they have the same trace
semantics, on the other hapd (t°F[ST[P], 3[P]]) C t°F [P, 3[P]], since the term
on the right contains also the commands of the false pathseahserted true opaque
predicates.

4.3 Obfuscating behaviour of opaque predicate insertion

In order to study the obfuscating behaviour of the insertibtrue opaque predicates
we need to define the most concrete property preservedbyFollowing Theorem 5
we have that the most concrete property preserved by opagdéegte insertion can
be characterized as follows:

Sor = | | {X € p(=7) | Prespor(X)}

PeP
where, giveril € p(X%), we have thaPres p ;or (X) = true when:
ST[P] €X & VI[P] C lab[P] : t°F[ST[P],3[P]] € X

This means that a set of trac&sis “preserved” by opaque predicate insertior\if
contains all the traces that can be obtained from the op&egedraces irl) by insert-
ing opaque predicates fro@P at program points indicated by any preliminary static

30

analysis, and if for every trace i that contains opaque predicates fran® then
also the corresponding opaque-free trace belongs té\s expected, the attack that
observes the concrete semantics of program behaviour fsissohby opaque predi-
cate insertion, sinc8*[P] # ST [t9F[P,3[P]]], while the attack that observes the
denotational semantics of programs is insensible to opprgaicate insertion, since
S0r C DenSem and DenSem (St [P]) = DenSem(ST[tOF [P, 3[P]]]).

As noticed above we have that, in genefat,[P] # S*[t°F[P, 3[P]]], namely
that S*[P] # t°FP[S*[P],3[P]]. In fact, the transformed semantics contains all the
traces of the original semantics with some extra statestofenopaque predicate exe-
cution as described by the black dots in Figure 4. It is cleat there is no significant
information hidden by this obfuscation to attacks that krtbe/concrete program se-
mantics. In fact, by the observation of the concrete serosnén attack can easily
derive the set of inserted opaque predicates and deobduseaprogram. In fact, by
knowing the seO P of inserted opaque predicates, we can easily define thetteate
formationdop : p(X7) — o(XT) that recovers the original program trace semantics
from the obfuscated one.

dop(X) € {dop(0) |0 € X} dop(0) £ e dop(o)
dor({p,C){(p',C")n) &

(p,C) dop((p/, ")) if acC] ¢ OP
dop((p,1ab[C] : acC’] — sudC’])n) if acfC] € OP

Itis not surprising that transformatialy p, given the set of inserted opaque predicates,
is able to restore the original program semantics. Theaflg result shows that
transformationip p acts as a deobfuscator with respect to the insertion of fpague
predicates from the sé1P.

Theorem 7 ST[P] = dop(SH[P]) = dop(t°T[ST[P],I[P])).

PROOF Let us assume, as usual, that progrBrhas not been previously obfuscated
by opaque predicate insertion. By definitiond$pr we have thatiop(ST[P]) =
S*[P], sinceVo € ST[P],Yo; = {(p;,C;) € o : aclC;] ¢ OP. On the other
hand, we have thatop (t9F[ST[P],3[P]]) = {dor(n) | n € t°F[ST[P],3[P]]}-
By definition, giveny € t9F[ST[P],3[P]], there existsr € S+[P] such that) =
tOP[o, 3[P]]. In order to conclude the proof we show thitr (1) = o, namely that
dop(t°F[o,3[P]]) = o. In generalc = ploip’o;u®...ut, whereo; = (p;, C;)
are such thatab[C;] € J[P], while i are the portions (even empty) of trace of
that are unchanged by opaque predicate insertion, thatis”) € p' : lab[C] ¢
J[P]. By hypothesis; is obtained froms by opaque predicate insertion, therefgre
has the following structurey = p'nen?p?n5n’p®...ut, whereln| = |o| + |I[P] N
{lab[C] | (p,C) € o}| andn@n® = (p;, L; : PT — L;){pi, Li - Ai — Li1). Hence,
following the definition ofdo » we have:

dop(n) = dop(p'ninlu®niniu®..ub)

= pdop(minlininiu..)

= ploidop(wPninju’...u)
= uloiugdop(nj”né’f b

= .. :uloi,u O'j/L .../1, =0

31

Thus, we have thalo »(tOF [S*[P], 3[P]]) = dor({t°F[0,3[P]] | o € ST[P]}) =
{dop(t°F[o,3[P])) | 0 € ST[P]} = {0 | 0 € ST[P]} = ST[P].

O

Observe that, by computing transformatignpr on the obfuscated program semantics
SH[ECP[P,3[P]]], and then deriving the corresponding program thropighwe ob-
tain exactly the original prograifi, as shown in Figure 5. This means that, knowing the
setOP an attack can eliminate the inserted opaque predicateglpamo dop o ST
acts as a deobfuscation technique. Thus, the insertiomefdpaque predicates from
setOP is not resilient with respect to an attacker that is able t®atethe opaque
predicates irOP.

LOP
P = tOP[P,3[P]]

| -

S+ﬂPﬂL tOP[S+|IP]]7j|IP]]] —
STROPP, I[P

Figure 5:p* o dpp o ST is a deobfuscation technique

Example 2 Let us consider the trace semanti€$[P] of programP and a traces €
S+[[P]] Leto = <p0,Co><p1,Cl><p2,Cg><p3,03><p4,04>, WhereCi =L;,: A —
Liy1. Assumé&[P] = {Li, Ls}. The transformed trace is given bf?” [0, J[P]]
(p0, Co)(pr, L1 = PT — Li){p1,L1 : A1 — La)(p2,Co){ps, Ly : P* — Lg
<p3,L3 : A3 — L4><p4,C4> Clearly, dop(a') = o and dop(top[a',j[[P]]])

dop({po, Co)(p1, L1 : PT — Li){p1, L1 : Ay — La){p2,Cs) (ps, L3 : PT — L

(p3, Lz : Az — La){ps, Ca)) = (po, Co){p1,C1)(p2, C2) (p3,C3)(ps,Cs) = 0.

