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Abstract

In recent years code obfuscation has attracted research interest as a promising
technique for protecting secret properties of programs. The basic idea of code ob-
fuscation is to transform programs in order to hide their sensitive information while
preserving their functionality. One of the major drawbacksof code obfuscation is
the lack of a rigorous theoretical framework that makes it difficult to formally ana-
lyze and certify the effectiveness of obfuscating techniques. We face this problem
by providing a formal framework for code obfuscation based on abstract inter-
pretation and program semantics. In particular, we show that what is hidden and
what is preserved by an obfuscating transformation can be expressed as abstract
interpretations of program semantics. Being able to specify what is masked and
what is preserved by an obfuscation allows us to understand its potency, namely
the amount of obscurity that the transformation adds to programs. In the proposed
framework, obfuscation and attackers are modeled as approximations of program
semantics and the lattice of abstract interpretations provides a formal tool for com-
paring obfuscations with respect to their potency. In particular, we prove that our
framework provides an adequate setting to measure not only the potency of an
obfuscation but also its resilience, i.e., the difficulty ofundoing the obfuscation.
We consider code obfuscation by opaque predicate insertionand we show how the
degree of abstraction needed to disclose different opaque predicates allows us to
compare their potency and resilience.
Keywords: Code Obfuscation, Abstract Interpretation, Program Semantics, Static
Program Analysis.

1 Introduction

A major issue in computer security is the protection of proprietary software againstma-
licious hostattacks that usually aim at stealing, modifying or tampering with the code in
order to obtain (economic) advantages over it. A key challenge in defending code that is
running on an untrusted host is that there is no limit on the techniques that the host can
use to extract sensitive data from the code and to violate itsintellectual property and in-
tegrity. Malicious reverse-engineering, software piracyand software tampering are the
most common malicious host attacks against proprietary programs [3]. Given a soft-
ware application, the aim of reverse-engineering is to analyze it in order to understand
its inner working. The information collected during the reverse-engineering process
can be used either to improve the application, e.g., platform optimization and bug-fixes,
or for unlawful purposes (so-calledmalicious reverse-engineering), e.g., identification
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of vulnerabilities in binaries and unauthorized modifications such as bypassing pass-
word protection. Let us observe that both software tampering and software piracy need
a preliminary reverse-engineering phase in order to understand the inner working of the
program that they want to tamper with or to steal. Thus, preventing malicious reverse-
engineering is a crucial issue when defending programs against malicious host attacks.
Code obfuscationrepresents one of the most promising techniques to prevent malicious
reverse-engineering of software. The idea is to transform programs in order to make
them more difficult to understand and analyze while preserving their functionality.

The problem. According to a standard definition, an obfuscator is apotentprogram
transformation that preserves the observational behaviour of programs, i.e., the input-
output behaviour [5, 7, 8]. In this context, a transformation is potent when the trans-
formed program is more complex, i.e., more difficult to reverse-engineer, than the
original one. Consequently, the notion of code obfuscationis based on a fixed met-
ric for program complexity, which is usually defined in termsof syntactic program
features, such as code length, number of nesting levels and numbers of branching in-
structions [7]. To the best of our knowledge, there are no complexity measures based on
program semantics, which we suggest may provide a deeper insight in the true potency
of code obfuscation.

Many researchers recognise that one of the major drawbacks of code obfuscation is
the lack of a rigorous theoretical background. In fact, the absence of a theoretical basis
makes it difficult to formally analyze and certify the effectiveness of these techniques
in contrasting malicious host attacks. In particular, it ishard to compare different
obfuscating transformations with respect to their resilience to attacks and this makes
it difficult to understand which technique is better to use ina given scenario. Little
theoretical work on code obfuscation exists, and the designof a formal framework for
modeling, studying and relating obfuscating transformations and attacks is still in an
early stage.

The idea. In order to formalize and quantify the amount of “obscurity”added by
an obfuscating transformation, namely how much more complex the transformed pro-
gram is to reverse-engineer with respect to the original one, we need a formal model
for obfuscation as well as for attack. Reverse-engineeringtypically consists of static
and dynamic program analyses which can both be modeled as abstractions of program
semantics. In fact, static program analysis can be specifiedas an abstract interpre-
tation, i.e., as an approximation, of program semantics [14], while dynamic analysis
can be seen as a possibly undecidable approximation of program semantics. Recall
that program semantics formalizes program behaviour and that the precision of this
description depends on the level of abstraction of the considered semantics, namely on
the level of abstraction of the domain over which the semantics is computed. In particu-
lar, Cousot [13] defines a hierarchy of semantics, where semantics at different levels of
abstractions are specified as successive approximations ofa given concrete semantics.
In the following, concrete program semantics refers to trace semantics, which observes
step by step the history of each possible computation, whileabstract semantics refers
to any approximation of trace semantics. Note that the semantics modeling the input-
output (observational) behaviour of a program is an elementof this hierarchy because
it is an abstraction of trace semantics.

Our idea is to provide a formal basis for code obfuscation by considering the effects
that obfuscating transformations have on trace semantics and by modeling attacks as
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abstractions of trace semantics. In order to reason about the semantic aspects of obfus-
cation we refer to the formal framework introduced by Cousotand Cousot [16], where
the relation between syntactic and semantic transformations is formalized in terms of
abstract interpretation by considering programs as abstractions of their semantics.

Main contribution. We provide a theoretical framework based on program seman-
tics and abstract interpretation, in which we formalize, study and relate different ob-
fuscating transformations with respect to their potency. It is worth remarking that our
formal framework is language-independent, meaning that itcan deal with the trace se-
mantics of any programming language that can be specified as atransition system. Our
examples will be instantiated in a simple imperative language.

As noticed above, attacks – static and dynamic analyzers – can be modeled as ab-
stractions of trace semantics, where the abstract domain ofcomputation modeling an
attack precisely captures the amount of information that the attack is able to deduce
while observing a program. Thus, a coarse abstraction models an attack that observes
simple semantic properties, while finer abstractions, being closer to program trace se-
mantics, model attacks that are interested in the details ofcomputation. In this setting,
an attackA is defeated by a program transformationt, i.e., t is potent with respect
to A, when the semantic property modelingA is not preserved byt. Following this
observation we characterize the obfuscating behaviour of atransformationt in terms
of the most concrete propertyδt it preserves on program trace semantics. This allows
us to provide a formalization of code obfuscation that is parametric on the most con-
crete semantic property it preserves. In particular, any transformationt can be seen as
a δt-obfuscator that is potent with respect to any attackA finer thanδt, and that pre-
serves all the aspects of program behaviour that are expressed byδt. According to this
formalization, any program transformation can be seen as a code obfuscation where
the most concrete preserved property precisely expresses what can still be known af-
ter obfuscation, namely what it is possible to deduce of the original program from the
analysis of the obfuscated one. In order to characterize theobfuscating behaviour of
any given program transformation, we provide a systematic methodology for deriving
the most concrete property preserved by a given transformation.

Since the semantic properties are modeled, as usual, by abstractions of trace seman-
tics, we can compare different obfuscating transformations with respect to the degree
of abstraction of the most concrete property they preserve.Given aδ-obfuscator, the
more abstractδ is, the bigger is the set of attacks that it is able to defeat, which means
that the transformation potency is high and many details of the original program be-
haviour have been lost during the obfuscation phase. On the other hand, whenδ is
close to trace semantics, it means that few details of the original program have been
hidden by the obfuscation and that the transformation has a low potency.

The semantics-based definition of code obfuscation, together with the abstract in-
terpretation-based model of attacks, turns out to be particularly useful when consid-
ering control code obfuscation by opaque predicate insertion. Here, the obfuscating
transformation confuses the original control flow of programs by inserting “fake” con-
ditional branches guarded byopaque predicates: predicates whose constant value is
known by the obfuscator but which is difficult for an attackerto deduce. This confuses
any attack that is not aware of the constant value of the inserted opaque predicate and
erroneously sees both branches as possible (even if one is never executed at run time).
Even if opaque predicate insertion does not significantly affect program trace seman-
tics, since during execution the opaque predicate always evaluates the same, it might
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considerably affect the abstract semantics computed on theabstract domain modeling
the attack. In this case, we have that an attack is able to break opaque predicate in-
sertion only if its abstract domain is precise enough to detect the opaqueness of the
inserted predicates. In particular, modeling attacks as abstract domains allows us to
prove that the degree of precision needed by an attack to break an opaque predicate
can be expressed as a completeness problem in abstract interpretation. This result is
particularly interesting because it provides a precise formalization of the amount of in-
formation needed by an attack to disclose a given opaque predicate. Moreover, we can
measure the resilience of an opaque predicate with respect to an attackerA in terms of
the amount of information thatA needs in order to disclose the opaque predicate, and
this allows us to compare the resilience of different opaquepredicates with respect to
A.

1.1 Related work

Some early attempts at technical software protection, later called code obfuscation,
are described in [24]. In recent years, code obfuscation hasattracted the interest of
researchers as a promising defence technique against malicious reverse-engineering
of software, leading to the design of different obfuscatingtransformations (e.g., [3,
4, 5, 8, 30, 33, 40]). Collberg et al. present a number of obfuscating transformations
classified according to the kind of information they target [7]. Layout obfuscatorsact
on code information that is unnecessary to its execution. These transformations include
the removal of comments and the change of identifiers. For example, by replacing
identifiers of methods and variables with meaningless identifiers, any information on
the functionality of a method or on the role of a variable is removed.Data obfuscators
operate instead on program data structures. These transformations may for example
alter how data are grouped together, making it more difficultfor a reverse-engineer to
restore the program’s data structure. These transformations can split, fold or merge
arrays in order to complicate the access to arrays, for example by transforming a two-
dimensional array in a one-dimensional array and vice versa. Data obfuscators may
also change how data are ordered. For example, they can reorder arrays using a function
f(i) to determine the position of thei-th element of the array, while thei-th element
is usually stored in thei-th position of the array.Control code obfuscatorsattempt
to confuse program control flow. These transformations often relay on the existence
of opaque predicates, whose insertion allows to break the original control flow of a
program.

Recall that the process of reverse-engineering an executable program typically be-
gins with a disassembly phase, which translates machine code to assembly code, then
is followed by a number of decompilation steps that try to recover high-level code from
assembly code. Thus, in order to complicate reverse-engineering, we can either con-
fuse the disassembly or the decompilation phase. Decompilation mainly involves static
analysis of assembly code, including data-flow, control-flow and type analysis. There-
fore, a program transformation that obstructs such static analyses acts as an obfuscating
technique. Most of the existing obfuscating transformations, including the ones pre-
sented above, focus on the decompilation phase (e.g., [5, 7,8, 40, 33]), while less
attention is paid to obstructing disassembly. However, recently, some work has been
done in the direction of obfuscating executable code in order to thwart well-known
static disassembly techniques, such as linear sweep and recursive traversal [30]. Ob-
structing correct disassembly can be achieved also by changing repeatedly the program
code while it executes [31].
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Wang et al. observe that any intelligent tampering attack requires knowledge of
the program semantics, usually obtained by static analysis[40]. Thus, they provide
a code obfuscation technique based on variable aliasing that drastically reduces the
precision of static analysis, because aliasing analysis iscomputationally hard. How-
ever, this approach is restricted to the case of intra-procedural analyses. A software
obfuscation technique based on obstructing inter-procedural analysis and on the dif-
ficulty of alias analysis is proposed in [33], together with atheoretical proof of its
effectiveness. Static analysis is conservative, meaning that the properties deduced by
static deobfuscating techniques are weaker than the ones that may actually be true (this
corresponds to an over-approximation). This guarantees soundness, although the in-
ferred properties may be so weak to be useless. On the other side, a dynamic analysis
precisely observes only a subset of all possible execution paths of a program (this cor-
responds to an under-approximation). Recent work on combining static and dynamic
program analysis seems to provide a set of heuristics for disclosing some obfuscating
techniques [39].

A well known negative theoretical result on code obfuscation is given by Barak
et al. [2], who show that code obfuscation is impossible. This result seems to pre-
vent code obfuscation entirely. However, this result is stated and proved in the context
of a rather specific model of code obfuscation. Barak et al. [2] define an obfuscator
as a program transformerO satisfying the following conditions: (1)O(P ) is func-
tionally equivalent toP , (2) the slowdown ofO(P ) with respect toP is polynomial
both in time and space, and (3) anything that one can compute from O(P ) can also
be computed from the input-output behaviour ofP . Hence, this formalizes an “ideal”
obfuscator, where the original and obfuscated program haveidentical behaviour (1,2)
and where the obfuscated program is unintelligible to an adversary (3). In practical
contexts, these constraints can be relaxed. In particular,in [3, 7, 8, 33, 40] the authors
consider a number of obfuscating transformations that makethe obfuscated program
significantly slower or larger than the unobfuscated program. These proposals even
allow the obfuscated program to have different side effectsthan the original one, or not
to terminate when the original program terminates with an error condition. The only
requirement they make is that theobservable behaviour— the behaviour observed by a
generic user — of the two programs should be identical. Besides, many researchers are
interested in transformations that raise the difficulty of reverse-engineering a program,
even if they do not make it impossible as required by point (3)of the definition of Barak
et al. In fact, protection can be guaranteed by a sufficientlydifficult transformation that
requires so many resources to be undone, as to make it uneconomical for an adversary
to analyze the transformed program. Moreover, the “ideal” obfuscator of Barak et al.
has to be able to protecteveryprogram. In fact the impossibility of code obfuscation is
proved by providing a contrived class of functions that are not obfuscatable. It would
be interesting to characterize the portion of programs of practical interest to which this
negative result can be applied. By relaxing the constraint of Barak’s definition, we are
able to study the practical possibilities of obfuscating significant programs.

2 Preliminaries

2.1 Basic notions

Let S andT be two sets. Then℘(S) denotes the powerset ofS, S r T denotes the
set-difference betweenS andT , S ⊂ T denotes strict inclusion andS ⊆ T denotes
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inclusion.
〈P,≤〉 denotes a posetP with ordering relation≤, while 〈P,≤,∨,∧,⊤,⊥〉 de-

notes a complete latticeP , with ordering≤, least upper bound (lub) ∨, greatest lower
bound (glb) ∧, greatest element (top)⊤, and least element (bottom)⊥. Often,≤P
will be used to denote the underlying ordering of a posetP , and∨P , ∧P ,⊤P and⊥P
denote the basic operations and elements of a complete latticeP . Given two ordered
structuresC andA the notationC ∼= A denotes thatC andA are isomorphic. The
downward closure ofS ⊆ P is ↓ S

def
=

{

x ∈ P
∣

∣ ∃y ∈ S.x ≤ y
}

, and forx ∈ P ,
↓ x is a short-land for↓ {x}, and the upward closure↑ is dually defined.

We use the symbol⊑ to denote pointwise ordering between functions: ifX is any
set,P is a poset andf, g : X → P thenf ⊑ g if for all x ∈ X, f(x) ≤ g(x).
If f : S → T andg : T → Q theng ◦ f : S → Q denotes the composition of
f and g, i.e., g ◦ f = λx.g(f(x)). If f : C → C is a unary function then the
inverse image is defined asf−1(y) =

{

x
∣

∣ f(x) = y
}

. A functionf : P → Q on
posets is (Scott)-continuous whenf preserveslub’s of countable chains inP , while,
dually, it is co-continuous whenf preservesglb’s of countable chains inP . A mapping
f : C → D on complete lattices is additive(resp. co-additive) when for anyY ⊆
C, f(∨CY ) = ∨Df(Y ) (resp.f(∧CY ) = ∧Df(Y )). The least and greatest fixpoint of
an operatorf on a poset〈P,≤P 〉, when they exist, are respectively denoted bylfp

≤P f
andgfp≤P f , or by lfpf andgfpf when the partial order is clear from the context. The
well-known Knaster-Tarski’s theorem states that any continuous operatorf : C → C
on a complete latticeC admits a least fixpoint and the following characterization holds:
lfp≤Cf =

∨

i∈N f i(⊥C), where for anyi ∈ N andx ∈ C, the i-th power off in x
is inductively defined as follows:f0(x) = x; f i+1(x) = f(f i(x)). Dually, if f is
co-continuous thengfp≤Cf =

∧

i∈N f i(⊤C).

2.2 Abstract interpretation

According to a widely recognized definition:“Abstract interpretation is a general the-
ory for approximating the semantics of discrete dynamic systems” [12]. The key idea of
abstract interpretation is that the behaviour of a program at different levels of abstrac-
tion is an approximation of its (concrete) semantics. The concrete program semantics is
computed on the so-calledconcrete domain, i.e., the poset of mathematical objects on
which the program runs, here denoted by〈C,≤C〉 where the ordering relation encodes
relative precision:c1 ≤C c2 means thatc1 is a more precise (concrete) description than
c2. For instance, the concrete domain for a program with integer variables is simply
given by the powerset of integer numbers ordered by subset inclusion〈℘(Z),⊆〉. Ap-
proximation is encoded by anabstract domain〈A,≤A〉, which is a poset of abstract
values that represent some approximated properties of concrete objects. Also in the
abstract domain, the ordering relation models relative precision:a1 ≤A a2 means that
a1 is a better approximation (i.e., more precise) thana2. For example, we may be
interested in the sign of an integer variable, so that a simple abstract domain for this
property may beSign = {⊤,−, 0,+,⊥}where⊤ gives no sign information, while the
meaning of−(resp.0)(resp.+) is that the value of a defined variable is negative(resp.
null)(resp. positive), and⊥ represent an uninitialized variable or an error (e.g., division
by zero). Thus, we have that⊥ < −, 0,+ < ⊤, so that, in particular, the abstract
values−, 0 and+ are incomparable.
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Galois connections. In standard abstract interpretation, concrete and abstract do-
mains are related through a Galois connection (GC), i.e., anadjunction [14, 15]. With

the two equivalent notations(C,α, γ,A) andC −→←−α

γ
A we denote a GC where

the concrete domainC is related to the abstract domainA by the abstraction map
α : C → A and the concretization mapγ : A → C that give rise to an adjunction:
∀a ∈ A, c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). Thus,α(c) ≤A a and, equivalently,
c ≤C γ(a) means thata is a sound approximation inA of c. GCs ensure thatα(c) ac-
tually provides the best possible approximation in the abstract domainA of the concrete
valuec ∈ C. In the abstract domainSign, for example we have thatα({−1,−5}) = −
whileα({−1,+1}) = ⊤.

Recall that a tuple(C,α, γ,A) is a GC iff α is additive iff γ is co-additive. This
means that whenever we have an additive(resp. co-additive)functionf between two
domains we can always build a GC by considering the right(resp. left) adjoint map
induced byf . In fact, every abstraction map induces a concretization map and vice
versa, formallyγ(y) =

∨
{

x
∣

∣ α(x) ≤ y
}

andα(x) =
∧

{

y
∣

∣ x ≤ γ(y)
}

.
When a GC is such thatα ◦ γ = λx.x, we have aGalois insertion(GI) denoted

C →−→←−α

γ
A. Any GC may be lifted to a GI by identifying, in an equivalenceclass, those

values of the abstract domain with the same concretization.
Of course, abstract domains can be compared with respect to their relative degree

of precision: ifA1 andA2 are both abstract domains of a common concrete domain
C, A1 is more precise thanA2, denoted byA1 ⊑ A2, when for anya2 ∈ A2 there
existsa1 ∈ A1 such thatγ1(a1) = γ2(a2), i.e., whenγ2(A2) ⊆ γ1(A1). For example,
the well-known abstract domain of integer intervals is obviously more precise than the
sign abstract domainSign.

Upper closure operators. Abstract interpretation can be equivalently formalized in
terms ofupper closure operatorsinstead of Galois connections [15]. The two ap-
proaches are equivalent, modulo isomorphic representations of the domain object. An
upper closure operator, or closure, on poset〈C,≤C〉 is an operatorϕ : C → C that is
monotone, idempotent and extensive (i.e.,∀x ∈ C : x ≤C ϕ(x)). Let us recall that
each closureϕ is uniquely determined by the set of its fixpoints, which is its image
ϕ(C). Moreover, a subsetX ⊆ C is a set of fixpoints of a closure iffX is aMoore
family of C, i.e.,X = M(X)

def
=

{

∧ S
∣

∣ S ⊆ X
}

, where∧∅ = ⊤ ∈ M(X). For
anyX ⊆ C, M(X) is called theMoore closureofX in C, i.e.,M(X) is the least (with
respect to subset inclusion) subset ofC which containsX and which is a Moore family
of C. Often, we will identify closures with their sets of fixpoints. If (C,α, γ,A) is
a GC thenϕ

def
= γ ◦ α is the closure associated withA, such thatϕ(C) is a complete

lattice isomorphic toA, i.e.,ϕ(C) ∼= A. Given a GC(C,α, γ,A), the closureγ ◦ α
associated to the abstract domainA can be thought of as the “logical meaning” ofA
in C, since this is shared by any other abstract representation for the objects ofA.
Thus, the closure operator approach is convenient when reasoning about properties of
abstract domains independently from the representation oftheir objects.

Lattice of abstract interpretation. The ordered set〈uco(C),⊑〉 of all upper closure
operators ofC, plays the role of the lattice of abstract interpretations of C [14, 15]. Let
ϕi(C) ∼= Ai, the pointwise ordering onuco(C) corresponds precisely to the standard
ordering used to compare abstract domains with regard to their precision:A1 is more
precise thanA2, i.e.,A1 ⊑ A2, iff ϕ1 ⊑ ϕ2 in uco(C) iff ϕ2(C) ⊆ ϕ1(C). Let
{Ai}i∈I ⊆ uco(C): ⊔i∈IAi is the least (with respect to⊑) common abstractionof
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all theAi’s, i.e., the most concrete domain inuco(C) which is abstraction of allAi’s.
Moreover⊓i∈IAi is thereduced productof all theAi’s, i.e., the most abstract domain
in uco(C), which is more concrete than everyAi’s. Complementationcorresponds
to the inverse of reduced product [10], namely an operator that, given two domains
C ⊑ D, gives as result the most abstract domainC ⊖D, whose reduced product with
D is exactlyC, i.e., (C ⊖D) ⊓ D = C. Therefore we have thatC ⊖ D

def
= ⊔ {E ∈

uco(C)|D ⊓E = C}.

Soundness and completeness of abstract functions.In abstract interpretation, a
concrete semantic operation is then formalized as any (possibly n-ary) functionf :
C → C on the concrete domain. For example, a (unary) integer squaring operationsq
on the concrete domain℘(Z) is given bysq(X) = {x2 ∈ Z | x ∈ X}, while an integer
increment (by one) operationsucc is given bysucc(X) = {x + 1 ∈ Z | x ∈ X}.
A concrete semantic operation must be approximated on some abstract domainA by
a sound abstract operationf ♯ : A → A. This means thatf ♯ must be a correct ap-
proximation off in A: for any c ∈ C anda ∈ A, if a approximatesc thenf ♯(a)
must approximatef(c). This is therefore encoded by the condition: for allc ∈ C,
α(f(c)) ≤A f ♯(α(c)). For example, a correct approximationsq♯ of sq on the abstract
domainSign can be defined as follows:sq♯(⊥) = ⊥, sq♯(0) = 0, sq♯(−) = +,
sq♯(+) = + andsq♯(⊤) = ⊤; while a correct approximationsucc♯ of succ on Sign

is given by: succ♯(⊥) = ⊥, succ♯(−) = ⊤, succ♯(0) = +, succ♯(+) = + and
succ♯(⊤) = ⊤. Soundness can be also equivalently stated in terms of the concretiza-
tion map, i.e., for alla ∈ A, f(γ(a)) ≤C γ(f ♯(a)). These two equivalent soundness
conditions can be strengthened to two different (i.e., incomparable) notions ofcom-
pleteness. Whenα ◦ f = f ♯ ◦α holds, the abstract functionf ♯ is said to bebackward-
completefor f . On the other hand, whenf◦γ = γ◦f ♯ holds,f ♯ is forward-completefor
f . Both backward(B) and forward(F)-completeness encode an ideal situation where
no loss of precision arise in abstract computations:B-completeness considers abstrac-
tions on the output of operations whileF-completeness considers abstractions on the
input to operations. For example,sq♯ is B-complete forsq on Sign while it is not
F-complete becausesq(γ(+)) = {x2 ∈ Z | x > 0} ( {x ∈ Z | x > 0} = γ(sq♯(+)).
Also, observe thatsucc♯ is neither backward nor forward complete forsucc on Sign .
The two notions of completeness can be expressed in terms of closure operators, in par-
ticular,ϕ ∈ uco(℘(C)) is B-complete forf if ϕ◦f = ϕ◦f ◦ϕ, while it isF-complete
for f whenf ◦ ϕ = ϕ ◦ f ◦ ϕ. While any abstract domainA induces the so-called
canonicalbest correct approximationfA

def
= α ◦ f ◦ γ : A → A of f : C → C in A,

not all abstract domains induce aB(F)-complete abstraction. It turns out that bothB

andF-completeness are abstract domain properties, namely theyonly depend on the
structure of the underlying abstract domain in the sense that the abstract domainA
determines whether it is possible to define a backward or forward complete operation
f ♯ onA [22, 23]. The following result gives the basis for the definition of a system-
atic method for minimally refining a domain in order to make itcomplete for a given
function.

Theorem 1 [22, 23] Letf : C → C be continuous andϕ ∈ uco(C). Then:

• ϕ is B-complete forf iff
⋃

y∈ϕ(C) max(f
−1(↓ y)) ⊆ ϕ(C)

• ϕ is F-complete forf iff ∀x ∈ ϕ(C).f(x) ∈ ϕ(C)
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This means thatB-complete domains are closed under maximal inverse image ofthe
functionf , whileF-complete domains are closed under direct image off . Let us recall
the definition of completeness refinement operatorsRB

f andRF

f .

Definition 1 [22] Let C be a complete lattice andf : C → C be a continuous
function. We defineRB

f ,R
F

f : uco(C)→ uco(C) such that:

• RB
f = λX ∈ uco(C).M(

⋃

y∈X max(f
−1(y)));

• RF
f = λX ∈ uco(C).M(f(X)).

Thus, given a continuous functionf : C → C and an abstract domainA ∈ uco(C),
the more abstract domain which includesA and isB-complete forf is gfp(λX.A ⊓
RB
f (X)), while the more abstract domain which includesA and isF-complete forf is

gfp(λX.A ⊓RF

f (X)) [22, 23].

Abstract semantics. As observed earlier, one interest of abstract interpretation the-
ory is the systematic design of approximate semantics of programs. Let us consider
the concrete semanticsS[[P ]] of programP given, as usual, in fixpoint formS[[P ]] =
lfp

⊑F [[P ]], where the semantic transformerF [[P ]] is monotone an defined on the con-
crete domain of objectsC. Given a GC(C,α, γ,A), the abstract semanticsSA[[P ]]
can be chosen aslfp≤AFA[[P ]], whereFA = α ◦ F ◦ γ is given by the best correct
approximation ofF in A. The following well known result (see e.g., [15]) states that
if the abstract domainA is B-complete for a monotone functionf : C → C, then
lfp≤AfA = α(lfp≤Cf).

Theorem 2 [FIXPOINT TRANSFER] Given a GC(C,α, γ,A), and a concrete mono-
tone functionf : C → C, if α ◦ f = fA ◦ α (resp.α ◦ f ≤A fA ◦ α) then
α(lfp≤Cf) = lfp≤AfA (resp.α(lfp≤Cf) ≤A lfp≤AfA).

This means that if the abstract domain isB-complete for the semantic transferF , then
the abstract semantics coincides with the abstraction of the concrete semantics, i.e.,
SA[[P ]] = α(S[[P ]]).

2.3 Syntactic and semantic program transformations

A program transformation is a meaning-preserving mapping defined on programming
languages [35], whose aims are, for example, to improve the reliability, the produc-
tivity, the maintenance, the security, or the analysis of code. Commonly used pro-
gram transformations include constant propagation [29], partial evaluation [9, 28], slic-
ing [41], reverse-engineering [42], compilation [37], code obfuscation [8] and software
watermarking [6]. In [16] Cousot & Cousot formally define therelation between syn-
tactic and semantic program transformations in terms of abstract interpretation. In
particular, the authors provide a language-independent methodology for systematically
deriving syntactic program transformations as approximations of the semantic ones (for
which it is easier to prove meaning preservation).

In the following, syntactic arguments are between double square brackets[[...]]
while semantic and mathematical arguments are between round brackets(...). Given
the setP of all possible programs, letS[[P ]] ∈ D denote the semantics of program
P ∈ P. The semantic domainD is a poset〈D,⊑〉, where the partial order⊑ denotes
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relative precision, i.e.,Q ⊑ S means that semanticsS contains less information than
semanticsQ. The semantic ordering⊑ induces an orderP on the domainP of pro-
grams, whereP P Q

def
= (S[[P ]] ⊑ S[[Q]]). Thus,〈P/

≖
,P〉 is a poset andP/

≖
denotes

the classes of syntactically equivalent programs, whereP ≖ Q
def
= (S[[P ]] = S[[Q]]).

According to Cousot [16], we denote witht : P→ P a syntactic program transfor-
mation and witht : D→ D its semantic counterpart that, given the semanticsS[[P ]] of
programP , returns the semanticsS[[t[[P ]]]] of the syntactically transformed program. A
program transformationt is correctif it is meaning preserving with respect to someob-
servational abstractionαO, namely if∀P ∈ P : αO(S[[P ]]) = αO(S[[t[[P ]]]]), where
αO could be, for example, the observation of the input-output behaviour of programs.
Considering programs as abstractions of their semantics leads to the following Galois
insertion:

〈D,⊑〉 →−→←−pS 〈P/
≖
,P〉 (1)

wherep[S] is the simplest program whose semantics upper approximatesS ∈ D. Ob-
serve that (1) is a Galois insertion thanks to the fact that programs are considered up to
syntactic equivalence. In fact, given a programP ∈ P, p(S[[P ]]) ≖ P but potentiallyp(S[[P ]]) may be different fromP because of dead code elimination. Thus,p(S[[P ]])
andP are syntactically equivalent since they differ only in the potential presence of
dead code that does not appear in the semantics.p t

t

P

S[[P ]]

t[[P ]] Q p(t(S[[P ]]))

t(S[[P ]]) ⊑ S[[t[[P ]]]]

αO(S[[P ]]) = αO(t(S[[P ]])) = αO(S[[t[[P ]]]])

S Sp
Figure 1: Syntactic-Semantic Program Transformations

The scheme in Figure 1 shows that each semantic transformation induces a syntac-
tic transformation and vice versa:

t(S[[P ]])
def
= S[[t[[p(S[[P ]])]]]] t[[P ]]

def
= p(t(S[[P ]]))

In particular, the above equation on the right expresses a syntactic transformation as an
abstraction of the corresponding semantic transformation. In the following, we show
how from this formalization it is possible to derive a systematic methodology for the
design of syntactic transformations from the corresponding semantic ones. Observe
that when the semantic transformationt relies on results of undecidable problems,
any effective algorithmt is an approximation of the ideal transformationp ◦ t ◦ S.
This means that, in general,p(t(S[[P ]])) P t[[P ]] and from Galois insertion (1) this is
equivalent tot(S[[P ]]) ⊑ S[[t[[P ]]]].

Any program transformation results, in general, in a loss ofinformation on program
semantics [16]. This approximation can be formalized in terms of the following Galois

connection:〈D,⊑〉 −→←−
t

γt

〈D,⊑〉, that composed with Galois connection (1) gives

rise to the Galois connection:〈P/
≖
,P〉 −→←−tγt 〈P/

≖
,P〉. This means that, in general,

syntactic and semantic transformations can both be seen as abstractions. Following this
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observation, let us elucidate the steps that lead to the systematic designs of the syntactic
transformationt def

= p ◦ t ◦ S starting from the semantic transformationt:

Step 1 p(t(S[[P ]])) = p(t(lfpF [[P ]])) where the semantics is expressed in fixpoint form:
S[[P ]] = lfpF [[P ]]

Step 2 p(t(lfpF [[P ]])) = p(lfpF̂ [[P ]]) whereF̂
def
= t◦F ◦γt follows from Theorem 2 with

abstractiont, i.e.,t(lfpF [[P ]]) = lfp(t ◦F ◦ γt)[[P ]] (resp.⊑ for approximations)

Step 3 p(lfpF̂ [[P ]]) = lfpF[[P ]] whereF def
= p ◦ F̂ ◦ S follows from Theorem 2 with

abstractionp, i.e.,p(lfpF̂ [[P ]]) = lfp(p ◦ F ◦ S)[[P ]]

Step 4 t[[P ]]
def
= lfpF[[P ]] (resp.P for approximations)

Given the fixpoint formalizationlfpF[[P ]] of the syntactic transformation, it is then pos-
sible to design an iterative algorithm on posets satisfyingthe ascending chain condition.

Algorithmic transformations. Let us say that a semantic transformationt : D→ D

is algorithmicif it is induced by a syntactic transformationt, i.e.,t = S ◦ t ◦ p, that is,
if there exists an algorithm whose effects on program semantics are exactly the ones of
transformationt.

Definition 2 A semantic transformationt : D → D is algorithmic if there exists an
algorithm, i.e., a syntactic transformation,t : P→ P such that:t = S ◦ t ◦ p.

In the following result we observe that the abstract domainP of programs isF-complete
for every concrete (semantic) algorithmic transformationt.

Lemma 1 Considering the Galois insertion〈D,⊑〉 →−→←−pS 〈P/
≖
,P〉 we have that the

abstract domainP is F-complete for every algorithmic transformationt.

PROOF: Given an algorithmic transformationt, we have to show thatS ◦p◦ t◦S ◦p =
t ◦ S ◦ p. Let X ∈ D:

S[[p(t(S[[p(X)]]))]] = S[[p(S[[t[[p(S[[p(X)]])]]]])]] [t = S ◦ t ◦ p, t algorithmic]
= S[[t[[p(S[[p(X)]])]]]] [p ◦ S = id]
= t(S[[p(X)]]) [S ◦ t ◦ p = t]

2

In particular, observe thatF-completeness means thatt ◦ S = S ◦ t, namely that there
is no loss of precision between the semantic and syntactic transformations when we
compare them on the concrete domainD of program semantics. This also implies thatt = p◦t◦S. Thus, when considering algorithmic semantic transformations, the schema
in Figure 1 commutes.

In this work we are interested in the study of the semantic counterpart of existing
obfuscators and these semantic transformations are clearly algorithmic, since code ob-
fuscation is, in general, an automatic program transformation. This means that there
is no loss of precision between the semantic and the syntactic specification of an ob-
fuscation. Moreover, given the semantic characterizationt of an obfuscator the sys-
tematic methodology proposed by Cousot and Cousot [16] and reported at the end of
Section 2.3, returns precisely the corresponding obfuscating algorithmt = p ◦ t ◦ S.
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Syntactic Categories:
n ∈ Z (integers)
X ∈ X (variable names)
L ∈ L� (labels)
E ∈ E (integer expressions)
B ∈ B (Boolean expressions)
A ∈ A (actions)
C ∈ C (commands)
P ∈ P (programs)

Value Domains:
B� = {true , false} ∪ {�} (truth values)
n ∈ Z (integers)
D� = D ∪ {�} (variable values)
ρ ∈ E = X→ D� (environments)
Σ = C × E (program states)

SYNTAX

E ::= n | X | E1 − E2

B ::= true | false | E1 < E2 | ¬B1 | B1 ∨ B2

A ::= X := E | X :=? | B

C ::= L : A → L′P ::= ℘(C)

SEMANTICS

Arithmetic Expr. E : E× E → D�

E[[n]]ρ
def
= n

E[[X]]ρ
def
= ρ(X)

E[[E1 − E2]]ρ
def
= E[[E1]]ρ − E[[E2]]ρ

Boolean Expr.B : B× E → B�

B[[true]]ρ
def
= true

B[[false]]ρ
def
= false

B[[E1 < E2]]ρ
def
= E[[E1]]ρ < E[[E2]]ρ

B[[¬B]]ρ = ¬B[[B]]ρ
B[[B1 ∨ B2]]ρ

def
= B[[B1]]ρ ∨ B[[B2]]ρ

Program Actions:A : A× E → ℘(E)

A[[true]]ρ
def
= {ρ}

A[[X := E]]ρ
def
= {ρ[X := A[[E]]]}

A[[X :=?]]ρ
def
=

˘

ρ′
˛

˛ ∃z ∈ Z : ρ′ = ρ[X := z]
¯

A[[B]]ρ
def
=

˘

ρ′
˛

˛ B[[B]]ρ′ = true ∧ ρ′ = ρ
¯

Figure 2: A simple programming language [16].