Transformationip p is clearly additive and can therefore be viewed as an abstrac
tion function. It is interesting to observe that, considgrihe concretizationpp in-
duced by this abstraction, the propesyr o dop corresponds to the most concrete
property preserved by’ ”. In fact, knowingD P, the closureyo podo p Observes traces
up to opaque predicate insertion, which corresponds tolisereation done by,or.

In particular, given an obfuscated set of trageshe deobfuscatiod, p (X) = Y elim-
inates the opaque predicates from trace¥ jrand the concretizatiofo»(Y) returns
the set of all traces that can be obtained from tracéisiy opaque predicate insertion.
This means that requiring to be a fixpoint olyop o dop, i.€.,vopr(dop (X)) = X, is
equivalent to require that satisfiesPres p ;or (X).

NG

g™

Theorem 8 yop o dop € uco(p(X1)) andyop o dop = d0r.

PROOF Functiondo p is clearly additive, andop o dop € uco(p(XT)). From Theo-
rem 7 we have that property, podo p is preserved by°”, i.e.,yor(dop (ST[P])) =
Yor(dop(tOT[ST[P],3[P]])), let us show that it coincides withor. To do this we
have to prove that, giveil € p(X7): X = vop(dop(X)) iff for every program
P e P: Prespor(X) = true.

(=) By definitionyop(dop(X)) = {o | dor(o) € dop(X)} ={o|In € X:
dop(o) = dop(n)}. Thus, we have to prove that, for a given progr&nt holds that

32

S*IP] € yor(dop(X)) iff YI[P] € lab[P] : t°P[S*[P],3[P]] € vor(dop(X)).
On the one hand, whef™[P] C vop(dop(X)), thenST[P] C {o | 3In € X :
dop(c) = dop(n)}. This means thate € ST[P] : In € X : dop(o) = dop(n).
Following the definition oft®F, given the sefT[P] of points candidate for opaque
predicate insertion, we haw&’”[ST[P],3[P]] = {t°F[0,3[P]] | ¢ € ST[P]}.
Observe thato € ST[P] : t°T[0,3[P]] € yor(dop(c)), since we have shown
thatdop(t°F[0,J[P]]) = dop(c) = o. This means thatoc € S*[P] : In €
X : t9P[0,3[P]] € vor(dor(c)) = vor(dor(n)) € vor(dop(X)). Therefore
Vo € ST[P] : t9P[0,3[P]] € vor(dop(X)), meaning that®F [ST[P],J[P]] C
vor(dop(X)). The above proof works for any set of lab&i§P], thusvVI[P] C
lab[P] : t9P[S*[P],3[P]] € X. On the other hand, wherJ[P] C lab[P] :
tOP[SH[P], 3[P]] € vor(dop(X)), thenVI[P] C lab[P] : t°F[SH[P],3[P]]
{o|3n € X : dop(o) = dop(n)}. We have shown thatJ[P] C lab]P] :
dop(t°[p, I[P]])) = dop(p) = p. Thus,Vpu € ST[P] for which there exist§[P] C
lab[P] such thatt9F [y, I[P]] € vor(dop(X)) we have thap € vop(dop(X)).
Therefore {;: | 1°7 [, 3[P]] € vor(dor(X)).I[P] C 1b[P]} € yop(dor(X)),
namelyST[P] C X. The above reasoning is independent from the consideregigro
P, which means that for any prografhe P we have thaPres p ;or (X) = true.

(<) Assume that for alP € P: Presp or(X) = true:
= VP eP:ST[P]CX & VI[P] C lab[P] : t°F[ST[P],T[P]] € X
= VP eP:ST[P]CX < VI[P] C lab[P] : {t°F[0,3[P]] | 0 € ST[P]} € X
= VP eP:VoeX:{n|n=1t[0,3[P]],3[P] C lab[P]} C X
= X = {77 | dJoeX: dop(U) = dop(n)} = Wop(dop(x»
Hence, we have thator = | |pcp{X | Presp,or(X)} = {yor(dor(X)) | X €
p(E7)} =v0pr(dop(p(X7))).

d

4.4 Detecting opaque predicates

It is clear that the efficiency ofpp in eliminating true opaque predicates is based
on the knowledge 0O P. In fact, in the case of true opaque predicate insertion, the
problem of deobfuscating a program reduces to the abilitgdetécting true opaque
predicates. Let us recall that a true opaque predicate igdigate that evaluates to
truein every environment. Thus, understanding the presence®bipaque predicates

in a program, means identifying those predicates that av@ltotrue during every
program execution. Given an obfuscated progt&ti[P, J[P]] the setOP can be
characterized by the following definition:

3C € t9FP[P,3[P]] : acfC] = B,
oP = { B| VYo e ST[t°P[P,3[P]]],¥(p,C) € o : (3)
(acf[C] = B) = (B[B]p = true)

This means that by having access to the concrete semantjes’” [P, 3[P]]] of the
obfuscated program, which implies a precise evaludB§B]p of any test actiorB at
any program point, we are able to construct thesBtthat contains all the true opaque
predicates that have been inserted in the program. Henan,aftacker observes the
concrete execution of an obfuscated program, it can dedlLiteeanecessary informa-
tion to deobfuscate it. In fact, opaque predicate inseli@n obfuscating transforma-
tion designed to confuse the control flow of a program andesprogram control flow

33

is an abstraction of trace semantics, we have that the cadtfoscof the control flow
may not cause confusion at the trace semantic level. Thigissason why, in order to
better understand the obfuscating behaviour of opaquégatednsertion, we have to
consider abstractions of trace semantics as we show in loevfiog.