2.4 The programming language

In the following we refer to the simple imperative language introduced in [16] whose
syntax and semantics are reported in Figure 2. Given a setS, we useS� to denote the set
S ∪ {�}, where� represents an undefined value.1 Commands can be either conditional
or unconditional. A conditional command at labelL is of the formL : B → L′,
whereB is a boolean expression andL′ is the label of the command to execute when
B evaluates totrue. An unconditional command at labelL is of the formL : A→ L′,
whereA is an action andL′ is the label of the command to be executed next. An
action can be either an assignmentX := E or a random assignmentX :=? to variable

1We abuse notation and use� to denote undefined values of different types, since the typeof the undefined
value is usually clear from the context.

12



X , whereA is an arithmetic expression and? denotes a random value. Since each
command explicitly mentions its successors, a program doesnot need to maintain an
explicit sequence of commands and it can simply be specified as a set of commands,
i.e.,P = ℘(C). Thestop command is expressed byL : stop≖ L : skip → ι,
and theskip command byL : skip → L′

≖ L : true → L′. The following
example shows a program that computes the factorial which iswritten in the proposed
programming language:

a : X :=? → b d : stop
b : F := 1 → c e : F := F ∗X → f
c : (X = 1) → d f : X := X − 1 → c
c : ¬(X = 1) → e

In the following we report some auxiliary functions that allow us to isolate the labels
and variables of a command or a program and that will be usefulin the definition of the
semantics of the language:

lab[[L : A→ L′]]
def
= L lab[[P ]]

def
= ∪C∈P lab[[C]]

var[[L : A→ L′]]
def
= var[[A]] var[[P ]]

def
= ∪C∈P var[[C]]

suc[[L : A→ L′]]
def
= L′ act[[L : A→ L′]]

def
= A

Let L� be the set of program labels, letD� be the semantic domain of variables values,
and letvar[[A]] be the set of variables occurring in actionA. An environmentρ ∈ E

maps each variableX ∈ dom(ρ) to its valueρ(X) ∈ D�. GivenV ⊆ X, we denote
with ρ|V the restriction of environmentρ to the domaindom(ρ) ∩ V , and withρr V
the restriction of environmentρ to the domaindom(ρ) r V . The notationρ[X := n]
refers to environmentρ where valuen is assigned to variableX . Let E[[P ]] denote
the set of environments of programP , namely of those environments whose domain is
given by the set of program variables, i.e.,dom(ρ) = var[[P ]].

A program stateis a pair〈ρ, C〉, whereC is the command that has to be executed in
environmentρ. LetΣ

def
= E×C denote the set of all possible states, andΣ[[P ]]

def
= E[[P ]]×C the set of states of programP . As usual, thetransition relationC : Σ → ℘(Σ)

between states specifies the set of states that are reachablefrom a given state. Thus,
C(〈ρ, C〉) returns the set of states that might be reached when executing commandC
in the environmentρ, formally:

C(〈ρ, C〉)
def
=

{

〈ρ′, C′〉
∣

∣ ρ′ ∈ A[[act(C)]]ρ, suc[[C]] = lab[[C′]]
}

A state〈ρ, C〉 is a final/blocking state whenC(〈ρ, C〉) = ∅. The transition relation be-
tween states can be specified with respect to a programP , C[[P ]] : Σ[[P ]]→ ℘(Σ[[P ]]):

C[[P ]](〈ρ, C〉)
def
=

{

〈ρ′, C′〉 ∈ C(〈ρ, C〉)
∣

∣ ρ, ρ′ ∈ E[[P ]] ∧ C′ ∈ P
}

As usual, letΣ+ denote the set of all possible finite nonempty sequences of states,Σω

the set of all infinite sequences of states, andΣ∞ def
= Σ+ ∪ Σω. Given a sequence of

statesσ ∈ Σ∞, let |σ| ∈ N ∪ {ω} denote its length,σi its i-th element andσf its
final state whenσ ∈ Σ+. A finite maximal execution traceσ ∈ Sn[[P ]] of program
P is a finite sequenceσ0...σn−1 ∈ Σ+ of states of lengthn, i.e., |σ| = n, such that
each stateσi with i ∈ [1, n− 1] is a possible successor of the previous stateσi−1, i.e.,
σi ∈ C(σi−1), and the last stateσi−1 is a blocking state. LetT[[P ]] denote the set of
final/blocking states of programP , i.e.,T[[P ]] = {〈ρ, C〉 ∈ Σ[[P ]] | C(〈ρ, C〉) = ∅}.
The maximal finite trace semanticsS+[[P ]] of programP is S+[[P ]]

def
=

⋃

n>0 S
n[[P ]]
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and it can be computed aslfp⊆F+[[P ]], whereF+[[P ]] : ℘(Σ+[[P ]]) → ℘(Σ+[[P ]]) is
defined as:

F+[[P ]](X)
def
= T[[P ]] ∪

{

σiσjσ
∣

∣ σj ∈ C[[P ]](σi), σjσ ∈ X
}

An infinite execution traceσ ∈ Sω[[P ]] of a programP is an infinite sequenceσ0...σi...
∈ Σω of length |σ| = ω, such that each stateσi+1 is a successor of the previous
state, i.e.,σi+1 ∈ C(σi). Sω[[P ]] can be computed asgfp⊆Fω[[P ]], whereFω[[P ]] :
℘(Σω[[P ]])→ ℘(Σω[[P ]]) is defined as:

Fω[[P ]](X)
def
=

{

σiσjσ
∣

∣ σj ∈ C[[P ]](σi), σjσ ∈ X
}

As usual, themaximal trace semanticsS∞[[P ]] ∈ ℘(Σ∞) of programP is given by
S∞[[P ]]

def
= S+[[P ]] ∪ Sω[[P ]].

3 Code obfuscation as semantic transformation

Code obfuscation is defined as apotentprogram transformation that preserves theob-
servational behaviourof programs [5, 7, 8], where potent means that the transformed
(obfuscated) program is harder to understand than the original one. It is clear that the
standard definition of code obfuscation relies on the notionof potent transformation,
and therefore on a fixed metric for measuring program complexity, which is an old
problem [20, 26]. In the literature there are several different metrics for program com-
plexity that can be used according to the current need. For example, the complexity of
a program can be measured by the length of the program (the number of instructions
and arguments) [26], by the nesting level (the number of nested conditions) [27], or by
the data flow (the number of references to local variables) [34]. Given a metric for pro-
gram complexity it is possible to measure the potency of a transformation, namely how
much more difficult is the transformed program to understandthan the original one. It
is clear that, in order to design a good obfuscator, the potency of the transformation
should be maximized.

Definition 3 [5, 7, 8] A program transformationt : P→ P is an obfuscator if:

1. the transformationt is potent and

2. P andt[[P ]] have the same observational behaviour, i.e., ifP fails to terminate
or it terminates with an error condition thent[[P ]] may or may not terminate;
otherwiset[[P ]] must terminate and produce the same output asP .

Point 2 of the above (informal) definition requires the original and obfuscated program
to behave equivalently wheneverP terminates, whereas no constraints are specified
whenP diverges. This means that in order to classify a program transformationt
as an obfuscation, we have to analyze the behaviour of the corresponding semantic
transformationt = S ◦ t ◦ p only on the finite traces inS[[P ]] that terminate with
a final/blocking state. Thus, we should focus only on finite traces and consider the
maximal finite trace semantics domainΣ+ instead ofΣ∞ = Σ+∪Σω. GivenX ⊆ Σ∞,
we denote withX+ the set of finite traces ofX, i.e.,X+ = X∩Σ+, and withXω the set
of infinite traces ofX, i.e.,Xω = X ∩Σω. Given a transformationf : ℘(Σ+ ∪ Σω)→
℘(Σ+ ∪ Σω) we have that, in general,f(X+) 6∈ ℘(Σ+) andf(Xω) 6∈ ℘(Σω), which
means that a transformation on℘(Σ+ ∪ Σω) may not preserve the (non)termination
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of the input traces. However, this is not true when speaking of code obfuscation. In
fact, point 2 of Definition 3 says that a semantic obfuscatort = S ◦ t ◦ p should
transform finite traces into observationally equivalent finite traces, i.e.,∀X+ ∈ ℘(Σ+) :
t(X+) ∈ ℘(Σ+) andαO(t(X+)) = αO(X+), whereαO models the observation. In
particular, point 2 of Definition 3 is interested in preserving the input-output behaviour
of terminating computations, and it can be restated in termsof t = S ◦ t ◦p as follows:

∀P ∈ P, ∀σ ∈ S+[[P ]] : ∃η ∈ t(S+[[P ]]) : σ0 = η0 ∧ σf = ηf

It is possible to show that the semantic transformations that correspond to common
obfuscating algorithms such as opaque predicate insertion, semantic nop insertion,
variable renaming, substitution of equivalent commands and code reordering satisfy
the above condition. Thus, when considering the semantic aspects of an obfusca-
tion t that satisfies Definition 3, we focus only on the effects that the obfuscation
has on finite traces and consider the restriction oft = S ◦ t ◦ p to ℘(Σ+), i.e.,
t|℘(Σ+) : ℘(Σ+) → ℘(Σ+). In order to simplify the notation, from now on we will
write t : ℘(Σ+)→ ℘(Σ+) instead oft|℘(Σ+) : ℘(Σ+)→ ℘(Σ+).

Given a set of finite traces, i.e., a maximal finite trace semantics, it is possible to
derive the corresponding set of commands, i.e., the corresponding program, by collect-
ing all the commands that occur in the given traces [16]. Thisis formalized by functionp+ : ℘(Σ+) → P that maps set of traces in set of commands. In particular,p+ is
defined as follows:p+[X]

def
=

{

C
∣

∣ ∃σ ∈ X : ∃i ∈ [0, |σ|[: ∃ρ ∈ E : σi = 〈ρ, C〉
}

Since we are only interested in the effects of obfuscation onfinite traces, from now
on we consider the following specification of the Galois insertion (1) that defines the
relation between programs and their maximal finite trace semantics:

〈℘(Σ+),⊆〉 →−→←−p+

S+

〈P/
≖
,⊆〉 (2)

3.1 Modeling attacks

Code obfuscation aims at preventing malicious host attacksby obstructing the disclo-
sure of sensitive information about proprietary programs.Code obfuscation can pro-
vide an important defense against automatic malicious reverse-engineering attacks, but
it cannot provide a complete protection against malicious host attacks: a competent
programmer, who is willing to invest enough time and effort,will always be able to
reverse-engineer any obfuscated program. Thus, in order tounderstand the limits and
potentialities of code obfuscation we need to specify a model for automatic attacks.
Automatic reverse-engineering techniques typically consist in static program analysis
(e.g., data flow analysis, control flow analysis, alias analysis, program slicing) and
dynamic program analysis (e.g., dynamic testing, profiling, program tracing). Static
and dynamic program analyses can be formalized as instancesof abstract interpreta-
tion, which is a general theory for reasoning about program semantics introduced in
Section 2.2. Following this observation we model attacks, i.e., static and dynamic pro-
gram analyzers, as abstract domainsϕ ∈ uco(℘(Σ+)), where the properties encoded
in the abstract domainϕ are the ones in which the attacker is interested. In this setting,
the complete lattice of abstract domains〈uco(℘(Σ+)),⊑〉 provides the right frame-
work where to compare attacks with respect to their degree ofabstraction. A coarse
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abstraction models an attacker that observes simple semantic properties, while finer
abstractions model attackers that are interested in the details of computation. It is clear
that what an attacker can deduce from the observation of an obfuscated program de-
pends both on the property of interest of the attacker and on the particular obfuscation
used.

In this setting, being able to distinguish the properties, i.e., the abstractions, of
program semantics that are not preserved by an obfuscation coincides with the identi-
fication of the class of attacks against which the obfuscation is potent. In fact, when an
obfuscationt does not preserve a propertyϕ ∈ uco(℘(Σ+)), i.e., whenϕ(S+[[P ]]) 6=
ϕ(S+[[t[[P ]]]]), it means that an attacker that analyzes the behaviour of thetransformed
programS+[[t[[P ]]]] cannot deduce propertyϕ of the behaviour of the original program
S+[[P ]], which means that propertyϕ has been obfuscated byt. If, on the one hand,
the fact thatϕ(S+[[P ]]) 6= ϕ(S+[[t[[P ]]]]) ensures that obfuscationt obstructs the dis-
closure of propertyϕ, namely thatt is potent with respect toϕ, on the other hand
it does not guarantee that the obfuscation cannot be easily undone, namely thatt is
a resilient transformation. In the following, we provide a semantics-based definition
of code obfuscation that allows us to characterize the potency of an obfuscationt in
terms of the set of attacks thatt is able to obstruct. The proposed semantics-based
definition does not deal with the resilience of obfuscation,namely we do not provide a
general framework where to measure how difficult it is for an automatic attack to undo
an obfuscation. Thus, while our semantics-based approach to code obfuscation pro-
vides a general framework where to compare different transformations with respect to
their potency, the resilience of different obfuscations should be analyzed case by case
and it might not be possible to compare the resilience of different kind of obfuscations.
However, in Section 4.5 we analyze the resilience of controlcode obfuscation through
opaque predicate insertion. In this case, it turns out that the resilience of opaque predi-
cate insertion with respect to a given attack can be measuredin terms of completeness
of the abstract domain modeling the attack. This result allows us to compare the re-
silience of the insertion of different opaque predicates with respect to a given attack.

3.2 Semantics-based code obfuscation

If, on the one hand, obfuscating transformations attempt tomask program properties
in order to confuse the attackers, on the other hand they mustpreserve the observa-
tional behaviour of programs. According to the standard definition of obfuscation
(Definition 3), preservation of the observational behaviour is guaranteed by the preser-
vation of the input-output behaviour of terminating program executions. Recall that
program semantics formalizes program behaviour for every possible inputs. The set
of all program traces, i.e., the maximal trace semantics, expressing the evolution of
program states during every possible computation, is a possible formalization of pro-
gram behaviour, namely a possible program semantics. In theliterature there exist
many different program semantics. The most common ones include the big-step, ter-
mination and non-termination, Plotkin’s natural, Smyth’sdemonic, Hoare’s angelic
relational and corresponding denotational, Dijkstra’s predicate transformer weakest-
precondition and weakest-liberal precondition and Hoare’s partial and total axiomatic
semantics. In [13] Cousot defines a hierarchy of semantics, where the above seman-
tics are all derived by successive abstractions from the maximal trace semantics. In
this frameworkuco(℘(Σ∞)) is the lattice of abstract semantics, namely each clo-
sure inuco(℘(Σ∞)) represents an abstraction of the maximal trace semantics. As
argued earlier, when dealing with code obfuscation we consider the maximal finite
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trace semantics of programs computed on℘(Σ+), also known as theangelicseman-
tics. Observe that the angelic semantics can be formalized as an abstraction of the
maximal trace semantics computed on℘(Σ∞). In particular, the angelic semantics is
obtained by approximating sets of possibly finite and infinite traces with the set of fi-
nite traces only, i.e.,α+ : ℘(Σ∞) → ℘(Σ+) is defined asα+(X) = X ∩ Σ+, while
γ+ : ℘(Σ+)→ ℘(Σ∞) is given byγ+(Y) = Y ∪ Σω. Also the(natural) denotational
semantics DenSem, which abstracts away the history of the computation by observ-
ing only the input/output relation of finite traces and the input of diverging computa-
tions, can be formalized as an abstract interpretation of the maximal trace semantics:
DenSem(X) = {σ ∈ Σ+ | ∃δ ∈ X+. σ0 = δ0 ∧ σf = δf} ∪ {σ ∈ Σω | ∃δ ∈
Xω.σ0 = δ0}, whereX+ def

= X ∩ Σ+ andXω def
= X ∩ Σω. In this context, the fact

that Definition 3 requires the preservation of the input/output denotational semantics
on finite traces, i.e.,DenSem(S+[[P ]]) = DenSem(S+[[t[[P ]]]]), seems like a restriction
on the possible semantic properties that a program transformation could preserve. Our
idea is to relax this constraint by providing a definition of code obfuscation which is
parametric on the semantic properties to preserve on finite traces.

In order to provide a semantics-based notion of code obfuscation, we need to spec-
ify a semantics-based definition of transformation potency.

Definition 4 A program transformationt : P → P is potent if there is a property
ϕ ∈ uco(℘(Σ+)) and a programP ∈ P such that:ϕ(S+[[P ]]) 6= ϕ(S+[[t[[P ]]]]).

The idea is that a program transformationt is potent when there exists a semantic
propertyϕ ∈ uco(℘(Σ+)) that is not preserved byt, namely when there exists a
propertyϕ obfuscated byt. In fact, whenϕ(S+[[P ]]) 6= ϕ(S+[[t[[P ]]]]) it means that
when an attack analyzes the behaviour of the transformed program, it is not able to
derive propertyϕ of the behaviour of the original program. We have already observed
that when dealing with obfuscations we have thatS+ ◦ t = t ◦ S+, which means
that the potency of a transformationt with respect to a propertyϕ can be equivalently
expressed in terms of the semantic transformationt = S+ ◦ t ◦ p, i.e.,t is potent with
respect toϕ whenϕ(S+[[P ]]) 6= ϕ(t(S+[[P ]])).