In Section 3.1 we have argued how attackers can be modeldzbtact interpre-
tations of the concrete domain of computation of the maxifiméte trace semantics
of programs. In order to understand the potency and res#éiaf opaque predicate
insertion we study what happens when the attackers havesaoody to the abstract
semantics computed on their abstract domain. §#tdenote the abstract semantics
computed by an attack € uco(p(X)). In particular, if the concrete semantic is given
by S*[P] = IfpFt[P] then the abstract semantics is defineda§P] = Ifp F*[P],
whereF¥ is the best correct approximation of the concrete funckionon the abstract
domainy. We denote with¢ the set of abstract environments X — ¢(D,) that
associates abstract values to program variables, ayite- (5;, C') an abstract state,
and withé an abstract trace. Moreover, letp(21)) = p(3T) be the powerset of
abstract traces. Itis clear that, in this setting, the mogtgoful attacker is the one who
has access to the most precise description of program lmiramamely the one that
is precise enough to compute the (concrete) program tracargesS ™ [P].

In general, the se® P¥ of true opaque predicates that an attacker modeled by
abstractionp is able to identify can be characterized as follows:

3C € P[P, 3[P]] : acC] = B,
oP? = { B| VYo e S?[t°P[P,3[P]]],¥(p,C) € & : (4)
(act[C] = B) = (B?[B]p = true)

WhereB¥[B]/ denotes the abstract evaluation of the boolean expredsionthe
abstract environment It is clear that, in general, the set of predicates classH®
opaque by observing the abstract semantiéss different from the set of predicates
classified as opaque by observing program trace semasitics.e., OP¥ # OP.
There are two causes of imprecision, both due to the losafrimation implicit in the
abstraction process:

e On the one hand, it may happen thatis not powerful enough to recognize
the constantly true value of some opaque predicates, naimly may exist an
opaque predicat®” such thatP” ¢ OP while PT ¢ OP¥ (see [19] for an
example).

e On the other hand, an attack may classify a predicate as apague predicate
while it is not, namely there may exist a predic&esuch thatPr € OP¥ while
Pr ¢ OP (see Section 4.5 for an example).

The deobfuscation process that an attadan performis expressed by the function
dops : p(X1) — p(XT), operating on abstract traces and onG¢t¥ of opaque
predicates.

dOPcp(:i:) e {dopcp(a') | s 5(:} dopcp(a') « € dopcp(a')
def

dop+((p,C)(p',C")1) =

{ (p.C) dope (7', C')M) if acC] ¢ OP*
dope ((p,1ab]C] : ac]C'] — sudC’])n) if acC] € OP¥

34

We have that, in genera) P # OP%, and therefore tha¥¥[P] # dop(S¥[P]) #
dop« (SP[EOT[P,3[P]]]), where the first inequality follows by the fact théb p.
might eliminate a predicat®r even if it is not opaque, i.e., whePr € OP¥ while

Pr ¢ OP, and the second inequality by the fact thitr. might not eliminate a
predicateP” that is opaque, i.e., wheR” ¢ OP¥ while P ¢ OP. Therefore,
whenOP # OP¥ we have that attackes is not able to deobfuscaté’”. When an
attackyp is not able to disclose the inserted opaque predicates,lpavhen S¢[P] #
Se[t°F[P,3[P]]], the attacky is defeated by the obfuscation (otherwise states the
obfuscation is potent with respect to attaek This leads to the following definition of
transformation potency:

Definition 7 Transformationt : P — [P is potent with respect to an attack €
uco(p(X1)) if there existsP € P such thatS¢[P] # S*[t°P [P, I[P]]]-

It is clear that the above definition of transformation pateis based on the abstract
semantics computed by the attack and not on the abstradtibe ooncrete semantics
as given in Definition 4 (where a transformation is potentére exists an abstraction
© € uco(p(X)) such thatp(ST[P]) # ©(ST[E[P]])). The two proposed defini-
tions of transformation potency are deeply different artiagonal. In fact, the results
obtained in Section 3 referring to Definition 4, cannot bgguted using Definition 7
of potency. However, the two definitions are both useful idenstanding the obfus-
cating behaviour of program transformations. On the onelhBefinition 4 can be
successfully applied to those obfuscation that have skensitects on the concrete
program semantics, namely those transformations thatotdrenrecovered by sim-
ply observing the concrete semantics of the obfuscatedanoge.g., array merging,
variable renaming, substitution of equivalent sequenéésstructions). On the other
hand, Definition 7 captures the obfuscating behaviour ofm transformations that
do not cause significant effects on the concrete semantit$heat can be recovered
by observing the concrete program semantics (e.g., opawakcpte insertion, code
transportation, semantic nop insertion).

We are interested here in the study of the insertion of tragap predicates and of
the ability of attackers to recover the original programpémticular, it would be inter-
esting to provide a formal characterization of the familatidckers that are able to dis-
close a given set of opaque predicates. Thus, given@ Baif true opaque predicates,
we want to characterize the class of attagksuch thatdo p. (S?[t°T [P, I[P]]]) =
dop+(S¥[P]) = S?[P]. Observe that this equality holds only when attackre-
cisely identifies the set of inserted opaque predicatesehamhenOP = OP®.
When this happens we have that the obfuscation is harmléles@gpect to attacl,
namely that the insertion of true opaque predicates fédmis not able to obstruct
attackyp. In the following we provide a characterization of the fanuf attacks able to
disclose an interesting class of numerical opaque prexficat

4.5 Attacks and completeness

In [8] Collberg et al. observe that the study of random Jaeg@ms reveals that most
predicates are extremely simple. In particular, commotepas include the compari-
son of integer quantities using binary operators such aalegugreater than, smaller
than, etc. Itis clear that, in order to design stealthy otditing transformations, the in-
serted opaque predicates have to resemble the structuredi€ates typically present
in a program. For this reason we restrict out study to nurakdpaque predicates on

35

Ve,yeZ: Ty —1#zx
VeeZ: mod(3 -7 2+4+5.422"1 _514)=0

2z—1)
Veel: Ziil,Qmod(i,Q);éO t=x

Table 4: Commonly used opaque predicates [1]

integer values. In general, an opaque predicate of this isirrdfunctionZ” — B,
that takes an array of integer values and returnsue, false, L or T. A wide class of
numerical opaque predicates can be characterized by tbe/iog structure:

VZ € Z" : h(Z) compare ¢(T)

wherecompare stands for any binary operator in the $et, >, <}, z is an array of

n integer values, namely € Z", h andg are two functions over integers, in particular
h,g : Z" — Z (see Table 4 for some commonly used opaque predicates). sLet u
assume that each variable of progrémanges oveZ. Let |var[P]| = m, then each
abstraction (attack) € uco(p(Z™)) induces an abstraction on the values of variables
and therefore on the value that the opaque predicate inpuagsume. From now on,
the abstract domaip € uco(p(Z™)) models the attack that observes an approximation
 of opaque predicate inputs. Let us consider a numericalwppredicate of the form
Vz € Z™ : h(z) = g(z), which verifies whether two functiorisandg always return
the same value when applied to the same array of integerszalu®rder to precisely
detect the opaquenesswif € Z™ : h(z) = g(z), one needs to check tltencrete test
denoted a&'7T"9 and defined as follows:

oTh = vy e zn - hMz) = g(z)

Once again, the set of predicates that satisfy the con@astedrresponds to the <P

of predicates characterized by equation (3). Our goal ih&vacterize the family of
abstractions op(Z™) that perform the test of opaqueness/iandy in a precise way,
namely the set of abstractions that loose information tharélevant for the precise
computation of, andg. We are therefore interested in the family of abstract dosai
that are able to precisely compute functiégnandg, which corresponds to the class of
attacks able to deobfuscate the insertion of predicatdseoformVvz € Z™ : h(z) =
g(z). GivenX C 7" let us consider the point to point definition of equality, \whe
h(X) = g(X)ifand only if vz € X : h(z) = g(z). Let AT»9 denote theabstract
testfor opaqueness associated to an attack modeled by the aldtraaing. The
abstract test is defined as follows:

AT 2z € 7 : o(h(p(Z))) = (g(9(T)))

Also in this case the set of opaque predicates satisfyingiséract test o corre-
sponds to the sed P¥ of predicated characterized by equation (4). Once again, th
precision of the abstract test strongly depends on the dereil abstract domain. In
particular, we have that an abstract test is sound when trefagdion of the abstract
test implies the satisfaction of the concrete one, and cet@plhen the converse holds.

Definition 8 Given an opaque predicatér € Z™ : h(Z) = g(Z), and an abstraction
© € uco(p(X1)), we say that:

o AT];W is sound whenﬁlTj;’g = CThv

36

o ATM9¢ is complete whe®T"9 = AT!-9

When the abstract test7¢ is both sound and complete, i.ed7"9 < CT"9, we
say that attack> breaksthe opaque predicatér € 7" : h(z) = ¢(z). In fact, in
this case, the set of true opaque predicates coincides hdthdt of opaque predicates
classified as opaque by the abstract test, meaning that veedidained the desired
equalityOP = OP¥.

It is possible to prove that when considering opaque preetoaf the formvz €
Z" : h(z) = g(z) the abstract test defined above is complete for any attaek

uco(p(XT)).

Theorem 9 For anyy € uco(p(X1)) the abstract tesﬂTg-ﬁ is complete.

PROOF If the concrete tesC'T"9 is verified we have thatz € 7" : h(z) = g(7),
sincep(z) C Z" thenVz € Z" : Vg € (&) : h(y) = ¢(y). This means that
VI € Z" ¢ h(p(@) = gp(x), thusvz € 2" : p(h(p(7))) = e(g(p(@))) that
corresponds to the satisfaction of the abstracmg,él.

a

This means that if a predicate is opaque then the attack nésmsyit, namelyOP C
OP?. Thus,dop-(S?[P]) = dops (S?[t°T[P,I[P]]]). In fact,dop. eliminates
all the opaque predicates from the right term and the comragular predicate that
are erroneously classified as opaque from both terms. Fosaime reason we have
S¢[P] # dops(S?[P]). This means tha?[P] # dop.(S¢[t°F[P,3[P]]]) and
therefore thatp is defeated by©”. As argued above, attagk is able to break the
insertion of true opaque predicates wheiw? = OP¥, which is ensured when the
abstract tesﬂTg’g is both sound and complete. Theorem 9 guarantees the camplet
ness of the abstract test, thus, in order to break an opagdé&pte, we need to verify
the soundness condition. In geneﬂjjvg is not sound, but it is possible to show that
soundness is guaranteed when the abstract dopraiodeling the attack i$-complete
for both functionsh andg.

Theorem 10 Given an opaque predicatér € 7" : h(X) = g¢(z), and an attack
modeled byy € uco(p(XT)), if the abstractiony is F-complete for both functionis
andg thenAT9 is sound.

PROOF We have to prove thatlT/¢ = CT™9. If the abstract test7¥ holds
thenvz € 7" : p(h(p(2))) = ¢(9(0(2))), namelyvz € 7" : o(h(p(p(Z)))) =
o(g(e(p(z)))). The abstract domaip is F-complete by hypothesis, therefore <
Z™ : hie(e(Z))) = g(e(e(z))), which is equivalent t&vz € Z™ : h(p(z)) =
g(¢(Z)). By definition of= this means thatz € Z" : Vg € ¢(Z) : h(y) = 9(9). ¢
is extensive by hypothesis, namalye ¢(z), and therefor&z € Z™ : h(z) = g(z),
which corresponds to the satisfaction of the concrete(t@%t9.

a

This means that when the abstract domain modeling the aitaaekle to pre-
cisely compute the functions composing the opaque pregdiba&n the attack breaks
the opaque predicate. Thus, given an attacknd an opaque predicate € 7" :
h(z) = ¢(z), the F-completeness domain refinementyfvith respect to functions
h andg adds the minimal amount of information to attagko make it able to defeat
the considered opaque predicate. Hence, completenessrdmfinement provides

37

here a systematic technique to design attacks that arecalbtedk an opaque predicate
of interest. Moreover, the completeness property of abisirderpretation precisely
captures the ability of an attack to disclose an opaque qaibali

The above result holds also when considering>, and the corresponding point to
point extensions<, >, instead of= and=.