According to Definition 4 any program transformation that isdifferent from iden-
tity would be potent with respect to some propertyϕ. Moreover, given a program
transformationt, each semantic propertyϕ ∈ uco(℘(Σ+)) can be classified either
as a preserved or as a masked property with respect tot. In order to distinguish be-
tween preserved and hidden properties it is useful to define the most concrete property
δt ∈ uco(℘(Σ+)) preserved by a transformationt on all programs. In order to prove
the existence of the most concrete property that a transformationt preserves, we need
to prove that the reduced product between all the abstract domainsϕi, which encodes
properties that are preserved byt on all programs, expresses a property that is preserved
by t on all programs. Thus, given the set{ϕi}i∈H of the properties preserved byt on
all programs, i.e.,∀P ∈ P, ∀i ∈ H : ϕi(S

+[[P ]]) = ϕi(S
+[[t[[P ]]]]), we need to show

that∀P ∈ P: (⊓i∈Hϕi)S
+[[P ]] = (⊓i∈Hϕi)S

+[[t[[P ]]]], which is easily proved by the
fact that∀P ∈ P: (⊓i∈Hϕi)S+[[P ]] = ∩i∈H(ϕiS

+[[P ]]) = ∩i∈H(ϕiS
+[[t[[P ]]]]) =

(⊓i∈Hϕi)S+[[t[[P ]]]]. Thus, there exists an unique most concrete preserved property
and it is computed as the greatest lower bound between the properties preserved byt
on programs:

δt def
= ⊓ {ϕ ∈ uco(℘(Σ+))|∀P ∈ P : ϕ(S+[[P ]]) = ϕ(S+[[t[[P ]]]])}

Equivalently,δt = ⊓{ϕ ∈ uco(℘(Σ+))|∀P ∈ P : ϕ(S+[[P ]]) = ϕ(t(S+[[P ]]))}, since
we are considering algorithmic transformations. The most concrete preserved property
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δt makes it then possible to classify each propertyϕ ∈ uco(℘(Σ+)) either as obfus-
cated or preserved by transformationt. In particular, every propertyϕ ∈ uco(℘(Σ+))
that is implied byδt, i.e., such thatδt ⊑ ϕ, is preserved by transformationt, while
every other property is obfuscated. In particular,ϕ⊖ (δt⊔ϕ) precisely expresses what
transformationt obfuscates of propertyϕ ∈ uco(℘(Σ+)). In fact, the least common
abstractionδt ⊔ ϕ represents what the two properties have in common; then, by “sub-
tracting” the common part fromϕ, we obtain whatt hides of the propertyϕ. Specifi-
cally, if propertyϕ is preserved, namely ifδt ⊑ ϕ, thenϕ ⊖ (δt ⊔ ϕ) = ⊤, while for
every obfuscated property we have thatϕ ⊖ (δt ⊔ ϕ) 6= ⊤, meaning that something
about propertyϕ has been lost during transformationt. Following this observation, the
set of properties that are masked by a program transformation t can be formalized as
follows:

Oδt = {ϕ ∈ uco(℘(Σ+)) | ϕ⊖ (δt ⊔ ϕ) 6= ⊤}

Oδt identifies exactly the set of attacks that are obstructed, i.e., defeated, byt. In fact,
ϕ ⊖ (δt ⊔ ϕ) = ⊤ iff ϕ = δt ⊔ ϕ iff δt ⊑ ϕ iff ϕ is preserved byt. Thus, a program
transformationt : P → P can be seen as an obfuscator that is harmless with respect
to any attack modeled by an abstractionϕ such thatδt ⊑ ϕ, and that is powerful
with respect to any attack modeled by an abstraction inOδt . Hence, the obfuscating
behaviour of a transformationt can be characterized in terms of the most concrete
propertyδt it preserves. This leads us to the following definition of code obfuscation.

Definition 5 t : P→ P is a δ-obfuscator ifδ = δt andOδ 6= ∅.

It is worth remarking that this semantics-based definition of code obfuscation is lan-
guage independent and it models the effects of obfuscation on the trace semantics of
any program written in a programming language that can be specified as a transition
system. Moreover, when considering attacks as static and dynamic analyzers that are
interested in semantic properties of programs, the proposed semantics-based definition
of code obfuscation provides a formalization of the informal notion of obfuscator given
by Collberg et al. [5, 7] and reported in Definition 3. In fact,every program transfor-
mation that is classified as an obfuscator by the standard definition is classified as an
obfuscator also by the semantics-based definition. In particular, the classO of pro-
gram transformations that are classified as obfuscators following Collberg’s definition
corresponds to the set ofδ-obfuscators whereδ is at least the denotational semantics.

Theorem 3 O = {δ-obfuscators| δ ⊑ DenSem}.

PROOF: We have to show thatO = {t | δt ⊑ DenSem, Oδt 6= ∅}. The condition
Oδt 6= ∅ requires transformationt to be potent, and it is therefore equivalent to point 1
of Definition 3. Thus, we have to show that the program transformations that preserve
at least theDenSemof programs are the ones that preserve the observational behaviour
as defined in Definition 3, namely that satisfy point 2 of Collberg’s definition.t : δt ⊑ DenSem

⇔ ∀P ∈ P : δt(S+[[P ]]) = δt(S+[[t[[P ]]]])
⇔ ∀P ∈ P, ∀σ ∈ S+[[P ]], ∃η ∈ S+[[t[[P ]]]]: σ0 = η0 ∧ σf = ηf
⇔ t preserves the observational behaviour according to Definition 3

2

The formalization of the notion of code obfuscation introduced by Definition 5 allows
us to consider every program transformation as a potential code obfuscator, where the
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potency of transformationt is characterized in terms of the most precise propertyδt
preserved byt. Moreover, it generalizes the standard definition of code obfuscation,
where obfuscating transformations are not forced to beDenSem-preserving but they can
also be more invasive as far as the preserved property maintains enough information
with respect to the current need. For example, let us consider an applicationP that
is responsible of keeping updated the total amounttot of the bank account of each
client, and an applicationQ that sends a warning to the bad clients every time their
total amounttot corresponds to a negative value. Assume that we are interested in
protecting applicationP through code obfuscation. It is clear that, in order to ensure
the proper execution of applicationQ, the obfuscated version of applicationP has to
preserve (at least) the sign of variabletot . This means that, we can allow obfuscations
that loose the observational behaviour of applicationP but not the sign of variabletot .
In this setting, a program transformation that replaces thevalue of variabletot with its
double2 ∗ tot is an obfuscation following our definition, while it is not anobfuscation
following Collbergs definition.

Moreover, it is clear that our notion of code obfuscation provides a more precise
characterization of the obfuscating behaviour of a programtransformationt even whent satisfies the Collbergs definition. In fact, while the standard notion of obfuscation
only distinguish between transformations that preserveDenSemand the ones that do
not preserveDenSem, our definition of code obfuscation relies on a much finer classi-
fication that distinguishes between every possible abstractions of trace semantics.

3.3 Constructive characterization ofδt
Since the obfuscating behaviour of a program transformationt is characterized in terms
of the most concrete propertyδt it preserves, it is important to provide a constructive
methodology for derivingδt from a given transformationt. We have already observed
that, when dealing with algorithmic transformations, a propertyϕ ∈ uco(℘(Σ+)) is
preserved byt if and only if it is preserved byt = S ◦ t ◦ p. In this section we refer
to the semantic properties preserved by the semantic transformationt since we find it
more convenient.

In the following we provide a constructive characterization of the most concrete
property preserved by a transformation in terms of its fixpoints. In particular, given a
semantic transformationt and a programP , we define a predicatePresP,t : ℘(Σ+)→
{true, false} that identifies the elements of℘(Σ+) that are fixpoints of a closure oper-
ator that encodes a property preserved byt on programP (Lemma 2). Next we show
that this property is exactly the most concrete property preserved byt on programP
(Theorem 4), and then we show howδt can be obtained as the least upper bound of the
most concrete properties preserved byt = p+ ◦ t ◦ S+ on each program (Theorem 5).

Given a programP and a semantic transformationt : ℘(Σ+)→ ℘(Σ+), we define
a domain transformerKP,t : uco(℘(Σ+)) → uco(℘(Σ+)) that returns the abstract
domain preserved byt onP that is closer to the input domainµ ∈ uco(℘(Σ+)).

KP,t
def
= λµ. ⊓ {ϕ ∈ uco(℘(Σ+)) | µ ⊑ ϕ ∧ ϕ(S+[[P ]]) = ϕ(t(S+[[P ]]))}

Intuitively KP,t loses the minimal amount of information with respect to a given ab-
stract domain in order to obtain a property preserved byt onP . Consequently,KP,t(id)
is the most concrete property preserved by transformationt on programP . By defini-
tionKP,t(id) is a closure operator and it is therefore uniquely determined by the set of
its fixpoints.

19



Let us consider the predicatePresP,t : ℘(Σ+) → {true, false} over set of traces.
Given a set of tracesX ∈ ℘(Σ+) we have thatPresP,t(X) = true when:

S+[[P ]] ⊆ X ⇔ t(S+[[P ]]) ⊆ X

Hence, predicatePresP,t does not distinguish between the set of original tracesS+[[P ]]
and their obfuscationt(S+[[P ]]), namely it does not distinguish between the behaviour
of the original and obfuscated program. The following result shows that the elements
X ∈ ℘(Σ+) that satisfyPresP,t form an abstract domain that encodes a property that
is preserved by transformationt on programP .

Lemma 2 Given a transformationt : ℘(Σ+) → ℘(Σ+) and a programP ∈ P, there
existsϕP,t ∈ uco(℘(Σ+)) such thatϕP,t(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)},
moreoverϕP,t is preserved by transformationt on programP .

PROOF: Let us show that{X ∈ ℘(Σ+) | PresP,t(X)} is a Moore family. It is clear
thatS+[[P ]] ⊆ Σ+ ⇔ t(S+[[P ]]) ⊆ Σ+, and thereforeΣ+ ∈ {X | PresP,t(X)} is
the top element. We have to show that the set{X ∈ ℘(Σ+) | PresP,t(X)} is closed
underglb, namely that given{Xi}i∈I such that∀i ∈ I : PresP,t(Xi) = true, then
Pres(∩i∈IXi) = true. In fact we have thatS+[[P ]] ⊆ ∩i∈IXi iff ∀i ∈ I : S+[[P ]] ⊆
Xi iff ∀i ∈ I : t(S+[[P ]]) ⊆ Xi iff t(S+[[P ]]) ⊆ ∩i∈IXi. This proves that there exists
a closure operator, denotedϕP,t ∈ uco(℘(Σ+)), such thatϕP,t(℘(Σ+)) = {X ∈
℘(Σ+) | PresP,t(X)}.

Now we have to prove that the property expressed byϕP,t ∈ uco(℘(Σ+)) is pre-
served byt on P , namely thatϕP,t(S+[[P ]]) = ϕP,t(t(S

+[[P ]])). Let X1 be the best
approximation ofS+[[P ]] in ϕP,t(℘(Σ+)), namely letϕP,t(S+[[P ]]) = X1. This means
that S+[[P ]] ⊆ X1 and sincePresP,t(X1) = true we have thatt(S+[[P ]]) ⊆ X1.
Now we have to prove thatX1 is the best approximation oft(S+[[P ]]) in ϕP,t(℘(Σ+)).
Assume thatϕP,t(t(S+[[P ]])) = X2 whereX2 < X1, namely that there exists an
elementX2 ∈ ϕP,t(℘(Σ+)) that approximatest(S+[[P ]]) better than whatX1 does.
This means thatt(S+[[P ]]) ⊆ X2 which, sincePresP,t(X2) = true, implies that
S+[[P ]] ⊆ X2. But this would imply thatϕP,t(S+[[P ]]) = X2 which contradicts the
hypothesisϕP,t(S+[[P ]]) = X1.

2

The following result shows that the closure operator whose fixpoints are characterized
by the predicatePresP,t, i.e.,ϕP,t(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)}, is the most
concrete property preserved by transformationt on programP .

Theorem 4 KP,t(id)(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)}.

PROOF: Let us show thatKP,t(id) = ϕP,t. By definitionKP,t(id) is the most concrete
property preserved byt onP , while from Lemma 2,ϕP,t is a property preserved byt
onP , thereforeKP,t(id) ⊑ ϕP,t. Thus, we have to show thatϕP,t ⊑ KP,t(id), namely
thatKP,t(id)(℘(Σ+)) ⊆ ϕP,t(℘(Σ+)). Let us assume that∃X ∈ KP,t(id)(℘(Σ+))
such thatX 6∈ ϕP,t(℘(Σ+)). In this case we have thatPresP,t(X) = false, namely
thatS+[[P ]] ⊆ X while t(S+[[P ]]) 6⊆ X, or thatS+[[P ]] 6⊆ X while t(S+[[P ]]) ⊆ X.
Let us consider the case whereS+[[P ]] ⊆ X while t(S+[[P ]]) 6⊆ X (the other case is
analogous). LetW be the element ofKP,t(id)(℘(Σ+)) that better approximates both
S+[[P ]] andt(S+[[P ]]), namely letKP,t(id)(S

+[[P ]]) = KP,t(id)(t(S
+[[P ]])) = W. It

is clear thatW 6= X, since we are in the case wheret(S+[[P ]]) 6⊆ X. This implies that
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S+[[P ]] ⊆W andt(S+[[P ]]) ⊆W. SinceKP,t(id)(℘(Σ+)) is a Moore family we have
thatX∩W is an element ofKP,t(id)(℘(Σ+)). Moreover, it holds thatS+[[P ]] ⊆ X∩W,
while t(S+[[P ]]) 6⊆ X ∩W. This would imply thatKP,t(id)(S

+[[P ]]) = X ∩W while
KP,t(id)(t(S

+[[P ]])) = W, whereX ∩W 6= W since(X ∩W) < W, which leads to
the contradictionKP,t(id)(S

+[[P ]]) 6= KP,t(id)(t(S
+[[P ]])).

2

Therefore,KP,t(id)(℘(Σ+)) = {X ∈ ℘(Σ+) | PresP,t(X)} is the most concrete
property preserved by the transformationt on programP . Hence, the most concrete
property preserved byt on all programs, is given by the least upper bound between the
most concrete properties preserved on each programP ∈ P by t, i.e.,

⊔

P∈PKP,t(id).
More precisely the following holds.

Theorem 5 Let t : P→ P, thenδt =
⊔

P∈PKP,S+◦t◦p+(id).

PROOF: Let us first show that
⊔

P∈PKP,t(id) is the most concrete property pre-
served by transformationt on all programs. (1)

⊔

P∈PKP,t(id) is preserved: ob-
serve that given a programQ ∈ P thenKQ,t(id) ⊑

⊔

P∈PKP,t(id), by definition
KQ,t(id) is preserved byt on Q, therefore∀Q ∈ P :

⊔

P∈PKP,t(id)(S
+[[Q]]) =

⊔

P∈PKP,t(id)(t(S
+[[Q]])). (2)

⊔

P∈PKP,t(id) is the most concrete property pre-
served byt. Considerη ∈ uco(℘(Σ+)) where∀P ∈ P : η(S+[[P ]]) = η(t(S+[[P ]])),
then

⊔

P∈PKP,t(id) ⊑ η iff ∀P ∈ P : KP,t(id) ⊑ η which is true sinceKP,t(id)
is the most concrete property preserved byt on P . To conclude recall thatt is an
algorithmic transformation, therefore we can writet = S+ ◦ t ◦ p+.

2

The proposed characterization of the most concrete property preserved by a program
transformation is used in Section 3.5 in order to specify theobfuscating behaviour of
constant propagation, and in Section 4.3 in order to formalize the obfuscating behaviour
of opaque predicate insertion.

3.4 Comparing transformations

The semantics-based definition of obfuscation allows us to compare obfuscating trans-
formations with respect to their potency, namely accordingto the most concrete prop-
erty they preserve. In other words it allows us to formalize apartial order relation
between obfuscating transformations with respect to the sets of properties hidden by
each transformation. On the one hand, it comes natural to think that a transformationt
is more potent than a transformationt′ if it obfuscates more properties, namely ift de-
feats more attacks than whatt′ does. On the other hand, it may be interesting to know
which obfuscation is more potent with respect to a particular attackϕ ∈ uco(℘(Σ+)),
namely which obfuscation is better to use when we want to obstruct an attack modeled
by the abstract domainϕ. The idea is thatt is more potent thant′ with respect toϕ if t
obfuscates the propertyϕmore than whatt′ does, namely if the amount of information
thatt looses about propertyϕ is bigger than the one lost byt′.
Definition 6 Given two transformationst, t′ : P→ P and a propertyϕ ∈ Oδt ∩Oδt′ :
• t is more potent thant′, denoted byt′ ≪ t, if Oδt′ ⊆ Oδt
• t is more potent thant′ with respect toϕ, denotedt′ ≪ϕ t, if ϕ ⊖ (δt ⊔ ϕ) ⊑
ϕ⊖ (δt′ ⊔ ϕ)
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From the structure of the lattice of abstract interpretationsuco(℘(Σ+)) it is possible
to give an alternative characterization of the set of propertiesOδt obfuscated by a pro-
gram transformation. This leads to the observation of some basic properties that relate
transformations and preserved properties to the set of masked properties.

Proposition 1 Let δ, µ ∈ uco(℘(Σ+)).
- (1)Oδ =

{

µ ∈ uco(℘(Σ+))
∣

∣ µ /∈ ↑ δ
}

- (2) If µ < δ thenOµ ⊆ Oδ
- (3)Oδ⊔µ = Oδ ∪Oµ

PROOF:
- (1) Recall that given a latticeC and a domainD such thatC ⊑ D thenC ⊖ D =
⊤ ⇔ C = D [25]. Thus:µ ⊖ (δ ⊔ µ) 6= ⊤ ⇔ δ ⊔ µ 6= µ ⇔ µ 6∈↑ δ. Therefore
{µ ∈ uco(℘(Σ+)) | µ⊖ (δ ⊔ µ) 6= ⊤} is equivalent to{µ ∈ uco(℘(Σ+)) | µ 6∈↑ δ}.
- (2) We have to prove that∀ϕ ∈ Oµ thenϕ ∈ Oδ. By definition a propertyϕ belongs
toOµ iff ϕ ∈↑ µ = {ψ | µ ⊑ ψ}. By hypothesisµ < δ, therefore ifδ ⊑ ψ thenµ ⊑ ψ,
therefore↑ δ ⊆↑ µ. This means that ifϕ 6∈↑ µ thenϕ 6∈↑ δ, namely ifϕ ∈ Oµ then
ϕ ∈ Oδ.
- (3) We need to show thatϕ 6∈↑ δ ∧ ϕ 6∈↑ µ ⇔ ϕ 6∈↑ (δ ⊔ µ). This is equivalent to
ϕ ∈↑ δ ∧ ϕ ∈↑ µ ⇔ ϕ ∈↑ (δ⊔µ), which is true sinceδ ⊑ ϕ∧µ ⊑ ϕ ⇔ δ⊔µ ⊑ ϕ.

2

In the following section we consider a basic program transformation: the standard
constant propagation, and we show how it can be considered asa code obfuscator in
the proposed semantics-based framework.

3.5 Case study: Constant propagation

Constant propagation is a well-known program transformation that, knowing the values
that are constant at a given program point on all possible executions of a program, prop-
agates these constant values as far forward through the program as possible. The effects
of constant propagation on trace semantics have already been studied by Cousot and
Cousot in [16], where the authors derive an efficient algorithms for constant propaga-
tion as an approximation of the corresponding semantic transformation. In this section
we first describe the semantic transformation that performsconstant propagation, and
then we study its obfuscating behaviour by specifying the most concrete property it
preserves.

Semantic aspects of constant propagation [16].The residualR[[D]]ρ of an arith-
metic or boolean expressionD ∈ E∪B in an environmentρ is the expression resulting
from specializingD in that environment (see Table 1). When expressionD can be
fully evaluated in environmentρ, i.e.,var[[D]] ⊆ dom(ρ), we say that expressionD is
static in the environmentρ, denotedstatic[[D]]ρ. WhenD is not static it isdynamic.
It is clear thatstatic[[D]]ρ means that the specialization of expressionD in environ-
mentρ leads to a static value, i.e., a constant,R[[D]]ρ ∈ D� ∪ B�. Recall that the
correctness of expression specialization follows from thefact that given two environ-
mentsρ andρ′ such thatdom(ρ) ⊆ dom(ρ′) and∀x ∈ dom(ρ) : ρ(X) = ρ′(X), then
A[[R[[D]]ρ]]ρ′ = A[[D]]ρ′ and in particularA[[R[[D]]ρ]]ρ′ = A[[R[[D]]ρ]](ρ′ rdom(ρ)).
The specialization of actionA in environmentρ, denoted asR[[A]]ρ, produces both a
residual action and a residual environment as defined in Table 2.

22



Arithmetic Expressions R ∈ E× E → E
R[[n]]ρ

def
= n

R[[X]]ρ
def
= if X ∈ dom(ρ) thenρ(X) elseX

R[[E1 − E2]]ρ
def
= let Er

1 = R[[E1]]ρ andEr
2 = R[[E2]]ρ in

if Er
1 =� or Er

2 =� then�

else ifEr
1 = n1 andEr

2 = n2 thenn = n1 − n2

elseEr
1 − Er

2

Boolean Expressions R ∈ B× E → B
R[[E1 < E2]]ρ

def
= let Er

1 = R[[E1]]ρ andEr
2 = R[[E2]]ρ in

if Er
1 =� or Er

2 =� then�

else ifEr
1 = n1 andEr

2 = n2 andb = n1 < n2 thenb

elseEr
1 < Er

2

R[[B1 ∨ B2]]ρ
def
= let Br

1 = R[[B1]]ρ andBr
2 = R[[B2]]ρ in

if Br
1 =� or Br

2 =� then�

else ifBr
1 = true or Br

2 = true thentrue
else ifBr

1 = false thenBr
2

else ifBr
2 = false thenBr

1

elseBr
1 ∨ Br

2

R[[¬B]]ρ
def
= let Br = R[[B]]ρ in

if Br =� then�

else ifBr = true thenfalse
else ifBr = false thentrue
else¬Br

R[[true]]ρ
def
= true

R[[false]]ρ
def
= false

Table 1: Expression Specialization

Letαc
O

be theobservational abstractionthat has to be preserved by constant prop-
agation in order to ensure the correctness of the transformation. In [16]αc

O
: ℘(Σ+)→

℘(E+) is defined as follows:

αcO(X)
def
= {αcO(σ)|σ ∈ X} αcO(σ)

def
= λi.αcO(σi) αcO(〈ρ, C〉)

def
= ρ

Thus, functionαc
O

abstracts from the particular commands that produce a certain
environment evolution keeping only the environment trace.Given a set of finite traces
X ∈ ℘(Σ+), letXc denote the result of a preliminary static analysis detecting constants.
FormallyXc is a sound approximation ofαc(X) where:

αc(X) = λL.λX.
˙⊔
{ρ(X) | ∃σ ∈ X : ∃C ∈ C : ∃i : σi = 〈ρ, C〉, lab[[C]] = L}

where ˙⊔ is the pointwise extension of the least upper bound
⊔

in the complete lattice
Dc def

= D� ∪ {⊤,⊥}, where∀x ∈ Dc : ⊥ ⊑ x ⊑ x ⊑ ⊤. This means that, given
a programP and a labelL ∈ lab[[P ]], αc(S+[[P ]])(L) is an environment mapping
(denotedρcL for short when the set of traces is clear from the context) which, given a
variableX ∈ var[[P ]], returns the value ofX if X is constant at program pointL, ⊤
otherwise. Thus, a variableX of programP has a constant value at program pointL
whenαc(S+[[P ]])(L)(X) 6= ⊤, i.e.,ρcL(X) 6= ⊤.
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Actions R ∈ A× E → E ×A
R[[B]]ρ

def
= 〈ρ,R[[B]]ρ〉

R[[X :=?]]ρ
def
= 〈ρ \ X, X :=?〉

R[[X := E]]ρ
def
= if static[[E]]ρ then〈ρ[X := R[[E]]ρ], skip〉

else〈ρ \ X, X := R[[E]]ρ〉

Table 2: Action Specialization

The semantic transformationtc : ℘(Σ+) × αc(℘(Σ+)) → ℘(Σ+) performing
constant propagation is constructively defined as follows:

tc[X,Xc]
def
= {tc[σ,Xc] | σ ∈ X}

tc[σ,Xc]
def
= λi.tc[σi,X

c] tc[〈ρ, C〉,Xc(lab[[C]])]
def
= 〈ρ, tc[C, ρclab[[C]]]〉

where command specialization is defined as:

tc[L : A→ L′, ρcL]
def
= L : tc[A, ρcL]→ L′

tc[A, ρcL] = let 〈ρr, Ar〉
def
= R[[A]]ρ|{X∈X|ρc

L
(X)∈D�} in Ar

The correctness oftc follows from the fact that the transformed traces are valid traces,
i.e.,σ ∈ Σ+ ⇒ tc[σ,Xc] ∈ Σ+, and thatαc

O
is preserved bytc since the transformation

leaves the environments unchanged [16].
Following the steps elucidated at the end of Section 2.3 it ispossible to derive a

constant propagation algorithmtc = p+ ◦ tc ◦ S+. We omit here such details because
they are not significant for our reasoning.

Obfuscating behaviour of constant propagation. In order to understand the ob-
fuscating behaviour of constant propagation, we need to consider the most concrete
propertyδtc preserved by the transformationtc defined above. Following the charac-
terization proposed by Theorem 5 we can formalizeδtc as follows:

δtc =
⊔

P∈P{X ∈ ℘(Σ+) | PresP,tc(X)}

where, given a set of tracesX ∈ ℘(Σ+) we have thatPresP,tc(X) = true when:

S+[[P ]] ⊆ X ⇔ ∀Sc[[P ]] ⊒ αc(S+[[P ]]) : tc[S+[[P ]], Sc[[P ]]] ⊆ X

This means that an elementX is a fixpoint ofδtc if it is not able to distinguish between
the semantics of a program and its specialization through constant propagation, when-
ever constant propagation is performed based on a sound constant analysis. Thus, by
specializing with respect to any sound constant analysis every program trace semantics
given by a setZ ∈ ℘(Σ+), we obtain the set of fixpoints ofδtc . As shown in Sec-
tion 3.2, the characterization of the most concrete property δtc preserved by constant
propagation allows us to classify each attack inuco(℘(Σ+)) either as an harmful or as
a succeeding attack.

On the one hand, let us consider the closure operatorϕc
O

= γc
O
◦αc

O
corresponding

to the observational abstractionαc
O

, whereγc
O

is the concretization map induced by
abstractionαc

O
. It is clear that, since the observational abstractionαc

O
is preserved by
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a:= 1; b:=2; c:=3; d:=3; e:=0;
while B do

b:=2*a; d:=d+1; e:=e-a;
a:=b-a; c:=e+d;

endw

L1 : a:= 1; b:=2; c:=3; d:=3; e:=0;→ L2

L2 : B→ L3

L2 : ¬B→ L5

L3 : b:=2*a; d:=d+1; e:=e-a;→ L4

L4 : a:=b-a; c:=e+d;→ L2

L5 : stop→6 l

Table 3: A simple program from [11]

tc, thenϕc
O
∈ uco(℘(Σ+)) is preserved by transformationtc. Thus, by definition of

δtc , we have thatδtc ⊑ ϕc
O

and thereforeϕc
O
⊖ (ϕc

O
⊔ δtc) = ⊤, which, from a code

obfuscation point of view, means that propertyϕc
O

is not obfuscated by constant propa-
gation. In fact, propertyϕc

O
of the original program traces can be precisely learned also

by the analysis of the obfuscated traces, i.e., fromtc[S+[[P ]], Sc[[P ]]] for anySc[[P ]] that
correctly approximatedαc(S+[[P ]]).

On the other hand, every propertyϕ ∈ uco(℘(Σ+)) such thatϕ ⊖ (ϕ ⊔ δtc) 6= ⊤
is not preserved by constant propagation, meaning that the attacks modeled by these
abstractions are obstructed by constant propagation. In fact, wheneverϕ is such that
ϕ⊖ (ϕ ⊔ δtc) 6= ⊤, it means that one of the following holds:

• ∃X ∈ ϕ(℘(Σ+)), ∃P ∈ P, ∃Sc[[P ]] : αc(S+[[P ]]) ⊑ Sc[[P ]] such thatS+[[P ]] ⊆
X while tc[S+[[P ]], Sc[[P ]]] 6⊆ X

• ∃X ∈ ϕ(℘(Σ+)), ∃P ∈ P, ∃Sc[[P ]] : αc(S+[[P ]]) ⊑ Sc[[P ]] such thatS+[[P ]] 6⊆
X while tc[S+[[P ]], Sc[[P ]]] ⊆ X

In both cases we have thatϕ(S+[[P ]]) 6= ϕ(t(S+[[P ]])), which means that propertyϕ is
able to distinguish the trace semantics of the original program from the trace semantics
of the obfuscated one, namely that propertyϕ of the behaviour of the original program
cannot be derived by the analysis of the behaviour of the obfuscated program. Hence,
constant propagation is a potent transformation with respect to an attack modeled by
ϕ.

As an example of an attack obstructed by constant propagation, let us consider
propertyθ ∈ uco(℘(Σ+)), observing the environments and the type of the actions,
namely:

αθ(X)
def
=

{

αθ(σ)
∣

∣ σ ∈ X
}

αθ(σ)
def
= λi.αθ(σi)

αθ(〈ρ, C〉)
def
= (ρ, type[[act[[C]]]])

wheretype maps actions into the following set of action types{assign, skip, test}. It is
clear that this property is not preserved bytc, since in generaltype[[A]] 6= type[[R[[A]]ρ]]
(see Example 1). This means that propertyθ is obfuscated by constant propagation,
namelyθ ∈ Oδtc , i.e., θ ⊖ (θ ⊔ δtc) 6= ⊤. This means thatOδtc 6= ∅, thustc is an
δtc-obfuscator following Definition 5.
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Example 1 As observed above, propertyθ is not preserved bytc, namely it could
happen that:θ(S+[[P ]]) 6= θ(tc[S+[[P ]], Sc[[P ]]]). In the following we represent the
environment as a tuple(va, vb, vc, vd, ve) of values corresponding to the variables
a, b, c, d, e in a certain execution point. Let us run the program in Table3, and con-
sider the statesσ2 = 〈(1, 2, 3, 3, 0), L3 : b := 2 ∗ a; d := d + 1; e := e −
a → L4〉 and σ3 = 〈(1, 2, 3, 4,−1), L4 : a := b − a; c := e + d → L2〉. Their
transformed versions are:tc(σ2) = 〈(1, 2, 3, 3, 0), L3 : d := d + 1; e := e −
a → L4〉 and tc(σ3) = 〈(1, 2, 3, 4,−1), L4 : skip → L2〉. In this caseθ(σ2) =
〈(1, 2, 3, 3, 0), L3, L4, assign〉 and θ(σ3) = 〈(1, 2, 3, 4,−1), L4, L2, assign〉; while,
considering the transformed states,θ(tc(σ2)) = 〈(1, 2, 3, 3, 0), L3, L4, assign〉 and
θ(tc(σ3)) = 〈(1, 2, 3, 4,−1), L4, L2, skip〉, showing that the propertyθ is not pre-
served.

Moreover, we can show that what transformationtc hides of propertyθ is the type
of actions. In fact, consider the closureη ∈ uco(℘(Σ+)) which observes thetype of
actions:

η = λX. {σ | σ′ ∈ X and∀i. σi = 〈ρi, Ci〉, σ
′
i = 〈ρ′i, C

′
i〉 : type(Ci) = type(C′

i)}

Theorem 6 θ ⊖ (θ ⊔ δtc) = η.

PROOF: Let us prove thatθ ⊔ δtc = ϕc
O

. By definition ofδtc it follows thatδtc ⊑ ϕc
O

.
Let us show thatθ ⊑ ϕc

O
, namely thatθ(℘(Σ+)) ⊆ ϕc

O
(℘(Σ+)).

θ(X) = {σ | σ′ ∈ X and∀i. σi = 〈ρi, Ci〉, σ
′
i = 〈ρi, C

′
i〉 : type(Ci) = type(C′

i)}

ϕcO(X) = {σ | σ′ ∈ X and∀i. σi = 〈ρi, Ci〉, σ
′
i = 〈ρi, C

′
i〉}

Thus∀X ∈ ℘(Σ+) : θ(X) ⊆ ϕc(X) and thereforeθ ⊑ ϕc
O

. Moreoverϕc
O

is the most
concrete property thatθ andδtc have in common. In fact it is clear thatθ = ϕc

O
⊓η, and

since thetype of actions, i.e.,η, is not preserved bytc we have thatθ andδtc share only
the observation of the environments. Hence, we have thatθ ⊖ (θ ⊔ δtc) = θ ⊖ ϕc

O
=

(ϕc
O
⊓ η)⊖ϕc

O
= η. Where the last equation holds sinceη is the most abstract domain

which reduced product withϕc
O

returnsθ.

2

4 Control code obfuscation

By control code obfuscatorswe refer to obfuscating techniques that act by masking the
control flow behaviour of the original program. These transformations are often based
on the insertion of opaque predicates. Two major types of opaque predicates exist:
true opaque predicatesPT that always evaluate totrue, and false opaque predicates
PF that always evaluate tofalse. Figure 3 shows these types of opaque predicates,
where solid lines indicate paths that are always taken and dashed lines paths that will
never be taken. Given such opaque predicates, it is possibleto construct transforma-
tions that break up the flow of control of the program by inserting dead or buggy code
in branching guided by opaque predicates. Consider, for example, the insertion of a
branch instruction controlled by an opaque predicatePT . In this case the true path
starts with the next action of the original program, while the false path leads to termi-
nation or to buggy code. This confuses the attack that is not aware of the always-true
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Figure 3: Opaque predicates

evaluation of the opaque predicate, and it has to consider both paths as possible. It is
clear that this transformation does not affect program semantics, since at run time the
opaque predicate is always evaluated totrue and therefore the true path is the only one
to be executed. Opaque predicate insertion aims at confusing the program control flow,
which may not have significant effects on program trace semantics (since control flow
is an abstraction of trace semantics). The insertion of trueand false opaque predicates
might be detected by an attack that monitors the execution ofthe program and observes
that a certain predicate always evaluates totrue or to false. In order to overcome this
limitation Palsberg et al. [36] introduced the notion ofcorrelated opaque predicates
as a possible improvement over the standard opaque predicates presented above. The
idea is to define a family of correlated predicates which evaluate to the same value in
any single program run, but this value might vary over different program runs. It is
clear that the opaqueness of correlated opaque predicates is difficult to disclose even
for an attack that monitors program execution. The notion ofdynamic opaque predi-
cate has then been extended totemporary unstableor distributedopaque predicates in
a distributed environment [32]. The value of a temporary unstable opaque predicate
may change in different program points during the same run ofthe program. The idea
is that the opaque predicate value depends on predeterminedembedded message com-
munication patterns between different processes that maintain the opaque predicate.

In this section we focus on the semantic aspects of the insertion of standard opaque
predicates, namely on the insertion of opaque predicates that evaluates totrue or to
falseduring every execution of the program. Once we have understand the limits and
potentiality of standard opaque predicates we could discuss how it might be possible to
extend our reasoning to correlated opaque predicates and temporary unstable opaque
predicates. In particular, in the rest of this section we consider opaque predicates that
always evaluate totrue. It is clear that every result that we obtain in the case of true
opaque predicates can be restated in an analogous way for false opaque predicates.
Thus, from now on the term opaque predicate will refer to a standard opaque predicate
that always evaluates totrue.

In the following, we start by defining the semantic transformationtOP that mimics
the effects of opaque predicate insertion on program trace semantics. In particular,
tOP transforms the maximal finite trace semantics of the original program by simply
adding opaque tests that always evaluate totrue, and this clearly modifies the structure
of traces. Following the methodology proposed by Cousot andCousot in [16], and
elucidated in Section 2.3, we derive from the semantic transformationtOP its syntactic
counterpartp+◦tOP ◦S+. Next, we extendp+◦tOP ◦S+ in order to obtain an algorithmtOP : P → P that performs the insertion of true opaque predicates. In particular, the
syntactic transformationtOP inserts true opaque predicates (asp+◦tOP ◦S+) together
with their potential false path (added manually top+ ◦ tOP ◦ S+). Given the semantic
understanding of true opaque predicate insertion, we studyin details the obfuscating
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behaviour of this transformation with respect to attacks modeled, as usual, by abstract
domains.