Corollary 1 Given an opaque predicaté € 2™ : h(z) compareg(z), and an attack
© € uco(p(XT)), if the abstractionp is F-complete for both functions and g, then
 breaks opaque predicates that are instance¢m& 7" : h(Z) compare g(T).

In the following example we show how the lack &fcompleteness of the abstract
domain modeling the attack can cause the abstract testdodwan if the concrete one
fails.

Example 3 Let us consider the predicate € Z : 222 = 2z, whereh(x) = 222 and
g(z) = 2x. Itis clear thatCT"9 does not hold, since the predicate is not opaque. Let
us consider an attack modeled by the abstract domaweity = {T, L, even, odd}.

In turns out thatAT,;2,, - holds, in fact:

even :: Parity(h(even)) = even = Parity(g(even))
odd :: Parity(h(odd)) = even = Parity(g(odd))

The reason way the abstract test holds Barity is the fact thatParity is not F-
complete for botth andg. In fact, let Parity = ~ o «, then2(y(even)) = {2z | x €
27} which is strictly contained iry(2even) = v(even) = 2Z. When computing the
F-completeness domain refinementrafrity with respect toh and g, we close the
considered abstract domain with respect/tand g. This means that, for example
the elementDoubley, such thaty(Doubleg) = {2z | x € 2Z}, Double,, such that
y(Double;) = {2z | x € 2Z + 1}, DoubleSqs, such thaty(DoubleSqz) = {222 | x €
27}, and DoubleSq;, such thaty(DoubleSq;) = {22* | x € 2Z + 1}, belong to
R;{Q(Parity) = Parity™. Observe that on this domain the abstract test does not hold
any more, in facParity ™ (h(even)) = DoubleSqs # Doubles = Parity™ (g(even)),
and so on for all the other elements since the direct imagdl elements undeh and

g are precisely expressed by the domain obtained throughdimpleteness refinement.

Comparing attacks

The completeness result obtained above allows us to coropahe lattice of abstract
interpretation both the efficiency of different attacks isalbsing a particular opaque
predicate, and the resilience of different opaque preégcaith respect to an attack.
Let us consider a predicafe’” : vz € 7" : h(z) = g(z), and let us denote with
R pr the completeness domain refinement needed to make an abiadko dreakP” .
Let Potency(PT,) denote the potency of opaque predicatewith respect to attack
o, and Resilience(PT , o) the resilience of opaque predica®d in preventing attack

®.

Definition 9 Given two attacks, 1) € uco(p(X1)) and two opaque predicate3]
and P{, we have that:

e wheny C ¢ andRpz (¥) = Rpr(p) we say thatPotency(PL 1) is greater
than Potency(PL,)

38

e while, wherR pr (@) © Rpr (), we say thaResilience (P, o) is greater than
Resilience(PY, o)

The first point of the above definition refers to the situagiwasented in Figure 6(a),
whereyp T ¢ andR pr (1) = Rpr (¢). In this case we have that predicd?é is more
potent with respect to attaek than with respect to attack In fact, more information
needs to be added to than toy in order to gain an attack able to breBf, namely

1 is more “far” thany in disclosingP{f. The same reasoning allows us to compare

T T
P ® \
. /> /RPZT(@)
\ pT(P)
Rpr(¢) !
:Rpif(w)
id

id

(@) (b)

Figure 6: Comparing attacks

the resilience of different opaque predicates in the kattitabstract interpretation. In
fact, the second point of the above definition considers tvelipatesP! and P
and an attack> € uco(p(X7)). and assumes th&tpr (p) C Rpr () as shown in

Figure 6(b). In this case we can say that the insertion of opguedicate”! is more
efficient in obstructing attack than the insertion of opaque predicdté, since more
information needs to be addedtan order to disclose’ thanPy . Thus, a possible
way to understand which opaque predicat@ifi is more efficient in preventing a given
attacky, it is to compute the fixpoint solution of the completenessidim refinement
of ¢ with respect to the different opaque predicates availaid,then choose the one
that corresponds to the most concrete refinement. In fazgltser the refined attack
is to the identical abstraction (concrete semantics), thbdm is the resilience of the
opaque predicate. In particular®pr (¢) = id, it means that the attack can break
the considered opaque predicate only if it can access thereeprogram semantics.
In this case the considered opaque predicate provides gt@bstruction tap.

5 Discussion

In order to fulfill the lack of a theoretical basis for code wédation, we have proposed
a formal approach to code obfuscation based on program siesiand abstract inter-
pretation. The key idea of our approach is to model attackdbasgact domains, where
the abstraction encodes the power of the attack, namelytbattack can observe of
program execution. In fact, the proposed semantic framewaies on a semantics-
based definition of code obfuscation and on an abstracpirgtation-based model for
attacks. In particular, we characterize the obfuscatifab@ur of a program trans-
formationt in terms of the most concrete semantic prop@égtyt preserves, namely
in terms of the most powerful attack for which the obfusaai® harmless. In fact,
given a transformatioh, propertyd; precisely expresses the amount of information

39

still available after the obfuscatidn namely what the obfuscated program might re-
veal about the original program. In this setting, any pragteansformatiort can be
seen as an obfuscator that is potent with respect to ankattatdeled by an abstract
domainey that is not preserved by, In particular, the semantics-based notion of po-
tency given in Definition 4 states that a transformatias potent if it defeats attacks
modeled as properties of program trace semantics, naméigiié exists a property
¢ € uco(p(X)) such thatp(SH[P]) # »(ST[L[P]]). This measure of potency fits
transformations that deeply modify program trace semsntiamely that modify pro-
gram behaviour in a way that is noticeable and not triviafigone by an attacker that
observes program trace semantics. Moreover, this notidrantformation potency
provides an advanced technique for comparing obfuscaljagithms relative to their
potency in the lattice of abstract interpretation (as stateDefinition 6). Among the
existing obfuscating transformations whose potency cambeeled by this definition
we mention: the substitution of equivalent sequences ofcands, variable renaming
and data obfuscations such as splitting and merging arhayact, these obfuscations
modify the structure of program trace semantics in a semsilly: replacing equiva-
lent sequences of commands implies a modification of therprogexecution traces,
and the renaming of variables and the splitting and merdimgrays cause a modifica-
tion of every program state whose command uses a renamedbleaor an obfuscated
array. Thus, the potency of these obfuscations can be eapyrDefinition 4 of trans-
formation potency.