4.1 Semantic opaque predicate insertion

Let I : P → ℘(L) be the result of a preliminary static analysis that given a program
returns the subset of its labels, i.e., program points, where it is possible to insert opaque
predicates. Usually the preliminary static analysis consists of a combination of liveness
analysis and static analyses. On the one hand, liveness analysis is typically used to en-
sure that no dependencies are broken by the inserted predicate and that the obfuscated
program is functionally equivalent to the original one. On the other hand, static analy-
ses such as constant propagation may be used to check whetheropaque predicates have
definitive valuestrue (or false), namely if the predicate can be trivially broken. Given a
programP , we assume to know the setI[[P ]] ⊆ lab[[P ]] of labels where we are allowed
to insert opaque predicates.

LetOP be a set of true opaque predicates. We define the semantic transformation
tOP : ℘(Σ+) × ℘(L) → ℘(Σ+) that inserts true opaque predicatesPT ∈ OP in
the traces inX ∈ ℘(Σ+) at program points identified by the allowed locations inK ∈ ℘(L). In particular, the semantic transformation that performsthe insertion of true
opaque predicatesPT from the setOP is defined as follows:

tOP [X,K]
def
= {tOP [σ,K] | σ ∈ X}

tOP [〈ρ, L : A→ L′〉σ,K]
def
=

{

〈ρ, L : A→ L′〉 tOP [σ,K] if L 6∈ K
〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉 tOP [σ,K] if L ∈ K

Here L̃ denotes an unused location: one that is not present in any of the commands
that occur in the traces inX, i.e., L̃ 6∈ lab[[p+(X)]]. By definition, transformation
tOP changes each trace ofX independently and state by state. In particular, letL
be a candidate label for opaque predicate insertion, and let〈ρ, L : A → L′〉 be the
(original) program state whose command is labeled byL. TransformationtOP inserts
the true opaque predicatePT at the candidate labelL with co-labelL̃, which results
in the transformed state〈ρ, L : PT → L̃〉. In order to preserve program functionality,
actionA has to be the first action of the true branch of the opaque predicatePT . This
is guaranteed by inserting the new state〈ρ, L̃ : A → L′〉. Thus, transformationtOP

performs the insertion of a true opaque predicatePT by replacing state〈ρ, L : A→ L′〉
with the two states〈ρ, L : PT → L̃〉〈ρ, L̃ : A → L′〉. It is clear that program
environment remains unchanged since test actions, such as opaque predicates, do not
affect the value of variables (at least in our model). Figure4 shows how program
traces are modified by opaque predicate insertion: the whitedots denote the states of
the original trace, while the black dots denote the states corresponding to the inserted
opaque tests.

It is clear that the semantic transformationtOP , that transforms traces by inserting
true opaque predicates fromOP in the allowed program points (∈ K), transforms finite
traces into finite traces (as shown by the following result).

Lemma 3 Givenσ ∈ Σ+ andK ∈ ℘(L), thentOP [σ,K] ∈ Σ+.
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Figure 4: Semantic opaque predicate insertion

PROOF: Given σ ∈ Σ+, let |σ| = n. Observe that∀i ∈ [1, n − 2] the transfor-
mation of the subtraceσi−1σiσi+1 of σ is still a trace, i.e.,tOP [σi−1σiσi+1,K] =
σ′
i−1t

OP [σiσi+1,K] ∈ Σ+. Two are the cases that we have to consider. (1) IfLi 6∈ K,
then we have thatσ′

i−1t
OP [σiσi+1,K] = σ′

i−1σiσ
′
i+1, andσi ∈ C(σ′

i−1), σ
′
i+1 ∈

C(σi) follow form σ ∈ Σ+; (2) on the other hand ifLi ∈ K, we have that:

σ′
i−1t

OP [σiσi+1,K] = σ′
i−1〈ρi, Li : PT → L̃i〉〈ρi, L̃i : Ai → Li+1〉σ

′
i+1

= σ′
i−1σ

a
i σ

b
iσ

′
i+1

whereσai = 〈ρi, Li : PT → L̃i〉 andσbi = 〈ρi, L̃i : Ai → Li+1〉. The test action
given by the opaque predicate does not change the state environment and it is clear that
σai ∈ C(σ′

i−1), σ
b
i ∈ C(σai ) andσ′

i+1 ∈ C(σbi ). This holds also for the initial and final
state, in fact ifL0 ∈ K thenσ1 ∈ C(σb0) and ifLn−1 ∈ K thenσbn−1 ∈ C(σn−2).
This proves that givenη = tOP [σ,K] then∀i: ηi ∈ C(ηi−1). Moreover if |K| = h
then|η| = n+ h = k, thusη ∈ Σ+.

2

4.2 Syntactic opaque predicate insertion

Given the semantic transformationtOP it is possible, following the procedure eluci-
dated in Section 2.3, to derive the syntactic transformation performing the insertion of
true opaque predicates form the setOP . In particular, transformationp+ ◦ tOP ◦ S+

simply inserts in a program commands which actions are true predicates fromOP .
Such syntactic transformation can be easily extended to perform code obfuscation
based on opaque predicates insertion (denoted astOP in the following), by inserting in
the transformed program also the dead code forming the falsebranch ofPT . In fact,
following the definition ofp+, these instructions cannot be present inp+ ◦ tOP ◦ S+,
since the commands of the never-executed false path are not present in the transformed
program semantics.

In the following we describe an opaque predicate insertion algorithm obtained
by extending (with the insertion of false paths) the algorithm systematically derived
through the methodology explained in Section 2.3 (details of the derivation are in the
Appendix). Let us denote withB a set of commands composing a possible false path of
a true opaque predicate (never executed at run time), and with lab[[B]] the label of the
starting point of the execution ofB. LetB range over a given collection of programs
B ⊆ ℘(C), and letNew ⊆ L be a set of “new” program labels.
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Opaque(P, I[[P ]],New , OP,B)
Q = ∅
T =

{

C ∈ P
∣

∣ suc[[C]] ∈ L[[P ]]
}

while there exists an unmarked commandL : A→ L′ in T do
markL : A→ L′

if L ∈ I[[P ]]

then takẽL ∈ New

New = New r L̃
let PT ∈ OP

(∗) letB ∈ B

Q = Q ∪ {L : PT → L̃; L̃ : A→ L′}
(∗) Q = Q ∪ {L : ¬PT → lab[[B]]}

elseQ = Q ∪ {L : A→ L′}
T = T ∪

{

C ∈ P
∣

∣ ∃C′ ∈ T : suc[[C]] = lab[[C′]]
}

The algorithmOpaque considers each commandL : A → L′ of the original pro-
gramP , if L is a candidate label for opaque predicate insertion, i.e., if L ∈ I[[P ]], the
commandsL : PT → L̃, L̃ : A→ L′ andL : ¬PT → lab[[B]], encoding opaque pred-
icate insertion are added to the setQ (initially empty), otherwise the original command
L : A → L′ is added toQ. In particular, commandL : ¬PT → lab[[B]] encodes the
false branch of the true opaque predicate and inserts a fake branch connecting the con-
trol flow of the original program to the control flow of the never executed code starting
at labellab[[B]]. In the end, the setQ corresponds to the obfuscated program. It is clear
that |New | ≥ |I[[P ]]|. Observe that the lines denoted by(∗), encoding the insertion
of commands forming the false path of the true opaque predicate, have been added
manually top+ ◦ tOP ◦S+. This happens because the false path of a true opaque pred-
icate is never executed and therefore its commands are not present in the transformed
program semantics. In fact, the insertion of an opaque predicate inserts “dead code”
in the program (i.e., code that is never executed) and, by definition, the abstractionp+

cannot return such dead code. Let us denote withtOP [[P, I[[P ]]]] the extended syntactic
transformation corresponding to algorithmOpaquereported above. Observe that, if on
the one handp+(tOP [S+[[P ]], I[[P ]]]) ≖ tOP [[P, I[[P ]]]] since they have the same trace
semantics, on the other handp+(tOP [S+[[P ]], I[[P ]]]) ⊆ tOP [[P, I[[P ]]]], since the term
on the right contains also the commands of the false paths of the inserted true opaque
predicates.

4.3 Obfuscating behaviour of opaque predicate insertion

In order to study the obfuscating behaviour of the insertionof true opaque predicates
we need to define the most concrete property preserved bytOP . Following Theorem 5
we have that the most concrete property preserved by opaque predicate insertion can
be characterized as follows:

δtOP =
⊔

P∈P{X ∈ ℘(Σ+) | PresP,tOP (X)}

where, givenX ∈ ℘(Σ+), we have thatPresP,tOP (X) = true when:

S+[[P ]] ⊆ X ⇔ ∀I[[P ]] ⊆ lab[[P ]] : tOP [S+[[P ]], I[[P ]]] ⊆ X

This means that a set of tracesX is “preserved” by opaque predicate insertion ifX

contains all the traces that can be obtained from the opaque-free traces inX by insert-
ing opaque predicates fromOP at program points indicated by any preliminary static
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analysis, and if for every trace inX that contains opaque predicates fromOP then
also the corresponding opaque-free trace belongs toX. As expected, the attack that
observes the concrete semantics of program behaviour is confused by opaque predi-
cate insertion, sinceS+[[P ]] 6= S+[[tOP [[P, I[[P ]]]]]], while the attack that observes the
denotational semantics of programs is insensible to opaquepredicate insertion, since
δtOP ⊑ DenSem andDenSem(S+[[P ]]) = DenSem(S+[[tOP [[P, I[[P ]]]]]]).

As noticed above we have that, in general,S+[[P ]] 6= S+[[tOP [[P, I[[P ]]]]]], namely
thatS+[[P ]] 6= tOP [S+[[P ]], I[[P ]]]. In fact, the transformed semantics contains all the
traces of the original semantics with some extra states denoting opaque predicate exe-
cution as described by the black dots in Figure 4. It is clear that there is no significant
information hidden by this obfuscation to attacks that knowthe concrete program se-
mantics. In fact, by the observation of the concrete semantics, an attack can easily
derive the set of inserted opaque predicates and deobfuscate the program. In fact, by
knowing the setOP of inserted opaque predicates, we can easily define the tracetrans-
formationdOP : ℘(Σ+) → ℘(Σ+) that recovers the original program trace semantics
from the obfuscated one.

dOP (X)
def
= {dOP (σ) | σ ∈ X} dOP (σ)

def
= ǫ dOP (σ)

dOP (〈ρ, C〉〈ρ′, C′〉η)
def
=

{

〈ρ, C〉 dOP (〈ρ′, C′〉η) if act[[C]] 6∈ OP

dOP (〈ρ, lab[[C]] : act[[C′]]→ suc[[C′]]〉η) if act[[C]] ∈ OP

It is not surprising that transformationdOP , given the set of inserted opaque predicates,
is able to restore the original program semantics. The following result shows that
transformationdOP acts as a deobfuscator with respect to the insertion of true opaque
predicates from the setOP .

Theorem 7 S+[[P ]] = dOP (S+[[P ]]) = dOP (tOP [S+[[P ]], I[[P ]]]).

PROOF: Let us assume, as usual, that programP has not been previously obfuscated
by opaque predicate insertion. By definition ofdOP we have thatdOP (S+[[P ]]) =
S+[[P ]], since∀σ ∈ S+[[P ]], ∀σi = 〈ρi, Ci〉 ∈ σ : act[[Ci]] 6∈ OP . On the other
hand, we have thatdOP (tOP [S+[[P ]], I[[P ]]]) = {dOP (η) | η ∈ tOP [S+[[P ]], I[[P ]]]}.
By definition, givenη ∈ tOP [S+[[P ]], I[[P ]]], there existsσ ∈ S+[[P ]] such thatη =
tOP [σ, I[[P ]]]. In order to conclude the proof we show thatdOP (η) = σ, namely that
dOP (tOP [σ, I[[P ]]]) = σ. In generalσ = µ1σiµ

2σjµ
3...µl, whereσi = 〈ρi, Ci〉

are such thatlab[[Ci]] ∈ I[[P ]], while µi are the portions (even empty) of trace ofσ
that are unchanged by opaque predicate insertion, that is∀〈ρ, C〉 ∈ µi : lab[[C]] 6∈
I[[P ]]. By hypothesisη is obtained fromσ by opaque predicate insertion, thereforeη
has the following structure:η = µ1ηai η

b
iµ

2ηaj η
b
jµ

3...µl, where|η| = |σ| + |I[[P ]] ∩

{lab[[C]] | 〈ρ, C〉 ∈ σ}| andηai η
b
i = 〈ρi, Li : PT → L̃i〉〈ρi, L̃i : Ai → Li+1〉. Hence,

following the definition ofdOP we have:

dOP (η) = dOP (µ1ηai η
b
iµ

2ηaj η
b
jµ

3...µl)

= µ1dOP (ηai η
b
iµ

2ηaj η
b
jµ

3...µl)

= µ1σidOP (µ2ηaj η
b
jµ

3...µl)

= µ1σiµ
2dOP (ηaj η

b
jµ

3...µl)

= ... = µ1σiµ
2σjµ

3...µl = σ
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Thus, we have thatdOP (tOP [S+[[P ]], I[[P ]]]) = dOP ({tOP [σ, I[[P ]]] | σ ∈ S+[[P ]]}) =
{dOP (tOP [σ, I[[P ]]]) | σ ∈ S+[[P ]]} = {σ | σ ∈ S+[[P ]]} = S+[[P ]].

2

Observe that, by computing transformationdOP on the obfuscated program semantics
S+[[tOP [[P, I[[P ]]]]]], and then deriving the corresponding program throughp+, we ob-
tain exactly the original programP , as shown in Figure 5. This means that, knowing the
setOP an attack can eliminate the inserted opaque predicates, namely p+ ◦ dOP ◦ S+

acts as a deobfuscation technique. Thus, the insertion of true opaque predicates from
setOP is not resilient with respect to an attacker that is able to detect the opaque
predicates inOP .

dOP

P
tOP tOP [[P, I[[P ]]]]

S+[[P ]] tOP [S+[[P ]],I[[P ]]] =
S+[[tOP [[P,I[[P ]]]]]]

p+ S+

Figure 5:p+ ◦ dOP ◦ S+ is a deobfuscation technique

Example 2 Let us consider the trace semanticsS+[[P ]] of programP and a traceσ ∈
S+[[P ]]. Letσ = 〈ρ0, C0〉〈ρ1, C1〉〈ρ2, C2〉〈ρ3, C3〉〈ρ4, C4〉, whereCi = Li : Ai →
Li+1. AssumeI[[P ]] = {L1, L3}. The transformed trace is given by:tOP [σ, I[[P ]]] =
〈ρ0, C0〉〈ρ1, L1 : PT → L̃1〉〈ρ1, L̃1 : A1 → L2〉〈ρ2, C2〉〈ρ3, L3 : PT → L̃3〉
〈ρ3, L̃3 : A3 → L4〉〈ρ4, C4〉. Clearly, dOP (σ) = σ and dOP (tOP [σ, I[[P ]]]) =
dOP (〈ρ0, C0〉〈ρ1, L1 : PT → L̃1〉〈ρ1, L̃1 : A1 → L2〉〈ρ2, C2〉 〈ρ3, L3 : PT → L̃3〉
〈ρ3, L̃3 : A3 → L4〉〈ρ4, C4〉) = 〈ρ0, C0〉〈ρ1, C1〉〈ρ2, C2〉 〈ρ3, C3〉〈ρ4, C4〉 = σ.

TransformationdOP is clearly additive and can therefore be viewed as an abstrac-
tion function. It is interesting to observe that, considering the concretizationγOP in-
duced by this abstraction, the propertyγOP ◦ dOP corresponds to the most concrete
property preserved bytOP . In fact, knowingOP , the closureγOP ◦dOP observes traces
up to opaque predicate insertion, which corresponds to the observation done byδtOP .
In particular, given an obfuscated set of tracesX, the deobfuscationdOP (X) = Y elim-
inates the opaque predicates from traces inX, and the concretizationγOP (Y) returns
the set of all traces that can be obtained from traces inY by opaque predicate insertion.
This means that requiringX to be a fixpoint ofγOP ◦ dOP , i.e.,γOP (dOP (X)) = X, is
equivalent to require thatX satisfiesPresP,tOP (X).

Theorem 8 γOP ◦ dOP ∈ uco(℘(Σ+)) andγOP ◦ dOP = δtOP .

PROOF: FunctiondOP is clearly additive, andγOP ◦dOP ∈ uco(℘(Σ+)). From Theo-
rem 7 we have that propertyγOP ◦dOP is preserved bytOP , i.e.,γOP (dOP (S+[[P ]])) =
γOP (dOP (tOP [S+[[P ]], I[[P ]]])), let us show that it coincides withδtOP . To do this we
have to prove that, givenX ∈ ℘(Σ+): X = γOP (dOP (X)) iff for every program
P ∈ P : PresP,tOP (X) = true.