However, Definition 4 is not adequate for modeling the pogesicobfuscating
transformations that cause only minor changes to the pnotace semantics, namely
that do not confuse an attack that has access to the tracetesnaf the obfuscated
code, as in the case of opaque predicate insertion. In teis dar example, we need
a notion of program potency that capturestioéseintroduced at the level of program
control flow, which is an abstraction of trace semantics.sTdhiservation has led to
Definition 7, where transformation potency is formalizedhwiespect to the abstract
semantics computed on the abstract domain modeling thekattdransformatiom is
potent if there exists an abstractipnsuch thatS?[P] # S¥[t[P]]. This definition
can model the potency of several existing obfuscating tieci®s: opaque predicate
insertion, control flow flattening, loop unrolling and sertiemop insertion. Control
flow flattening and loop unrolling are control code obfusmasithat, like opaque pred-
icate insertion, try to mask the control flow of the originabgram. Once again, in
order to notice the obscurity added at the control flow leyethese transformations,
we need to consider the abstract semantics computed ondtractftiomain modeling
the attackers. Moreover, as in the case of opaque preditsggipn, when dealing with
semantic nop insertion we have that an attack is confusedébinsertion of semantic
nops only when it is not able to recognize the inserted seimaaps. Also in this case,
the ability of an attacker in identifying the inserted setimnops might be expressed
in terms of the precision of the abstract domain modelingatheck.

It is clear that the two definitions of potency are deeplyatié#ht and orthogonal
and that each of them fits different kinds of obfuscationsSéation 4.4, we have seen
in detail how Definition 7 of transformation potency progemodels an obfuscation
that inserts true opaque predicates, from which we can dethat it is appropriate
also for modeling the insertion of false opaque predicateseover, it is reasonable to
assume that also the potency of transformations that ingaglated opaque predicates
and distributed opaque predicates can be modeled by Definiti In this case the
opaqueness of the predicates ensures that only the coatitt @re executed, while
confusion can be inserted in the “fake” paths. In this sgttam attack is able to disclose

40

a set of correlated opaque predicates only if it is able tcetstdnd that there exists a
relation between the values of these predicates duringuéirec Thus, it seems that in
order to disclose correlated opaque predicates an attabkeitd be precise for some
sort of relational analysis.

In the particular case of the insertion of true opaque petdg; the use of abstract
interpretation ensures that, when the abstraction is cetethe attack is able to break
the opaque predicate and to remove the obfuscation. Thiegithat deobfuscation
in the case of opaque predicates requires complete alsiraeind therefore that the
potency and resilience of opaque predicates can be medsyited amount of infor-
mation that has to be added to the incomplete domain to becomplete. This allows
us to compare both the potency of different opaque predicaitt respect to a given
attack, and the resilience of an opaque predicate with cespdifferent attacks. Some
further work is necessary in order to validate our theoryracfice. In fact, while mea-
suring the resilience of opaque predicates in the lattiedsfract domains may provide
an absolute and domain-theoretical taxonomy of attacksoafgscators, it would be
interesting to investigate the true effort, in terms of dyiatesting, which is necessary
to enforce static analysis in order to break opaque presiicat/e believe that this is
proportional to the missing information in the abstractinadeling the static analy-
sis with respect to its complete refinement. Preliminarykniarthis direction shows
promising experimental results, as described in [19].

Another interesting field that commonly uses code obfusnas the one of “bi-
ologically inspired diversity”. In this setting, obfusgaj transformations are used to
generate many different versions of the same program irr dod@event malware in-
fection [21, 38]. In fact, machines that execute the samgnaras are likely to be
vulnerable to the same attacks. Malware exploit vulneitaslin order to propagate
and perform their damage, meaning that all the systemsghtime same configuration
will be susceptible to the same malware attacks. On the bted, different versions
of the same program are less prone to having vulnerabilitieemmon. This means
that diverse versions of the same program will make malwdeetion and propagation
much harder. In this setting, it would be interesting to $e@&if theoretical framework
for code obfuscation could be used to better understandanuhfize the level of se-
curity that program diversity guarantees.

Acknowledgments

This work has been partially supported by the FIRB grant ffdag Interpretation and
Model Checking for the verification of embedded systemst #re MUR-COFIN
grant AIDA. The results present in this work are an extendedl r@viewed version
of [17, 18].

References

[1] G. Arboit. A method for watermarking Java programs viaqpe predicates. In
Proc. Int. Conf. Electronic Commerce ReseafilPECR-5, 2002.

[2] B. Barak, O. Goldreich, R. Impagliazzo, and S. Rudich. t@a (im)possibility
of obfuscating programs. ladvances in Cryptology, Proc. of Crypto’Odolume
2139 ofLNCS pages 1-18. Springer-Verlag, 2001.

41

[3] C. Thomborson C. Collberg. Watermarking, tamper-pmogfiand obfuscation-
tools for software protectiodEEE Trans. Software Engpages 735-746, 2002.

[4] C. Collberg and K. Heffiner. The obfuscation executive. Proc. Information
Security Conferenc@SC’04), volume 3225 of NCS pages 428-440, 2004.

[5] C. Collberg and C. Thomborson. Breaking abstraction$ anstructural data
structures. IrProc. of the 1994 IEEE Internat. Conf. on Computer Languages
(ICCL '98), pages 28-37, 1998.

[6] C. Collberg and C. Thomborson. Software watermarkingdeis and dynamic
embeddings. IfPrinciples of Programming Languages 199P0OPL '99), 1999.

[7] C. Collberg, C. Thomborson, and D. Low. A taxonomy of odfating trans-
formations. Technical Report 148, Dept. of Computer Saefthe Univ. of
Auckland, 1997.

[8] C. Collberg, C. Thomborson, and D. Low. Manufacturingah, resilient, and
stealthy opaque constructs. Prmoceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of programming langua{fe®PL '98), pages 184—
196. ACM Press, 1998.

[9] C. Consel and C. Danvy. Tutorial notes on partial evatrat In Proceedings
of the 20th ACM Symp. on Principles of Programming LangudB&PL '93),
pages 493-501. ACM Press, 1993.

[10] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessg &hRanzato. Complemen-
tation in abstract interpretatio’ACM Trans. Program. Lang. Sysi.9(1):7-47,
1997.

[11] P. Cousot. Méthodes itératives de construction apgioximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémaeties programmedni-
versié Scientifique et Bdicale de Grenoblel978.

[12] P. Cousot. Abstract interpretation. ACM Comput. SuPg(2):324-328, 1996.

[13] P. Cousot. Constructive design of a hierarchy of seiamf a transition sys-
tem by abstract interpretatioiheoretical Computer Sciencg77(1-2):47-103,
2002.

[14] P. Cousot and R. Cousot. Abstract interpretation: Afiadilattice model for
static analysis of programs by construction or approxiomadf fixpoints. In
Proceedings of the 4th ACM Symp. on Principles of Progrargnhianguages
(POPL ’'77), pages 238-252. ACM Press, New York, 1977.

[15] P. Cousot and R. Cousot. Systematic design of progreatysis frameworks.
In Proceedings of the 6th ACM Symp. on Principles of Progrargrhanguages
(POPL '79), pages 269-282. ACM Press, New York, 1979.

[16] P. Cousot and R. Cousot. Systematic design of progranstormation frame-
works by abstract interpretation. IRroceedings of the 20th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programmingyuagespages
178-190, New York, NY, 2002.

42

[17] M. Dalla Preda and R. Giacobazzi. Control code obfuendiy abstract interpre-
tation. InProceedings of the 3rd IEEE International Conference orv&e En-
gineering and Formal Methods (SEFM'Q%)ages 301-310, Koblenz, Germany,
2005.

[18] M. Dalla Preda and R. Giacobazzi. Semantic-based cbfiesocation by abstract
interpretation. IrProc. of the 32nd International Colloquium on Automata, Lan
guages and Programmin@CALP '05), volume 3580 of_ecture Notes in Com-
puter Sciencgpages 1325-1336. Springer-Verlag, 2005.

[19] M. Dalla Preda, M. Madou, R. Giacobazzi, and K. De Bosseh Opaque predi-
cate detection by abstract interpretation Phoc. of the 11th International Conf.
on Algebraic Methodology and Software TechnolO§WIAST '06, volume 4019
of LNCS pages 81-95. Springer-Verlag, 2006.

[20] J. Marciniak editorEncyclopedia of Software Engineerin Wiley & Sons, Inc,
1994.

[21] S. Forrest, A. Somyaji, and D. H. Ackley. Building digercomputer systems. In
Proceedings of the Workshop on Hot Topics in Operating Bysteages 67—72,
1997.

[22] R. Giacobazzi and E. Quintarelli. Incompletenessnterexamples and refine-
ments in abstract model-checking. In P. Cousot, edRovc. of The 8th Inter-
national Static Analysis Symposium, SAS@dlume 2126 ofLecture Notes in
Computer Scienc@ages 356—373. Springer-Verlag, 2001.

[23] R. Giacobazzi, F. Ranzato, and F. Scozzari. Makingrabsinterpretations com-
plete.J. of the ACM,.47(2):361-416, 2000.

[24] James R. Gosler. Software protection: myth or reality? Proc. Advances in
Cryptology(CRYPTQ'85%, pages 140-157, 1985.

[25] G. GratzerGeneral Lattice TheoryBirkhauser Verlag, Basel, Switzerland, 1978.
[26] M. H. Halstead.Elements of Software Sciendglsevier North-Holland, 1977.

[27] W. A. Harrison and Kenneth I. Magel. A complexity measiiased on nesting
level. INSIGPLAN Noticesvolume 16, pages 63—74, 1981.

[28] N. Jones. An introduction to partial evaluatiohCM Comput. Sury28(3):480—
504, 1996.

[29] G. Kildall. A unified approach to global program optiration. InProceedings of
the 1st ACM Symp. on Principles of Programming LangudB&PL '73). ACM
Press, 1973.

[30] C. Linn and S. Debray. Obfuscation of executable codenfrove resistance to
static disassembly. I@omputer Security Symposif@SS '03, pages 290-299,
2003.

[31] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Suitad K. De Boss-
chere. Software protection through dynamic code mutatiém.Proc. Inter-
nat. Workshop on Information Security ApplicatiqiglSA’09, volume 3786 of
LNCS pages 194-206, 2005.

43

[32] A. Majumdar and C. Thomborson. Manufactoring opaquedfmates in dis-
tributed systems for code obfuscation.Rroc. 29th Australasian Computer Sci-
ence Conference (ACSC’Q&plume 48 ofCRPIT, pages 187-196, 2006.

[33] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Softwardudration on a theoret-
ical basis and its implementatioflEEE Trans. Fundamentgl&86-A(1), 2003.

[34] E. I. Oviedo. Control Flow, Data Flow and Programmersriptexity. InProc. of
COMPSAC 80pages 146-152. Chicago, IL, 1980.

[35] R. Paige. Future directions in program transformatioACM SIGPLAN Not.
32(1):94-97, 1997.

[36] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shaal #¥nZhang. Ex-
perience with software watermarking. Rroceedings of the 16th IEEE Annual
Security Applications ConferenaCSAC '00, pages 308—-316, 2000.

[37] A. Pnueli, O. Shtrichman, and M. Siegel. The code vdiatatool cvT: Auto-
matic verification of a compilation procesSTTT 2(2):192-201, 1998.