(⇒) By definitionγOP (dOP (X)) = {σ | dOP (σ) ⊆ dOP (X)} = {σ | ∃η ∈ X :
dOP (σ) = dOP (η)}. Thus, we have to prove that, for a given programP it holds that
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S+[[P ]] ⊆ γOP (dOP (X)) iff ∀I[[P ]] ⊆ lab[[P ]] : tOP [S+[[P ]], I[[P ]]] ⊆ γOP (dOP (X)).
On the one hand, whenS+[[P ]] ⊆ γOP (dOP (X)), thenS+[[P ]] ⊆ {σ | ∃η ∈ X :
dOP (σ) = dOP (η)}. This means that∀σ ∈ S+[[P ]] : ∃η ∈ X : dOP (σ) = dOP (η).
Following the definition oftOP , given the setI[[P ]] of points candidate for opaque
predicate insertion, we havetOP [S+[[P ]], I[[P ]]] = {tOP [σ, I[[P ]]] | σ ∈ S+[[P ]]}.
Observe that∀σ ∈ S+[[P ]] : tOP [σ, I[[P ]]] ∈ γOP (dOP (σ)), since we have shown
that dOP (tOP [σ, I[[P ]]]) = dOP (σ) = σ. This means that∀σ ∈ S+[[P ]] : ∃η ∈
X : tOP [σ, I[[P ]]] ∈ γOP (dOP (σ)) = γOP (dOP (η)) ⊆ γOP (dOP (X)). Therefore
∀σ ∈ S+[[P ]] : tOP [σ, I[[P ]]] ∈ γOP (dOP (X)), meaning thattOP [S+[[P ]], I[[P ]]] ⊆
γOP (dOP (X)). The above proof works for any set of labelsI[[P ]], thus∀I[[P ]] ⊆
lab[[P ]] : tOP [S+[[P ]], I[[P ]]] ⊆ X. On the other hand, when∀I[[P ]] ⊆ lab[[P ]] :
tOP [S+[[P ]], I[[P ]]] ⊆ γOP (dOP (X)), then∀I[[P ]] ⊆ lab[[P ]] : tOP [S+[[P ]], I[[P ]]] ⊆
{σ | ∃η ∈ X : dOP (σ) = dOP (η)}. We have shown that∀I[[P ]] ⊆ lab[[P ]] :
dOP (tc[µ, I[[P ]]]) = dOP (µ) = µ. Thus,∀µ ∈ S+[[P ]] for which there existsI[[P ]] ⊆
lab[[P ]] such thattOP [µ, I[[P ]]] ∈ γOP (dOP (X)) we have thatµ ∈ γOP (dOP (X)).
Therefore,{µ | tOP [µ, I[[P ]]] ∈ γOP (dOP (X)), I[[P ]] ⊆ lab[[P ]]} ⊆ γOP (dOP (X)),
namelyS+[[P ]] ⊆ X. The above reasoning is independent from the considered program
P , which means that for any programP ∈ P we have thatPresP,tOP (X) = true.

(⇐) Assume that for allP ∈ P: PresP,tOP (X) = true:
⇒ ∀P ∈ P : S+[[P ]] ⊆ X ⇔ ∀I[[P ]] ⊆ lab[[P ]] : tOP [S+[[P ]], I[[P ]]] ⊆ X

⇒ ∀P ∈ P : S+[[P ]] ⊆ X ⇔ ∀I[[P ]] ⊆ lab[[P ]] : {tOP [σ, I[[P ]]] | σ ∈ S+[[P ]]} ⊆ X

⇒ ∀P ∈ P : ∀σ ∈ X : {η | η = tOP [σ, I[[P ]]], I[[P ]] ⊆ lab[[P ]]} ⊆ X

⇒ X = {η | ∃σ ∈ X : dOP (σ) = dOP (η)} = γOP (dOP (X))
Hence, we have thatδtOP =

⊔

P∈P{X | PresP,tOP (X)} = {γOP (dOP (X)) | X ∈
℘(Σ+)} = γOP (dOP (℘(Σ+))).

2

4.4 Detecting opaque predicates

It is clear that the efficiency ofdOP in eliminating true opaque predicates is based
on the knowledge ofOP . In fact, in the case of true opaque predicate insertion, the
problem of deobfuscating a program reduces to the ability ofdetecting true opaque
predicates. Let us recall that a true opaque predicate is a predicate that evaluates to
true in every environment. Thus, understanding the presence of true opaque predicates
in a program, means identifying those predicates that evaluate to true during every
program execution. Given an obfuscated programtOP [[P, I[[P ]]]] the setOP can be
characterized by the following definition:

OP
def
=











B

∣

∣

∣

∣

∣

∣

∣

∃C ∈ tOP [[P, I[[P ]]]] : act[[C]] = B,

∀σ ∈ S+[[tOP [[P, I[[P ]]]]]], ∀〈ρ, C〉 ∈ σ :

(act[[C]] = B)⇒ (B[[B]]ρ = true)











(3)

This means that by having access to the concrete semanticsS+[[tOP [[P, I[[P ]]]]]] of the
obfuscated program, which implies a precise evaluationB[[B]]ρ of any test actionB at
any program point, we are able to construct the setOP that contains all the true opaque
predicates that have been inserted in the program. Hence, ifan attacker observes the
concrete execution of an obfuscated program, it can deduce all the necessary informa-
tion to deobfuscate it. In fact, opaque predicate insertionis an obfuscating transforma-
tion designed to confuse the control flow of a program and since program control flow
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is an abstraction of trace semantics, we have that the obfuscation of the control flow
may not cause confusion at the trace semantic level. This is the reason why, in order to
better understand the obfuscating behaviour of opaque predicate insertion, we have to
consider abstractions of trace semantics as we show in the following.

In Section 3.1 we have argued how attackers can be modeled as abstract interpre-
tations of the concrete domain of computation of the maximalfinite trace semantics
of programs. In order to understand the potency and resilience of opaque predicate
insertion we study what happens when the attackers have access only to the abstract
semantics computed on their abstract domain. LetSϕ denote the abstract semantics
computed by an attackϕ ∈ uco(℘(Σ+)). In particular, if the concrete semantic is given
by S+[[P ]] = lfpF+[[P ]] then the abstract semantics is defined asSϕ[[P ]]

def
= lfpFϕ[[P ]],

whereFϕ is the best correct approximation of the concrete functionF+ on the abstract
domainϕ. We denote witĥE the set of abstract environmentsρ̂ : X → ϕ(D�) that
associates abstract values to program variables, withσ̂i = 〈ρ̂i, C〉 an abstract state,
and with σ̂ an abstract trace. Moreover, letϕ(℘(Σ+)) = ℘(Σ̂+) be the powerset of
abstract traces. It is clear that, in this setting, the most powerful attacker is the one who
has access to the most precise description of program behaviour, namely the one that
is precise enough to compute the (concrete) program trace semanticsS+[[P ]].

In general, the setOPϕ of true opaque predicates that an attacker modeled by
abstractionϕ is able to identify can be characterized as follows:

OPϕ
def
=











B

∣

∣

∣

∣

∣

∣

∣

∃C ∈ tOP [[P, I[[P ]]]] : act[[C]] = B,

∀σ̂ ∈ Sϕ[[tOP [[P, I[[P ]]]]]], ∀〈ρ̂, C〉 ∈ σ̂ :

(act[[C]] = B)⇒ (Bϕ[[B]]ρ̂ = true)











(4)

WhereBϕ[[B]]ρ̂ denotes the abstract evaluation of the boolean expressionB in the
abstract environment̂ρ. It is clear that, in general, the set of predicates classified as
opaque by observing the abstract semanticsSϕ is different from the set of predicates
classified as opaque by observing program trace semanticsS+, i.e., OPϕ 6= OP .
There are two causes of imprecision, both due to the loss of information implicit in the
abstraction process:

• On the one hand, it may happen thatϕ is not powerful enough to recognize
the constantly true value of some opaque predicates, namelythere may exist an
opaque predicatePT such thatPT ∈ OP while PT 6∈ OPϕ (see [19] for an
example).

• On the other hand, an attack may classify a predicate as a trueopaque predicate
while it is not, namely there may exist a predicatePr such thatPr ∈ OPϕ while
Pr 6∈ OP (see Section 4.5 for an example).

The deobfuscation process that an attackϕ can perform is expressed by the function
dOPϕ : ℘(Σ̂+) → ℘(Σ̂+), operating on abstract traces and on setOPϕ of opaque
predicates.

dOPϕ(X̂)
def
= {dOPϕ(σ̂) | σ̂ ∈ X̂} dOPϕ(σ̂)

def
= ǫ dOPϕ(σ̂)

dOPϕ(〈ρ̂, C〉〈ρ̂′, C′〉η̂)
def
=

{

〈ρ̂, C〉 dOPϕ(〈ρ̂′, C′〉η̂) if act[[C]] 6∈ OPϕ

dOPϕ(〈ρ̂, lab[[C]] : act[[C′]]→ suc[[C′]]〉η̂) if act[[C]] ∈ OPϕ
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We have that, in general,OP 6= OPϕ, and therefore thatSϕ[[P ]] 6= dOP (Sϕ[[P ]]) 6=
dOPϕ(Sϕ[[tOP [[P, I[[P ]]]]]]), where the first inequality follows by the fact thatdOPϕ

might eliminate a predicatePr even if it is not opaque, i.e., whenPr ∈ OPϕ while
Pr 6∈ OP , and the second inequality by the fact thatdOPϕ might not eliminate a
predicatePT that is opaque, i.e., whenPT 6∈ OPϕ while PT ∈ OP . Therefore,
whenOP 6= OPϕ we have that attackerϕ is not able to deobfuscatetOP . When an
attackϕ is not able to disclose the inserted opaque predicates, namely whenSϕ[[P ]] 6=
Sϕ[[tOP [[P, I[[P ]]]]]], the attackϕ is defeated by the obfuscation (otherwise states the
obfuscation is potent with respect to attackϕ). This leads to the following definition of
transformation potency:

Definition 7 Transformationt : P → P is potent with respect to an attackϕ ∈
uco(℘(Σ+)) if there existsP ∈ P such thatSϕ[[P ]] 6= Sϕ[[tOP [[P, I[[P ]]]]]].

It is clear that the above definition of transformation potency is based on the abstract
semantics computed by the attack and not on the abstraction of the concrete semantics
as given in Definition 4 (where a transformation is potent if there exists an abstraction
ϕ ∈ uco(℘(Σ+)) such thatϕ(S+[[P ]]) 6= ϕ(S+[[t[[P ]]]])). The two proposed defini-
tions of transformation potency are deeply different and orthogonal. In fact, the results
obtained in Section 3 referring to Definition 4, cannot be projected using Definition 7
of potency. However, the two definitions are both useful in understanding the obfus-
cating behaviour of program transformations. On the one hand, Definition 4 can be
successfully applied to those obfuscation that have sensible effects on the concrete
program semantics, namely those transformations that cannot be recovered by sim-
ply observing the concrete semantics of the obfuscated program (e.g., array merging,
variable renaming, substitution of equivalent sequences of instructions). On the other
hand, Definition 7 captures the obfuscating behaviour of program transformations that
do not cause significant effects on the concrete semantics and that can be recovered
by observing the concrete program semantics (e.g., opaque predicate insertion, code
transportation, semantic nop insertion).

We are interested here in the study of the insertion of true opaque predicates and of
the ability of attackers to recover the original program. Inparticular, it would be inter-
esting to provide a formal characterization of the family ofattackers that are able to dis-
close a given set of opaque predicates. Thus, given a setOP of true opaque predicates,
we want to characterize the class of attacksϕ such thatdOPϕ(Sϕ[[tOP [[P, I[[P ]]]]]]) =
dOPϕ(Sϕ[[P ]]) = Sϕ[[P ]]. Observe that this equality holds only when attackϕ pre-
cisely identifies the set of inserted opaque predicates, namely whenOP = OPϕ.
When this happens we have that the obfuscation is harmless with respect to attackϕ,
namely that the insertion of true opaque predicates fromOP is not able to obstruct
attackϕ. In the following we provide a characterization of the family of attacks able to
disclose an interesting class of numerical opaque predicates.

4.5 Attacks and completeness

In [8] Collberg et al. observe that the study of random Java programs reveals that most
predicates are extremely simple. In particular, common patterns include the compari-
son of integer quantities using binary operators such as equal to, greater than, smaller
than, etc. It is clear that, in order to design stealthy obfuscating transformations, the in-
serted opaque predicates have to resemble the structure of predicates typically present
in a program. For this reason we restrict out study to numerical opaque predicates on
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∀x, y ∈ Z : 7y2 − 1 6= x
∀x ∈ Z : mod(3 · 74x−2 + 5 · 42x−1 − 5, 14) = 0

∀x ∈ Z :
∑2x−1
i=1,2mod(i,2) 6=0 i = x

Table 4: Commonly used opaque predicates [1]

integer values. In general, an opaque predicate of this kindis a functionZn → B�

that takes an array ofn integer values and returnstrue, false,⊥ or⊤. A wide class of
numerical opaque predicates can be characterized by the following structure:

∀x̄ ∈ Zn : h(x̄) compare g(x̄)

wherecompare stands for any binary operator in the set{=,≥,≤}, x̄ is an array of
n integer values, namelȳx ∈ Zn, h andg are two functions over integers, in particular
h, g : Zn → Z (see Table 4 for some commonly used opaque predicates). Let us
assume that each variable of programP ranges overZ. Let |var[[P ]]| = m, then each
abstraction (attack)ϕ ∈ uco(℘(Zm)) induces an abstraction on the values of variables
and therefore on the value that the opaque predicate input can assume. From now on,
the abstract domainϕ ∈ uco(℘(Zn)) models the attack that observes an approximation
ϕ of opaque predicate inputs. Let us consider a numerical opaque predicate of the form
∀x̄ ∈ Zn : h(x̄) = g(x̄), which verifies whether two functionsh andg always return
the same value when applied to the same array of integer values. In order to precisely
detect the opaqueness of∀x̄ ∈ Zn : h(x̄) = g(x̄), one needs to check theconcrete test,
denoted asCT h,g and defined as follows:

CT h,g
def
= ∀x̄ ∈ Zn : h(x̄) = g(x̄)

Once again, the set of predicates that satisfy the concrete test corresponds to the setOP
of predicates characterized by equation (3). Our goal is to characterize the family of
abstractions of℘(Zn) that perform the test of opaqueness forh andg in a precise way,
namely the set of abstractions that loose information that is irrelevant for the precise
computation ofh andg. We are therefore interested in the family of abstract domains
that are able to precisely compute functionsh andg, which corresponds to the class of
attacks able to deobfuscate the insertion of predicates of the form∀x̄ ∈ Zn : h(x̄) =
g(x̄). GivenX ⊆ Zn let us consider the point to point definition of equality, where
h(X)

.
= g(X) if and only if ∀x̄ ∈ X : h(x̄) = g(x̄). LetAT h,gϕ denote theabstract

test for opaqueness associated to an attack modeled by the abstract domainϕ. The
abstract test is defined as follows:

AT h,gϕ

def
= ∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄)))

Also in this case the set of opaque predicates satisfying theabstract test onϕ corre-
sponds to the setOPϕ of predicated characterized by equation (4). Once again, the
precision of the abstract test strongly depends on the considered abstract domain. In
particular, we have that an abstract test is sound when the satisfaction of the abstract
test implies the satisfaction of the concrete one, and complete when the converse holds.

Definition 8 Given an opaque predicate∀x̄ ∈ Zn : h(x̄) = g(x̄), and an abstraction
ϕ ∈ uco(℘(Σ+)), we say that:

• AT h,gϕ is sound whenAT h,gϕ ⇒ CT h,g
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• AT h,gϕ is complete whenCT h,g ⇒ AT h,gϕ

When the abstract testAT h,gϕ is both sound and complete, i.e.,AT h,gϕ ⇔ CT h,g, we
say that attackϕ breaksthe opaque predicate∀x̄ ∈ Zn : h(x̄) = g(x̄). In fact, in
this case, the set of true opaque predicates coincides with the set of opaque predicates
classified as opaque by the abstract test, meaning that we have obtained the desired
equalityOP = OPϕ.

It is possible to prove that when considering opaque predicates of the form∀x̄ ∈Zn : h(x̄) = g(x̄) the abstract test defined above is complete for any attackϕ ∈
uco(℘(Σ+)).

Theorem 9 For anyϕ ∈ uco(℘(Σ+)) the abstract testAT g,hϕ is complete.

PROOF: If the concrete testCT h,g is verified we have that∀x̄ ∈ Zn : h(x̄) = g(x̄),
sinceϕ(x̄) ⊆ Zn then∀x̄ ∈ Zn : ∀ȳ ∈ ϕ(x̄) : h(ȳ) = g(ȳ). This means that
∀x̄ ∈ Zn : h(ϕ(x̄))

.
= g(ϕ(x̄)), thus∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄))) that

corresponds to the satisfaction of the abstract testAg,hϕ .

2

This means that if a predicate is opaque then the attack recognises it, namelyOP ⊆
OPϕ. Thus,dOPϕ(Sϕ[[P ]]) = dOPϕ (Sϕ[[tOP [[P, I[[P ]]]]]]). In fact,dOPϕ eliminates
all the opaque predicates from the right term and the common regular predicate that
are erroneously classified as opaque from both terms. For thesame reason we have
Sϕ[[P ]] 6= dOPϕ (Sϕ[[P ]]). This means thatSϕ[[P ]] 6= dOPϕ(Sϕ[[tOP [[P, I[[P ]]]]]]) and
therefore thatϕ is defeated bytOP . As argued above, attackϕ is able to break the
insertion of true opaque predicates whenOP = OPϕ, which is ensured when the
abstract testAT h,gϕ is both sound and complete. Theorem 9 guarantees the complete-
ness of the abstract test, thus, in order to break an opaque predicate, we need to verify
the soundness condition. In generalAT h,gϕ is not sound, but it is possible to show that
soundness is guaranteed when the abstract domainϕmodeling the attack isF-complete
for both functionsh andg.

Theorem 10 Given an opaque predicate∀x̄ ∈ Zn : h(X̄) = g(x̄), and an attack
modeled byϕ ∈ uco(℘(Σ+)), if the abstractionϕ is F-complete for both functionsh
andg thenAT h,gϕ is sound.

PROOF: We have to prove thatAT h,gϕ ⇒ CT h,g. If the abstract testAT h,gϕ holds
then∀x̄ ∈ Zn : ϕ(h(ϕ(x̄)))

.
= ϕ(g(ϕ(x̄))), namely∀x̄ ∈ Zn : ϕ(h(ϕ(ϕ(x̄))))

.
=

ϕ(g(ϕ(ϕ(x̄)))). The abstract domainϕ is F-complete by hypothesis, therefore∀x̄ ∈Zn : h(ϕ(ϕ(x̄)))
.
= g(ϕ(ϕ(x̄))), which is equivalent to∀x̄ ∈ Zn : h(ϕ(x̄))

.
=

g(ϕ(x̄)). By definition of
.
= this means that∀x̄ ∈ Zn : ∀ȳ ∈ ϕ(x̄) : h(ȳ) = g(ȳ). ϕ

is extensive by hypothesis, namelyx̄ ∈ ϕ(x̄), and therefore∀x̄ ∈ Zn : h(x̄) = g(x̄),
which corresponds to the satisfaction of the concrete testCT h,g.