[38] R. Pucella and F.B. Schneider. Independence from chfim: A semantic
framework for diversity. InProceedings of the 19th IEEE Computer Security
Foundation Workshgppages 230-241, 2006.

[39] S. K. Udupa, S. Debray, and M. Madou. Deobfuscation:erse engineering
obfuscated code. 142th. IEEE Working Conference on Reverse Egineering
(WCRE '05, 2005.

[40] C. Wang, J. Hill, J. Knight, and J. Davidson. Softwarefeer resistance: ob-
structing static analysis of programs. Technical repor2080-12, Department
of Computer Science, University of Virginia, 2000.

[41] M. Weiser. Program slicingEEE Trans. Software Engineering0(4):352-357,
1984.

[42] H. Yang and Y. Sun. Reverse engineering and reusimgoL programs: A pro-
gram transformation approach. INWFM 97 Electronic Workshop in Computing
1997.

6 Appendix

Syntactic opaque predicate insertion

Given the semantic transformati¢”’, defined in Section 4.1, that performs the inser-
tion of true opaque predicates form the €4®, in the following we report the details
of the derivation of the corresponding syntactic transtationp™ o tF o ST,

Step 1 When we consider the program trace semantics expressegairft form,
we have thap* (t9P[ST[P], 3[P]]), reduces to* (tO [ifp F+[P], 3[P]]).

Step 2 Let us compute the transformatiofi” of the program semantics* [P]

expressed in fixpoint forrfp £ [P], in order to establish the local commutation prop-
erty necessary for fixpoint transfer:

44

tOP [F+[P](X),3[P]] = tOP[T[P] U {ss'c | s’ € C[P](s),s'c € X},3[P]] =
tOP[T[P], 3[P]] U tOP [{ss'a | s € C[P](s),s'o € X},3[P]]

Let us consider the two terms of the above union separatehthi first term we have:
tOP (T[], 3[P]) = {t°[0,3[P]) | o € T[P]} =

{t°P[(p,L: A— L"), J[P]] | L: A— L' € P.pec ¢[P],L' € L[P]} =

{p,L: A= L)|L:A— L € P,pe €[P],L' € L[P],L ¢ 3[P]} U

{(o,L: PT - Ly(p,L: A= L)|L:A— L' € P,pe¢[P], L' € L[P],
L eJ[P],L € New}

Considering the second term, we have that:

t9P{ss'o | s’ € C[P](s),s'c € X},3[P]] =
{t9P[ss'0,3[P]] | s’ € C[P](s),s'c € X}

assuming = (p, L : A — L), s’ = {p/,C"), we obtain:

{{p. L+ A— LYOP((,C")o, 3 P]] | 1ab[C'] = L', p' € AlAp,
L:A—L ePpece[P],{,CVoeX,LgI[P]} U

{{(p,L: P" — L){p, L : A— L'}t°[{p',C")o,3[P]] | lab[C'] = L,
p € A[Alp,L: A— L' € Ppec¢[P],{p,C"o € X,L € I[P], L € New}

that, giveno’ = (p’, C")o, reduces to:

{(p,L: A — L"NtF[o' 3[P]] | lablo’] = L',emnVo'] € A[A]p,L: A — L' € P,
p € €[P], o’ e X,L¢IJ[P]} U

{(p,L: PT = L)(p,L: A — L')tP[¢’ 3[P]] | lablo’] = L', eno'] € A[A]p,
L:A—L'ePpec¢[P],o’ €X,LeI[P],Le New}

then, assuming = t“F[¢’, 3[P]], we obtain:

{{p,L: A— L')6 |lablg] = L',en6] € A[A]p,L: A— L € P,
p € ¢[P],é € t°P[X,3[P]], L ¢ 3[P]} U

{(p,L: PT = LY(p,L: A — L')é | labls] = L', envs] € A[A]p,
L:A—L'ePpec¢[P],6ctf[X,3[P]],L € I[P], L € New}

where given a trace: enjo| = enjoy] anden(p, C)] = p, while labjo] = lab[oy]
andlab[(p, C)] = lab[C]. By defining FOF[P](t°F[X, 3[P]]) as given by the union
of the elements obtained by the above computation, we have:

45

FOP[PI(O" [, 3[P])) =

{(p.L: A= L) |L:A— L e€P,pec€[P],L' € L[P],L ¢ I[P]} U
{(p,L: PT - LYp,L: A—=L)|L:A—L €Ppec¢P],
L' € L[P],L € 3[P], L € New} U
{{p,L: A— LYo |labls] = L',en6| € A[A]p,L: A — L' € P,
p € €[P],& € t°F[X,3[P]}, L & 3[P]} U
{(p,L: PT = L){(p,L: A — L')é | labls] = L', enV5] € A[A]p,
L:A—L'ePypec¢[P],6etf[X,3[P]],L € I[P], L € New}
Thus,t9F o F+ = FOP o tOF and applying the fixpoint transfer theorem we have
thattOP [Ifp F+[P], 3[P]] can be expressed s FOT[P].

Step 3 Let us compute the abstractipri of FF[P] in order to verify the com-
mutation property necessary for fixpoint transfer:

pt (FOP[OP[X, I[P]]]) =
{L:A—> L'}y |L:A— L e PL' e L[P]L ¢ 3[P]} U
{{L:PT - L;L:A—L'}|L:A— L e PL' € L[P],
L €3[P],L € New} U
{{L:A—LYyupt(t®PIX,3[P])) | L: A— L' € P,L ¢ 3[P],
30 € pt(t°P[X,3[P])) : lab[C] = L'} U
{{L:PT - L;L: A— L'yupt(°P[X,3[P])) | L: A— L' € P,
L € 3[P], L € New,3C € p*(t°F[X,3][P]]) : lab[C] = L'}
Step 4 Defining FOT[P](p* (t°F[X,3[P]])) as the union above, we have that
pt o FOP[P] = FOP[P] o p*, and therefore ™ (ifp FOT[P]) = IfpFOF[P]. From

the definition ofF©7 it is possible to derive an extended iterative algorithnt ihserts
opaque predicates.

46