2

This means that when the abstract domain modeling the attackis able to pre-
cisely compute the functions composing the opaque predicate then the attack breaks
the opaque predicate. Thus, given an attackϕ and an opaque predicate∀x̄ ∈ Zn :
h(x̄) = g(x̄), theF-completeness domain refinement ofϕ with respect to functions
h andg adds the minimal amount of information to attackϕ to make it able to defeat
the considered opaque predicate. Hence, completeness domain refinement provides
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here a systematic technique to design attacks that are able to break an opaque predicate
of interest. Moreover, the completeness property of abstract interpretation precisely
captures the ability of an attack to disclose an opaque predicate.

The above result holds also when considering≤,≥, and the corresponding point to
point extensionṡ≤, ≥̇, instead of= and

.
=.

Corollary 1 Given an opaque predicate∀x̄ ∈ Zn : h(x̄) compareg(x̄), and an attack
ϕ ∈ uco(℘(Σ+)), if the abstractionϕ is F-complete for both functionsh andg, then
ϕ breaks opaque predicates that are instances of∀x̄ ∈ Zn : h(x̄) compare g(x̄).

In the following example we show how the lack ofF-completeness of the abstract
domain modeling the attack can cause the abstract test to hold, even if the concrete one
fails.

Example 3 Let us consider the predicate∀x ∈ Z : 2x2 = 2x, whereh(x) = 2x2 and
g(x) = 2x. It is clear thatCT h,g does not hold, since the predicate is not opaque. Let
us consider an attack modeled by the abstract domain ofParity = {⊤,⊥, even, odd}.
In turns out thatAT h,gParity holds, in fact:

even :: Parity(h(even)) = even = Parity(g(even))

odd :: Parity(h(odd)) = even = Parity(g(odd))

The reason way the abstract test holds onParity is the fact thatParity is not F-
complete for bothh andg. In fact, letParity = γ ◦ α, then2(γ(even)) = {2x | x ∈
2Z} which is strictly contained inγ(2even) = γ(even) = 2Z. When computing the
F-completeness domain refinement ofParity with respect toh and g, we close the
considered abstract domain with respect toh and g. This means that, for example
the elementsDouble2 , such thatγ(Double2 ) = {2x | x ∈ 2Z}, Double1 , such that
γ(Double1 ) = {2x | x ∈ 2Z+1}, DoubleSq2 , such thatγ(DoubleSq2 ) = {2x2 | x ∈
2Z}, andDoubleSq1 , such thatγ(DoubleSq1 ) = {2x2 | x ∈ 2Z + 1}, belong to
RF
h,g(Parity) = Parity+. Observe that on this domain the abstract test does not hold

any more, in factParity+(h(even)) = DoubleSq2 6= Double2 = Parity+(g(even)),
and so on for all the other elements since the direct image of all elements underh and
g are precisely expressed by the domain obtained through the completeness refinement.

Comparing attacks

The completeness result obtained above allows us to compareon the lattice of abstract
interpretation both the efficiency of different attacks in disclosing a particular opaque
predicate, and the resilience of different opaque predicates with respect to an attack.

Let us consider a predicatePT : ∀x̄ ∈ Zn : h(x̄) = g(x̄), and let us denote with
RPT the completeness domain refinement needed to make an attack able to breakPT .
Let Potency(PT , ϕ) denote the potency of opaque predicatePT with respect to attack
ϕ, andResilience(PT , ϕ) the resilience of opaque predicatePT in preventing attack
ϕ.

Definition 9 Given two attacksϕ, ψ ∈ uco(℘(Σ+)) and two opaque predicatesPT1
andPT2 , we have that:

• whenϕ < ψ andRPT
1

(ψ) = RPT
1

(ϕ) we say thatPotency(PT1 , ψ) is greater

thanPotency(PT1 , ϕ)
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• while, whenRPT
1

(ϕ) < RPT
2

(ϕ), we say thatResilience(PT1 , ϕ) is greater than

Resilience(PT2 , ϕ)

The first point of the above definition refers to the situationpresented in Figure 6(a),
whereϕ < ψ andRPT

1
(ψ) = RPT

1
(ϕ). In this case we have that predicatePT1 is more

potent with respect to attackψ than with respect to attackϕ. In fact, more information
needs to be added toψ than toϕ in order to gain an attack able to breakPT1 , namely
ψ is more “far” thanϕ in disclosingPT1 . The same reasoning allows us to compare

R
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Figure 6: Comparing attacks

the resilience of different opaque predicates in the lattice of abstract interpretation. In
fact, the second point of the above definition considers two predicatesPT1 andPT2
and an attackϕ ∈ uco(℘(Σ+)). and assumes thatRPT

1
(ϕ) < RPT

2
(ϕ) as shown in

Figure 6(b). In this case we can say that the insertion of opaque predicatePT1 is more
efficient in obstructing attackϕ than the insertion of opaque predicatePT2 , since more
information needs to be added toϕ in order to disclosePT1 thanPT2 . Thus, a possible
way to understand which opaque predicate inOP is more efficient in preventing a given
attackϕ, it is to compute the fixpoint solution of the completeness domain refinement
of ϕ with respect to the different opaque predicates available,and then choose the one
that corresponds to the most concrete refinement. In fact, the closer the refined attack
is to the identical abstraction (concrete semantics), the higher is the resilience of the
opaque predicate. In particular, ifRPT (ϕ) = id , it means that the attackϕ can break
the considered opaque predicate only if it can access the concrete program semantics.
In this case the considered opaque predicate provides the best obstruction toϕ.

5 Discussion

In order to fulfill the lack of a theoretical basis for code obfuscation, we have proposed
a formal approach to code obfuscation based on program semantics and abstract inter-
pretation. The key idea of our approach is to model attacks asabstract domains, where
the abstraction encodes the power of the attack, namely whatthe attack can observe of
program execution. In fact, the proposed semantic framework relies on a semantics-
based definition of code obfuscation and on an abstract interpretation-based model for
attacks. In particular, we characterize the obfuscating behaviour of a program trans-
formationt in terms of the most concrete semantic propertyδt it preserves, namely
in terms of the most powerful attack for which the obfuscation is harmless. In fact,
given a transformationt, propertyδt precisely expresses the amount of information
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still available after the obfuscationt, namely what the obfuscated program might re-
veal about the original program. In this setting, any program transformationt can be
seen as an obfuscator that is potent with respect to any attacker modeled by an abstract
domainϕ that is not preserved byt. In particular, the semantics-based notion of po-
tency given in Definition 4 states that a transformationt is potent if it defeats attacks
modeled as properties of program trace semantics, namely ifthere exists a property
ϕ ∈ uco(℘(Σ+)) such thatϕ(S+[[P ]]) 6= ϕ(S+[[t[[P ]]]]). This measure of potency fits
transformations that deeply modify program trace semantics, namely that modify pro-
gram behaviour in a way that is noticeable and not trivially undone by an attacker that
observes program trace semantics. Moreover, this notion oftransformation potency
provides an advanced technique for comparing obfuscating algorithms relative to their
potency in the lattice of abstract interpretation (as stated by Definition 6). Among the
existing obfuscating transformations whose potency can bemodeled by this definition
we mention: the substitution of equivalent sequences of commands, variable renaming
and data obfuscations such as splitting and merging arrays.In fact, these obfuscations
modify the structure of program trace semantics in a sensible way: replacing equiva-
lent sequences of commands implies a modification of the program execution traces,
and the renaming of variables and the splitting and merging of arrays cause a modifica-
tion of every program state whose command uses a renamed variable or an obfuscated
array. Thus, the potency of these obfuscations can be captured by Definition 4 of trans-
formation potency.

However, Definition 4 is not adequate for modeling the potency of obfuscating
transformations that cause only minor changes to the program trace semantics, namely
that do not confuse an attack that has access to the trace semantics of the obfuscated
code, as in the case of opaque predicate insertion. In this case, for example, we need
a notion of program potency that captures thenoiseintroduced at the level of program
control flow, which is an abstraction of trace semantics. This observation has led to
Definition 7, where transformation potency is formalized with respect to the abstract
semantics computed on the abstract domain modeling the attack; a transformationt is
potent if there exists an abstractionϕ such thatSϕ[[P ]] 6= Sϕ[[t[[P ]]]]. This definition
can model the potency of several existing obfuscating techniques: opaque predicate
insertion, control flow flattening, loop unrolling and semantic nop insertion. Control
flow flattening and loop unrolling are control code obfuscations that, like opaque pred-
icate insertion, try to mask the control flow of the original program. Once again, in
order to notice the obscurity added at the control flow level by these transformations,
we need to consider the abstract semantics computed on the abstract domain modeling
the attackers. Moreover, as in the case of opaque predicate insertion, when dealing with
semantic nop insertion we have that an attack is confused by the insertion of semantic
nops only when it is not able to recognize the inserted semantic nops. Also in this case,
the ability of an attacker in identifying the inserted semantic nops might be expressed
in terms of the precision of the abstract domain modeling theattack.

It is clear that the two definitions of potency are deeply different and orthogonal
and that each of them fits different kinds of obfuscations. InSection 4.4, we have seen
in detail how Definition 7 of transformation potency properly models an obfuscation
that inserts true opaque predicates, from which we can deduce that it is appropriate
also for modeling the insertion of false opaque predicates.Moreover, it is reasonable to
assume that also the potency of transformations that insertcorrelated opaque predicates
and distributed opaque predicates can be modeled by Definition 7. In this case the
opaqueness of the predicates ensures that only the correct paths are executed, while
confusion can be inserted in the “fake” paths. In this setting, an attack is able to disclose
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a set of correlated opaque predicates only if it is able to understand that there exists a
relation between the values of these predicates during execution. Thus, it seems that in
order to disclose correlated opaque predicates an attackershould be precise for some
sort of relational analysis.

In the particular case of the insertion of true opaque predicates, the use of abstract
interpretation ensures that, when the abstraction is complete, the attack is able to break
the opaque predicate and to remove the obfuscation. This proves that deobfuscation
in the case of opaque predicates requires complete abstractions and therefore that the
potency and resilience of opaque predicates can be measuredby the amount of infor-
mation that has to be added to the incomplete domain to becomecomplete. This allows
us to compare both the potency of different opaque predicates with respect to a given
attack, and the resilience of an opaque predicate with respect to different attacks. Some
further work is necessary in order to validate our theory in practice. In fact, while mea-
suring the resilience of opaque predicates in the lattice ofabstract domains may provide
an absolute and domain-theoretical taxonomy of attacks andobfuscators, it would be
interesting to investigate the true effort, in terms of dynamic testing, which is necessary
to enforce static analysis in order to break opaque predicates. We believe that this is
proportional to the missing information in the abstractionmodeling the static analy-
sis with respect to its complete refinement. Preliminary work in this direction shows
promising experimental results, as described in [19].

Another interesting field that commonly uses code obfuscation is the one of “bi-
ologically inspired diversity”. In this setting, obfuscating transformations are used to
generate many different versions of the same program in order to prevent malware in-
fection [21, 38]. In fact, machines that execute the same programs are likely to be
vulnerable to the same attacks. Malware exploit vulnerabilities in order to propagate
and perform their damage, meaning that all the systems sharing the same configuration
will be susceptible to the same malware attacks. On the otherhand, different versions
of the same program are less prone to having vulnerabilitiesin common. This means
that diverse versions of the same program will make malware infection and propagation
much harder. In this setting, it would be interesting to see if our theoretical framework
for code obfuscation could be used to better understand and formalize the level of se-
curity that program diversity guarantees.
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6 Appendix

Syntactic opaque predicate insertion

Given the semantic transformationtOP , defined in Section 4.1, that performs the inser-
tion of true opaque predicates form the setOP , in the following we report the details
of the derivation of the corresponding syntactic transformationp+ ◦ tOP ◦ S+.

Step 1: When we consider the program trace semantics expressed in fixpoint form,
we have thatp+(tOP [S+[[P ]], I[[P ]]]), reduces top+(tOP [lfpF+[[P ]], I[[P ]]]).

Step 2: Let us compute the transformationtOP of the program semanticsS+[[P ]]
expressed in fixpoint formlfpF+[[P ]], in order to establish the local commutation prop-
erty necessary for fixpoint transfer:

44



tOP [F+[[P ]](X), I[[P ]]] = tOP [T[[P ]] ∪ {ss′σ | s′ ∈ C[[P ]](s), s′σ ∈ X}, I[[P ]]] =

tOP [T[[P ]], I[[P ]]] ∪ tOP [{ss′σ | s′ ∈ C[[P ]](s), s′σ ∈ X}, I[[P ]]]

Let us consider the two terms of the above union separately. For the first term we have:

tOP [T[[P ]], I[[P ]]] = {tOP [σ, I[[P ]]] | σ ∈ T[[P ]]} =

{tOP [〈ρ, L : A→ L′〉, I[[P ]]] | L : A→ L′ ∈ P, ρ ∈ E[[P ]], L′ ∈ L[[P ]]} =

{〈ρ, L : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P ]], L′ ∈ L[[P ]], L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉|L : A→ L′ ∈ P, ρ ∈ E[[P ]], L′ ∈ L[[P ]],

L ∈ I[[P ]], L̃ ∈ New}

Considering the second term, we have that:

tOP [{ss′σ | s′ ∈ C[[P ]](s), s′σ ∈ X}, I[[P ]]] =

{tOP [ss′σ, I[[P ]]] | s′ ∈ C[[P ]](s), s′σ ∈ X}

assumings = 〈ρ, L : A→ L′〉, s′ = 〈ρ′, C′〉, we obtain:

{〈ρ, L : A→ L′〉tOP [〈ρ′, C′〉σ, I[[P ]]] | lab[[C′]] = L′, ρ′ ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P ]], 〈ρ′, C′〉σ ∈ X, L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉tOP [〈ρ′, C′〉σ, I[[P ]]] | lab[[C′]] = L′,

ρ′ ∈ A[[A]]ρ, L : A→ L′ ∈ P, ρ ∈ E[[P ]], 〈ρ′, C′〉σ ∈ X, L ∈ I[[P ]], L̃ ∈ New}

that, givenσ′ = 〈ρ′, C′〉σ, reduces to:

{〈ρ, L : A→ L′〉tOP [σ′, I[[P ]]] | lab[σ′] = L′, env[σ′] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P ]], σ′ ∈ X, L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉tOP [σ′, I[[P ]]] | lab[σ′] = L′, env[σ′] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P ]], σ′ ∈ X, L ∈ I[[P ]], L̃ ∈ New}

then, assuminĝσ = tOP [σ′, I[[P ]]], we obtain:

{〈ρ, L : A→ L′〉σ̂ | lab[σ̂] = L′, env[σ̂] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P ]], σ̂ ∈ tOP [X, I[[P ]]], L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉σ̂ | lab[σ̂] = L′, env[σ̂] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P ]], σ̂ ∈ tOP [X, I[[P ]]], L ∈ I[[P ]], L̃ ∈ New}

where given a traceσ: env[σ] = env[σ0] andenv[〈ρ, C〉] = ρ, while lab[σ] = lab[σ0]
andlab[〈ρ, C〉] = lab[[C]]. By definingFOP [[P ]](tOP [X, I[[P ]]]) as given by the union
of the elements obtained by the above computation, we have:
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FOP [[P ]](tOP [X, I[[P ]]])
def
=

{〈ρ, L : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P ]], L′ ∈ L[[P ]], L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉 | L : A→ L′ ∈ P, ρ ∈ E[[P ]],

L′ ∈ L[[P ]], L ∈ I[[P ]], L̃ ∈ New} ∪

{〈ρ, L : A→ L′〉σ̂ | lab[σ̂] = L′, env[σ̂] ∈ A[[A]]ρ, L : A→ L′ ∈ P,

ρ ∈ E[[P ]], σ̂ ∈ tOP [X, I[[P ]]], L 6∈ I[[P ]]} ∪

{〈ρ, L : PT → L̃〉〈ρ, L̃ : A→ L′〉σ̂ | lab[σ̂] = L′, env[σ̂] ∈ A[[A]]ρ,

L : A→ L′ ∈ P, ρ ∈ E[[P ]], σ̂ ∈ tOP [X, I[[P ]]], L ∈ I[[P ]], L̃ ∈ New}

Thus,tOP ◦ F+ = FOP ◦ tOP , and applying the fixpoint transfer theorem we have
thattOP [lfpF+[[P ]], I[[P ]]] can be expressed aslfpFOP [[P ]].

Step 3: Let us compute the abstractionp+ of FOP [[P ]] in order to verify the com-
mutation property necessary for fixpoint transfer:p+(FOP [tOP [X, I[[P ]]]]) =

{{L : A→ L′} | L : A→ L′ ∈ P,L′ ∈ L[[P ]]L 6∈ I[[P ]]} ∪

{{L : PT → L̃; L̃ : A→ L′} | L : A→ L′ ∈ P,L′ ∈ L[[P ]],

L ∈ I[[P ]], L̃ ∈ New} ∪

{{L : A→ L′} ∪ p+(tOP [X, I[[P ]]]) | L : A→ L′ ∈ P,L 6∈ I[[P ]],

∃C ∈ p+(tOP [X, I[[P ]]]) : lab[[C]] = L′} ∪

{{L : PT → L̃; L̃ : A→ L′} ∪ p+(tOP [X, I[[P ]]]) | L : A→ L′ ∈ P,

L ∈ I[[P ]], L̃ ∈ New , ∃C ∈ p+(tOP [X, I[[P ]]]) : lab[[C]] = L′}

Step 4: DefiningFOP [[P ]](p+(tOP [X, I[[P ]]])) as the union above, we have thatp+ ◦ FOP [[P ]] = FOP [[P ]] ◦ p+, and thereforep+(lfpFOP [[P ]]) = lfpFOP [[P ]]. From
the definition ofFOP it is possible to derive an extended iterative algorithm that inserts
opaque predicates.
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